STIL - Starlink TablesInfrastructureLibrary

Version 4.2-1

VOTable \ Table metadata = /v VOTable
FITS | e FITS
\ /V

CDF Column metadata pepions ~___»SQL table

Units

i — » ASClI

T

SQL query ——
Cell data

Sarlink User Note252
Mark Taylor
29 February 2024

$ld: sun252.xml,v 1.332 2024/03/01 12:22: 14 mbt Exp $

Abstract

STIL isaset of Java class libraries which allow input, manipulation and output of tabular data and
metadata. Among its key features are support for many tabular formats (including VOTable, FITS,
ECSV, PDHA, Parquet, MRT, CDF, Feather, text-based formats and SQL databases) and support for
dealing with very large tablesin limited memory.

As well as an abstract and format-independent definition of what constitutes a table, and an
extensible framework for "pull-model” table processing, it provides a number of format-specific
handlers which know how to serialize/deserialize tables. The framework for interaction between the
core table manipulation facilities and the format-specific handlers is open and pluggable, so that
handlers for new formats can easily be added, programmatically or at run-time.

The VOTable handling in particular is provided by classes which perform efficient XML parsing
and can read and write VOTables in any of the defined formats (TABLEDATA, BINARY or FITS).
It supports table-aware SAX- or DOM-mode processing and may be used on its own for VOTable
I/O without much reference to the format-independent parts of the library.

Contents

N 01 = Yo 1
O 0 o [Tt 1o 6
L L WVNGE IS @TADIE?. ...ttt e e et e e e et e e e e eeeesaa i eeeetesesssaasssaeeeeeeessesanreneeeeeeseesans 6
A N[BT I 1o LN L €= = TR 7

2.2 COIUMN IMEBLATAEALeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeses e s e sesmsssesesmnnsssssnsmsesmnnnnnnnnnnnnnnnns 7

R R = o 1Y D - TSP O PRPR 8
2.3. 1 SEQUENTIAI ACCESS......cuitieiieiieieeee ettt sttt ae et e et e st e b e sb e e bt e st e st e s e e e e e e s e beneeabenbeanennneneas 8
2.3.2 RANUOM ACCESS......ccuieueeeete sttt sttt ettt et et bbbt s st e st e ae e e e s e b e sb e e bt ebeshees e e ae e b et e nbesbesbenbenneenes 9
2.3.3 Parall€] PrOCESSING. ... c.eeitiiuiiteiiieiiiiee ettt b ettt e e et bbb e ens 9
2.3.4 Adapting Sequential t0 RANAOM ACCESS........cccoiiriririirieieeee e e 10
RN 1= o1 1 1L T U TR USSR PP PPPRPRPN 11
3.1 EXLENSIDIE 1/O FraMEWOIK.........oeiiirieiieieeee e nre 11
3.2 Generic Table RESOUICE INPUL........ccereeieieiisesie sttt nre e 12
3.3 Generic Table Streamed INPUL..........coiiieieeeee et 13
3.4 GENENIC TADIE OULPUL. ...ttt bbb bbb snenneeneas 14
3.5 SPECITYING /O HANAIEIS........oiuiieiieieieeeeee ettt 15
3.6 SUPPlied INPUE HBNAIEIS........oouiiiiieieeee ettt 15
G200 N TSSO P PR RPR PRSP 16
3.6.2 ColumN-0rented FITS.... ..ottt be s 17
BUB. 3V OTADIE.....c et bbbttt ne b b neene e 17
B4 ECSV ..t E b ARt E R e et et n et R b naeeae e e 18
U85 PDSA. ... e et R R Rt Rt h e R et ettt e b e enn 19
3.6.6 Machine-Readable TalI.........ccooiiiriiieee s 20
SB.7 PAIQUEL.........eeeeeeee et r e e E et h bR n e r e anenes 21
B8 HAP e e R Rt h ettt e n e e ens 23
NS O B LTRSS PTOPRPROR 23
BB L0 FEALNEN ...ttt bbbt e et e 23
O30 I s 1 ST S PSPPI 23
3.6.12 COMMa-SEPAIGIEA VAIUES........c.eoeiieieiie ettt st 25
3.6.13 Tah-Separated TaIE.........ooiieiieieee e 26
O N N RSP P PR 27
BUB.15 GBIN...c et b e bbbt et b e R b nE Rt e et e et nenrenne e 27
SUB. LB WDKC..... ettt bbb h et b e AR R bRttt e n e ens 29
3.7 Supplied OULPUL HBNAIEXS.........ccoiiieeeee et 29
00 I TSSO RPR VSRRSO 29
3.7.2 Column-0riented FITS......coo ittt bbb 31
ARG Y @ L I o] = USSP PTPRURURPRR 32
SLTAECSV ..t e b b ARt A R e Rt et et e e bR b nae st ne e 33
LTS PANGUEL........ceeeeeee e et r e n e n e r e e 34
BT UB FEAINEN ...t e e bt bRttt e e ne e 35
A S | PP PR S PSTPTPPRPRN 35
3.7.8 COoMME-SEPAAEA VEIUBS.........couiiiiiiiesie ettt sne e 36
3.7.9 TaD-SeParated TaDIE........ooeieeeeeeeee bbb 37
0 L I N OSSP PR 37
0 F= 1 1= TSSOSO 38
00 2 o 1 I Y USSP PP 39
00 G B - 1 = USSP PP 40
N (Y 1 = USSP PR PP 40
3.8 Non-Standard FITS CONVENTIONS........ccoiiiiriiiirieieeeeeniesi et sse st sre e 41
BB L FIT S PIUS.. ..ttt b et bbbt s et et e b e bbb e nb e neeneeneas 41
B2 WILE FITS .t e e bbbt b e a e h et e e e e b e sb e b sbesnenneeneas 42
.9 TADIE SCREMES.......c.eeeeee bbbttt e b e 44
O Nt I e SRR 44
G 10 2 T o 45
G TS G B =YY SO OUURTRROPPRP 45
IR Y I 1= OO 46
G 10 I - 1 46
3.10 /O uSING SQL aBIESES.........ceueeeeieiesiesie sttt st sb e nne e a7

3.10.1 IDBC CONFIGUIBLION.evirteeieeiieueetesieste sttt e e st e sbe e s e e e e e e e s e saesbeabesaeeneeneeneas 48

3.10.2 Reading from @ DatalaSe.ccoouirireeieieiese e 49

3.10.3Writing t0 @ D@@DASE.coueeuieieieiesie sttt b e 49
G300 I N0 117 o o S 49
TS o = To T o] o =SOSR 50
O Y o = o] o =SSO 50
4.2 DEFAUIT POLICY ...ttt bbbttt ettt b b e ne e enes 51
Y €10 BT o] o Lo o TSP PP RO 53
5.1 Drag @N0 DIOP.....eeiiiisiesiistesieeieee ettt sttt sttt bbb b bt et e st e e et et et e s b e b e s bt e ne e e e e s 53
5.2 Table LOad DIGIOGUES..........oouiiiieriintieiieiee ettt bbbttt sb e 54
5.3 TaDIE SAVE DIGIOQUES.........ootiiiiitiiieeiieee ettt bbbttt sn e b e ene e 54
6 ProCessing SEar TADIES.......coiiiiiie ettt sttt a e e e e 55
LI TV L= o LS I = S 55
B2 WIBP [T Pttt b et a e bt et nae e bt e e e n e n e e nns 55
6.3 WIADPEN ClBSSES......cuiitiieiiiieiieeei ettt sttt st bt bbbt st e e e b et e s b e st e sbeebeeseene e e e e 56
O ez 01 o] =SSR 57
O3 o L (o [= o S 57
6.4.2 Turn aset of arraySint0 aStarTable.......ccoci i s 58
6.4.3 Add @NEW COIUMN.......ocuiiiieie et te et e e teesaesreesteeseesneenaeeneenreenes 59
TV OT A ACCESS.....coeeeeeeeteeie ettt sttt et e st et e s et e sseeee e st e sbeeneeeseesseenseaneesbeensesneesseensens 61
7.1 StarTable Representation Of VOTaDIES.........coveeiiieciereee et 61
7. 0.1 SETUCKUNE. ...ttt b et b e et e e e e b e e bt e ae e se e et e e ne e nbe et e eneesneenneens 61
T.1.2 PAIAMELEIS........eeeieeiieeiieeee ettt e st s e e s s e e e e ame e e ne e s meeaaneeame e en e e smneaneeanneeneennneens 62
7.1.3 COlUMN MELAOALAL. ... couveeeieeiesieeieeieeee ettt b e bbbttt e et et e ene e 62
A R DL = Y <SPPSR PRSP 62
7.2 DATA Element Serialization FOMMELS.........c.ooiviiiieiininieeeeie s 63
7.3 REAMING VOTADIES ..ottt st e e ae e e te e e e s neeseeneesneenseeneens 64
7.3.1GeneriC VOTADIE REAA. ..o 64
7.3.2 Table-AWare DOM PrOCESSING.......ccueiurieerieeiieseeseesieseesseesesseesseessesseessessssseessessesssesssessenns 65
7.3.3 Tahle-AWare SAX PrOCESSING.....ccueeiueieerteeiesrieseraesseessesseesseessesessseessessesssesssesssssseessessesssens 67
7.3.4 StandardS CONfOMMEANCE.couiiuerierieeerie ettt bbbttt eentesbe st saesbenneas 68
TAWETING VOTADIES......ceeceecece ettt e st et e e e steeaeeseesneeneenneennn 69
A R T= 1 o =l o U110 S 69
S T 0Te | [V @ N = o = o 11 | S 69
7. 4.3 TABLE @@MENT OULPUL.......ceiuieiieeiisieeieceeseesieseesteetesseesseesesseesseesesseesseensesneesseessesseessnsnenns 70
T A AN OTADIE VEISION......eiiiiiiiiitesie ettt sttt st s b et e s b e bt bt et et et e neesbesbenaesbenreas 71
APPENTIX Al SYSLEM PrOPEItIES.. ..ottt sr e 73
FN = \VZ= W Lo 1 0] 0o |1 PO SOSTRPPP PP 73
A.2java.util.concurrent.ForkJoinPool.common.parallelism.........cccoiinnniniencee 73
A B JUDCANIVENS.....ee ettt bbbt bttt e e e e e e e b e benb e bt eneene e e 73
N 4 =T QLYo €= o1] o S 73
ALD SLAN .CONMNECLON Sttt ettt e bt e et e e e b e e e sase e e sane e e sase e e saseesasseesneeesnneesnreeenans 73
NS TR =1 0] L = Vo < S 73
A7 SLArtable.SCREMES........c.ooe e 73
F s T =1 0] (s 0] =T = P 74
F NSRS =T =1] LS U = o T 74
ALLO SEAr TADI T TTEI S..iiieeee et bbb b b re s 74
A.11 votable.NamMESPACING......ccueeieeieiteeie et ee et e et e st et e s e te e e e sae e seeseesreenteeneesneeneenaenreenns 75
LN Y (o) = o] [o o o ST 75
FN IR (o= o] [Y= S o] o TSSO 75
ApPPENiX B: TablE TOOIS.....cuuiiiieiieceee et be e sae e neenneas 76
APPENIX C: REIEASE NOLES.......coiiiii ittt e e e re e sreeebe e saeeenreesnneans 77
C.L ACKNOWIEAGEMENTS..... .ottt a e b e e sre e e re e aae e ereesreeereennes 77
C.2 Package DEPENUENCIES.........coiieierieerieeie et e ettt sbeseesseesbessesaeesbeetesseesbeesesneessesnsens 77

ORCAVAC g ol gl o FE (o] o PRSP 78

SUN/252

SUN/252 6

1 Introduction

STIL is a set of class libraries for the input, output and manipulation of tables. It has been
developed for use with astronomical tables, though it could be used for any kind of tabular data. It
has no "native" external table format. What it hasis a model of what atable looks like, a set of java
classes for manipulating such tables, an extensible framework for table 1/0, and a number of
format-specific I/0O handlers for dealing with several known table formats.

This document is a programmers overview of the abilities of the STIL libraries, including some
tutorial explanation and example code. Some parts of it may also be useful background reading for
users of applications built on STIL. Exhaustive descriptions of al the classes and methods are not
given here; that information can be found in the javadocs, which should be read in conjunction with
this document if you are actually using these libraries. Much of the information here is repeated in
the javadocs. The hypertext version of this document links to the relevant places in the javadocs
where appropriate. The latest released version of this document in several formats can be found at
http://www.starlink.ac.uk/stil/.

1.1 What isatable?

In words, STIL'sidea of what constitutes a table is something which has the following:

* Some per-table metadata (parameters)

* A number of columns

* Some per-column metadata

* A number of rows, each containing one entry per column

This model is embodied in the st ar Tabl e interface, which is described in the next section. It maps
quite closely, though not exactly, onto the table model embodied in the VOTable definition, which
itself owes a certain amount to FITS tables. Thisis not coincidence.

SUN/252 7

2 The Star Tableinterface

The most fundamental type in the STIL package is uk. ac. starlink. tabl e. Star Tabl e; any time
you are using atable, you will use an object which implements this interface.

2.1 Table M etadata

A few items of the table metadata (name, URL) are available directly as values from the st ar Tabl e
interface. A general parameter mechanism is provided for storing other items, for instance
user-defined ones. The get Paranet ers method returns a list of Descri bedVal ue objects which
contain a scalar or array value and some metadata describing it (name, units, Unified Content
Descriptor). Thislist can be read or altered as required.

The st ar Tabl e interface also contains the methods get Col unmmCount and get RowCount to determine
the shape of the table. Note however that for tables with sequential-only access, it may not be
possible to ascertain the number of rows - in this case get RowCount Will return -1. Random-access
tables (see Section 2.3) will always return a positive row count.

2.2 Column M etadata

Each column in a St ar Tabl e is assumed to contain the same sort of thing. More specifically, for
each table column there is a Col unml nf o Object associated with each column which holds metadata
describing the values contained in that column (the value associated with that column for each row
inthetable). A Col uml nf o contains information about the name, units, UCD, class etc of a column,
as well as a mechanism for storing additional (‘auxiliary”) user-defined metadata. It also provides
methods for rendering the values in the column under various circumstances.

The class associated with a column, obtained from the get Cont ent d ass method, is of particular
importance. Every object in the column described by that metadata should be an instance of the
C ass that get Cont ent O ass returns (or of one of its subtypes), or nul I . There is nothing in the
tables infrastructure which can enforce this, but a table which doesn't follow this rule is considered
broken, and application code is within its rights to behave unpredictably in this case. Such a broken
table might result from a bug in the 1/O handler used to obtain the table in the first place, or a badly
formed table that it has read, or a bug in one of the wrapper classes upstream from the table instance
being used. Because of the extensible nature of the infrastructure, such bugs are not necessarily
STIL'sfault.

Any (non-primitive) class can be used but most table I/O handlers can only cope with certain types
of value - typically the primitive wrapper classes (numeric oneslike I nt eger , Doubl e and Bool ean)
and strings, so these are the most important ones to deal with. The contents of a table cell must
always (as far as the access methods are concerned) be an bj ect or nul I, so primitive values
cannot be used directly. The general rule for primitive-like (numeric or boolean) values is that a
scalar should be represented by the appropriate wrapper class (I nt eger , Fl oat , Bool ean €tC) and an
array by an array of primitives (int[], float[], bool ean[] €tc). Non-primitive-like objects (of
which st ri ng is the most important example) should be represented by their own class (for scalars)
or an array of their own class (for arrays). Note that it is not recommended to use multidimensional
arrays (i.e. arrays of arrays like int[]1[]); a 1-dimensional Java array should be used, and
information about the dimensionality should be stored in the Col umni nf o's shape attribute. Thus to
store a 3x2 array of integers, a 6-element array of typeint[] would be used, and the Col umi nf 0's
get Shape method would return atwo-element array (3, 2) .

In the case of floating point values (columns with class Fl oat or Doubl €), STIL implementation
code treats nul I and NaN (Not-a-Number) values somewhat interchangeably. Typically where
STIL encounters a null floating point value, arising either from a file format that can represent

SUN/252 8

blanks, or from processing that fails to provide a definite value, it will be represented internally as a
NaN for reasons of efficiency. In general therefore, client code is advised not to rely on
distinguishing these cases.

2.3 Table Data

The actual data valuesin atable are considered to be a sequence of rows, each containing one value
for each of the table's columns. As explained above, each such value is an j ect , and information
about its class (as well as semantic metadata) is available from the column's Col unml nf o object.

St ar Tabl es come in two flavours, random-access and sequential-only; you can tell which one a
given table is by using itsi sRandommethod, and how its data can be accessed is determined by this.
In either case, most of the data access methods are declared to throw an | OExcept i on to signal any
data access error.

2.3.1 Sequential Access

It is always possible to access a table's data sequentially, that is starting with the first row and
reading forward a row at a time to the last row; it may or may not be possible to tell in advance
(using get RowCount) how many rows there are. To perform sequential access, use the
get RowSequence Method to get a RowSequence object, which is an iterator over the rows in the
table. The RowSequence's next method moves forward a row without returning any data; to obtain
the data use either getCell or getRow, the relative efficiencies of these depend on the
implementation, but in general if you want all or nearly all of the valuesin arow it isagood ideato
use get Row, if you just want one or two use get Cel I . You cannot move the iterator backwards.
When obtained, a RowSequence is positioned before the first row in the table, so (unlike an
I'terator)itisnecessary to call next beforethefirst row isaccessed.

Here is an example of how to sum the values in one of the numeric columns of a table. Since only
one value isrequired from each row, get Cel | isused:

doubl e sunCol unm(StarTable table, int icol) throws | OException {

/'l Check that the colum contains values that can be cast to Nunber.
Col uminfo col Info = tabl e. get Col umilnfo(icol);

Cl ass col dass = col I nfo.getContentd ass();

if (! Nunber.class.isAssignabl eFrom colCass)) {

} throw new I || egal Argument Excepti on("Col um not nuneric");

/'l lterate over rows accunulating the total.
doubl e sum = 0.0;
RowSequence rseq = tabl e. get RowSequence() ;
while (rseqg.next()) {
Nurber val ue = (Nunber) rseq.getCell(icol);
sum += val ue. doubl eVal ue() ;

rseq. cl ose();
return sum

}

The next example prints out every cell value. Since it needs al the values in each cell, it uses
get Row.

void witeTable(StarTable table) throws | OException {
int nCol = table.getCol umCount ();
RowSequence rseq = tabl e. get RowSequence() ;
while (rseqg.next()) {
Obj ect[] row = rseq. get Row) ;
for (int icol =0; icol < nCol; icol++) {
Systemout.print(row icol] + "\t");

}
Systemout.println();

SUN/252 9

rseq. cl ose();

In this case atidier representation of the values might be given by replacing the pri nt call with:

Systemout.print(table.getColuminfo(ico
.formatvalue(row icol], 20) + "\t");

2.3.2 Random Access

If atable's i sRandom method returns true, then it is possible to access the cells of a table in any
order.

The most straightforward way to do this is using the get Cel I or get Row methods directly on the
table itself (not on a Rowsequence). These methods are supposed to be in general safe for use from
multiple threads concurrently; however depending on the implementation that may be enforced in a
way that slows down concurrent access, for instance using synchronization.

The preferred aternative in multithreaded contexts is to use the get RowAccess method to obtain a
RowAccess object. A RowAccess can be used for random access within a single thread, in a way that
may (depending on the implementation) avoid contention for resources.

Similar comments about whether to use the by-cell or by-row methods apply as in the previous
section.

If an attempt is made to call these random access methods on a non-random table (one for which
i sRandom() returnsf al se), an Unsuppor t edQper at i onExcept i on Will be thrown.

2.3.3 Parallel Processing

STIL version 4 introduces support for parallel processing of tabular data. This somewhat resembles,
but is not based on, parts of the streams framework from Java 8. To perform a parallel operation on
a Star Tabl e, you must provide an instance of the class Rowcol | ect or, and pass it along with a
target table to the col | ect method of a suitable RowRunner. The RowRunner instance determines
whether execution is done sequentially or in paralel; usually RowRunner. DEFAULT is a suitable
instance (if there are many rows and multiple cores are available it will run in paralléel; if there are
few rows or the hardware only provides a single core it will run sequentialy). The RowRunner
accesses the table data using the get Rowsplittabl e method of the table in question; the
RowSpl i ttabl e thus obtained behaves a bit like a java.util.Spliterator in that it can be
recursively divided up into smaller pieces amenable to parallel processing. Although al st ar Tabl es
must implement the get RowSpl i t t abl e method, actual splitting cannot aways be implemented, so
depending on the behaviour of the table in question, there is no guarantee that processing will
actualy be performed in parallél.

Here is an example of how to sum the contents of a column using (potentially) parallel processing:

static doubl e sunCol umParal | el (StarTable table, int icol) throws |OException {
doubl e[] acc = RowRunner.DEFAULT. col | ect (new SunCol | ector(icol), table);
return acc[0];

/**

* RowCol | ector inplenentation that sunms values froma single colum,
* using a l-elenment double[] array to accumul ate val ues into.

*/

static class SuntCol | ect or extends RowCol | ector<doubl e[]> {

SUN/252 10

final int icol_;
SunCol | ector(int icol) {
icol _ =icol;

}
public doubl e[] createAccumulator() {
return new double[1];

}

public doubl e[] conbi ne(doubl e[] accl, double[] acc2) {
accl[0] += acc2[O];
return accl,

public void accumul at eRows(RowSplittable rseq, double[] acc) throws | CException {
while (rseq.next()) {
bj ect value = rseq.getCell (icol_);
if (value instanceof Nunber)
acc[0] += ((Nunber) val ue). doubl eVal ue();

}

The level of parallelism available from the JVM is determined from the system property
java. util.concurrent. ForkJoi nPool . conmon. par al | el i sm which is normally set to one less
than the number of processing cores on the current machine. Parallel processing can be inhibited by
setting this value to 1.

2.3.4 Adapting Sequential to Random Access

What do you do if you have a sequential-only table and you need to perform random access on it?
The Tabl es. r andonirabl e utility method takes any table and returns one which is guaranteed to
provide random access. If the original one is random, it just returns it unchanged, otherwise it
returns a table which contains the same data as the submitted one, but for which i sRandom is
guaranteed to return true. It effectively does this by taking out a RowsSequence and reading all the
data sequentially into some kind of (memory- or disk-based) data structure which can provide
random access, returning a new StarTable object based on that data structure. Exactly what kind of
data structure is used for caching the data for later use is determined by the St oragePol i cy
currently in effect - this is described in Section 4, and the St or agePol i cy. randonTabl e method
may be used explicitly instead to control this.

Clearly, this might be an expensive process. For this reason if you have an application in which
random access will be required at various points, it is usually a good idea to ensure you have a
random-access table at the application's top level, and for general-purpose utility methods to require
random-access tables (throwing an exception if they get a sequentia-only one). The aternative
practice of utility methods converting argument tables to random-access when they are called might
result in this expensive process happening multiple times.

SUN/252 11

3Tablel/O

The table input and output facilities of STIL are handled by format-specific input and output
handlers; supplied with the package are, amongst others, a VOTable input handler and output
handler, and this means that STIL can read and write tablesin VOTable format. An input handler is
an object which can turn an external resource into a st ar Tabl e object, and an output handler is one
which can take a star Tabl e object and store it externally in some way. These handlers are
independent components of the system, and so new ones can be written, allowing all the STIL
features to be used on new table formats without having to make any changes to the core classes of
thelibrary.

There are two ways of using these handlers. You can either use them directly to read in/write out a
table using a particular format, or you can use the generic /O facilities which know about several of
these handlers and select an appropriate one a run time. The generic reader class is
St ar Tabl eFact ory which knows about input handlers implementing the Tabl eBui | der interface,
and the generic writer classis St ar Tabl ecut put which knows about output handlers implementing
the starTablewiter interface. The generic approach is more flexible in a multi-format
environment (your program will work whether you point it at a VOTable, FITS file or SQL query)
and is generally easier to use, but if you know what format you're going to be dealing with you may
have more control over format-specific options using the handler directly.

The following sections describe in more detail the generic input and output facilities, followed by
descriptions of each of the format-specific I/0O handlers which are supplied with the package. There
Is an additional section (Section 3.10) which deals with table reading and writing using an SQL
database.

3.1 Extensible |/O framework

STIL can deal with externally-stored tables in a number of different formats. It does this using a set
of handlers each of which knows about turning an external data source into one or more java
St ar Tabl e Objects or serializing one or more St ar Tabl e objects into an external form. Such an
"external table" will typically be afile on aloca disk, but might also be a URL pointing to afile on
aremote host, or an SQL query on aremote database, or something else.

The core 1/0 framework of STIL itself does not know about any table formats, but it knows how to
talk to format-specific input or output handlers. A number of these (VOTable, FITS, ASCII and
others, described in the following subsections) are supplied as part of the STIL package, so for
dealing with tables in these formats you don't need to do any extra work. However, the fact that
these are treated in a standard way means that it is possible to add new format-specific handlers and
therest of the library will work with tables in that format just the same as with the supplied formats.

If you have atable format which is unsupported by STIL asit stands, you can do one or both of the
following:

Write anew input handler:

Implement the Tabl eBui | der interface to take a stream of data and return a St ar Tabl e object.
Optionally, you can also implement the Ml ti Tabl eBui | der subinterface if the format can
contain multiple tables per file. Install it in a Star Tabl eFact ory, either programmatically
using the getDefaultBuilders Or getKnownBuilders methods, or by setting the
startabl e. readers System property. This factory will then be able to pick up tables in this
format as well as other known formats. Such a Tabl eBui | der can aso be used directly to read
tables by code which knows that it's dealing with data in that particular format.

Write a new output handler:
Implement the starTabl ewiter interface to take a StarTabl e and write it to a given

SUN/252 12

destination. Optionally, you can aso implement the Ml ti St ar Tabl eW i t er subinterface if the
format can contain multiple tables per file. Install it in a StarTabl eCutput either
programmatically using the set Handl er s method or by setting the st art abl e. wri t er s System
property. This StarTableOutput will be then be able to write tables in this format as well as
others. Such a st ar Tabl ewi t er can also be used directly to write tables by code which wants
to write datain that particular format.

Because setting the st art abl e. reader s/startabl e. wi t ers System properties can be done by the
user at runtime, an application using STIL can be reconfigured to work with new table formats
without having to rebuild either STIL or the application in question.

This document does not currently offer a tutorial on writing new table 1/0O handlers; refer to the
javadocs for the relevant classes.

3.2 Generic Table Resour ce Input

This section describes the usual way of reading atable or tables from an external resource such as a
file, URL, Dat aSour ce €tc, and converting it into a St ar Tabl e object whose data and metadata you
can examine as described in Section 2. These resources have in common that the data from them
can be read more than once; this is necessary in general since depending on the data format and
intended use it may require more than one pass to provide the table data. Reading atable in this way
may or may not require local resources such as memory or disk, depending on how the handler
works - see Section 4 for information on how to influence such resource usage.

The main class used to read atable in thisway is St ar Tabl eFact ory. Thejob of this classisto keep
track of which input handlers are registered and to use one of them to read data from an input
stream and turn it into one or more Star Tabl eS. The basic rule is that you use one of the
St ar Tabl eFact ory'sS makeSt ar Tabl e Or makeSt ar Tabl es methods to turn what you've got (e.g.
String, URL, Dat aSour ce) Into a St ar Tabl e Or & Tabl eSequence (which represents a collection of
St ar Tabl eS) and away you go. If no StarTable can be created (for instance because the file named
doesn't exist, or because it is not in any of the supported formats) then some sort of | CExcept i on or
Tabl eFor mat Excepti on will be thrown. Note that if the byte stream from the target resource is
compressed in one of the supported formats (gzip, bzip2, Unix compress) it will be uncompressed
automatically (the work for thisis done by the Dat aSour ce class).

There are two distinct modes in which st ar Tabl eFact ory can work: automatic format detection
and named format.

In automatic format detection mode, the type of data contained in an input stream is determined by
looking at it. What actually happens is that the factory hands the stream to each of the handlers in
its default handler list in turn, and the first one that recognises the format (usually based on looking
at the first few bytes) attempts to make a table from it. If this fails, a handler may be identified by
looking at the file name, if available (e.g. a filename or URL ending in ". csv" will be tried as a
CSV file). In thismode, you only need to specify the table location, like this:

public StarTable |oadTable(File file) throws | OException {
return new StarTabl eFactory().nakeStarTable(file.toString());
}

This mode is available for formats such as FITS, VOTable, ECSV, PD34, Parquet, MRT, Feather
and CDF that can be easily recognised, but is not reliable for text-based formats such as
comma-separated values without recognisable filenames. You can access and modify the list of
auto-detecting handlers using the get Def aul t Bui | der s method. By default it contains only handlers
for VOTable, CDF, FITS like formats, ECSV, PD34, Parquet, MRT, Feather and GBIN.

In named format mode, you have to specify the name of the format as well as the table location.

SUN/252 13

This can be solicited from the user if it's not known at build time; the known format names can be
got from the get KnownFor mat s method. The list of format handlers that can be used in this way can
be accessed or modified using the get KnownBui | der s method; it usually contains all the onesin the
default handler list, but doesn't have to. Table construction in named format mode might look like
this:

public StarTable |oadFitsTable(File file) throws | OException {
return new StarTabl eFactory().nakeStarTable(file.toString(), "fits");
}

Thisformat also offers the possibility of configuring input handler options in the handler name.

If the table format is known at build time, you can aternatively use the nakest ar Tabl e method of
the appropriate format-specific Tabl eBui | der . For instance you could replace the above example
with this:

return new FitsTabl eBuil der ()
. makeSt ar Tabl e(Dat aSour ce. makeDat aSource(file.toString()),
fal se, StoragePolicy.getDefaultPolicy());

This dlightly more obscure method offers more configurability but has much the same effect; it may
be dlightly more efficient and may offer somewhat more definite error messages in case of failure.
The various supplied Tabl eBui | der s (format-specific input handlres) are listed in Section 3.6.

The javadocs detail variations on these calls. If you want to ensure that the table you get provides
random access (see Section 2.3), you should do something like this:

public StarTabl e | oadRandonTable(File file) throws | OException {
St ar Tabl eFactory factory = new Star Tabl eFactory();
factory. set Requi reRandorr(true);
Star Tabl e table = factory. makeStarTable(file.toString());
return tabl e;

Setting the requi reRandom flag on the factory ensures that any table returned from its
makeSt ar Tabl e methods returns t r ue from its i sRandom method. (Note prior to STIL version 2.1
this flag only provided a hint to the factory that random tables were wanted - now it is enforced.)

3.3 Generic Table Streamed I nput

As noted in the previous section, in general to make a St ar Tabl e you need to supply the location of
a resource which can supply the table data stream more than once, since it may be necessary to
make multiple passes. In some cases however, depending on the format-specific handler being used,
it is possible to read a table from a non-rewindable stream such as Syst em i n. In particular both the
FITSand VOTableinput handlers permit this.

The most draightforward way of doing this is to use the StarTableFactory's
makeSt ar Tabl e(| nput St r eam Tabl eBui | der) method. The following snippet reads a FITS table
from standard input:

return new StarTabl eFactory().nakeStar Tabl e(Systemin, new FitsTabl eBuilder());

caching the table data as determined by the default storage policy (see Section 4).

It is possible to exercise more flexibility however if you don't need a stored st ar Tabl e object as the
result of the read. If you just want to examine the table data as it comes through the stream rather
than to store it for later use, you can implement a Tabl eSi nk object which will be messaged with
the input table's metadata and data as they are encountered, and pass it to the st r eanfst ar Tabl e

SUN/252 14

method of a suitable Tabl eBui | der. This of course is cheaper on resources than storing the data.
The following code prints the name of the first column and the average of its values (assumed
numerical):

/1l Set up a class to handle table processing call back events.
cl ass Col umReader i npl enments Tabl eSi nk {

private |ong count; /'l nunber of rows so far
private double sum /1 running total of values fromfirst colum

/1 Handl e netadata by printing out the first colum nane.
public void accept Metadata(StarTable meta) {
String title = nmeta. getColumlinfo(0).getNane();
Systemout.println("Title: " + title);

/1 Handl e a row by updating running totals.
public void accept Rowm Cbject[] row) {
sum += ((Nunber) row O]).doubl eVal ue();
count ++;

/'l At end-of-table event calculate and print the average.
public void endRows() {

doubl e average = sum/ count;

Systemout.println("Average: " + average);

}
b

/1l Streams the naned file to the sink we have defined, getting the data
/1 fromthe first TABLE elenent in the file.
public void sumarizeFirstColum(InputStreamin) throws | CException {
Col unmmReader reader = new Col utmReader () ;
new VOTabl eBui | der (). streanttar Tabl e(in, reader, "0");
in.close();

Again, thisonly works with atable input handler which is capable of streamed input.

Writing multiple tables to the same place (for instance, to multiple extensions of the same
multi-extension FITS file) works in a similar way, but you use instead one of the wri t eSt ar Tabl es
methods of St ar Tabl eQut put . These take an array of tables rather than asingle one.

3.4 Generic Table Output

Generic serialization of tables to external storage is done using a St ar Tabl eQut put object. This has
asimilar job to the st ar Tabl eFact ory described in the previous section; it mediates between code
which wants to output a table and a set of format-specific output handler objects. The
wr it eSt ar Tabl e method is used to write out a St ar Tabl e object. When invoking this method, you
specify the location to which you want to output the table and a string specifying the format you
would like to write in. Thisis usually a short string like "fits" associated with one of the registered
output handlers - alist of known formats can be got using the get KnownFor mat s method.

Useis straightforward:

void witeTabl eAsFI TS(StarTable table, File file) throws | OException {
new Star Tabl eQutput().witeStarTable(table, file.toString(), "fits");
}

If, asin this example, you know what format you want to write the table in, you could equally use
therelevant st ar Tabl ew i t er object directly (inthiscaseaFit sTabl ewiter).

Asimplied in the above, the location string is usually a filename. However, it doesn't have to be - it
is turned into an output stream by the St ar Tabl eQut put 'S get Qut put St r eammethod. By default this
assumes that the location is a filename except when it has the special value "-" which is interpreted
as standard output. However, you can override this method to write to more exotic locations.

SUN/252 15

Alternatively, you may wish to output to an Qut put Stream of your own. This can be done as
follows:

void witeTabl eAsFI TS(Star Tabl e table, QutputStreamout) throws | COException {
St ar Tabl eCQut put sto = new St ar Tabl eCut put () ;
Star Tabl eWiter outputHandl er = sto.getHandler("fits");
sto.witeStarTabl e(table, out, outputHandler);

3.5 Specifying I/0O Handlers

In auto mode (if a handler name or instance is not supplied to the input/output handler when
reading/writing a table) the 1/0 framework tries to guess the right handler to use, based on file
content and/or filename. This is often sufficient. However, for both input and output the framework
alows the caller to supply explicitly a handler instance (Tabl eBui | der /St ar Tabl eWiter) OF a
string identifying such an instance. In the case of an instance, it can be constructed and configured
in the usual way using constructor arguments or mutator methods; see the per-handler javadocs.

In the case of a String defining the handler (eq. methods
St ar Tabl eFact ory. makeSt ar Tabl e(Dat aSour ce, String),

St ar Tabl eQut put . wri t eSt ar Tabl e(St ar Tabl e, String, String)) the basic content of the string
can be either the registered name of one of the handlers known to the framework, or the classname
of aclass having a no-arg constructor which implements the relevant handler interface.

So for instance the content of a method to write atablein VOTable format like this:

voi d witeAsVOTabl e(St ar Tabl eQut put sto, StarTable table) throws | OException
could be written in any of the following ways:

sto.witeStarTabl e(table, Systemout, new VOTableWiter());
sto.writeStarTable(table, "-", "votable");
sto.witeStarTable(table, "-", "uk.ac.starlink.votable.VOTrableWiter");

However, since STIL v4, the string form may also specify handler options in parenthesis, if such
options are offered by the handler in question. So for instance the following are also possible:

sto.witeStarTable(table, "-", "votable(version=V12)");
sto.witeStarTable(table, "-", "uk.ac.starlink.votable.VOrabl ewiter(version=v1i2");
which will write VOTables conforming to version 1.1 of the VOTable handler specification. These
options are comma-separated nane=val ue pairs, and the nane is mapped to bean-like configuration
methods on the handler class by use of the @onfi gvet hod annotation. See the Confi gMet hod
javadocs, and e.g. the vOTabl eWi ter. set Vot abl eVer si on method for an example. When using
STIL programmatically, these string-based options are not really required since the mutator
methods can be used, but it can be very useful if the format string has been passed in from a user.

This configuration capability is much more flexible than the few hard coded handler variant options
that were provided in STIL versons prior to veson 4. So eg.
"vot abl e(format =BI NARY2, i nline=true)" is now preferred to the older form
"vot abl e- bi nary2-inline", though the older forms are retained for backward compatiblity.

3.6 Supplied Input Handlers

The table input handlers supplied with STIL are listed in this section, along with notes on any
peculiarities they have in turning a string into a st ar Tabl e. Each of the following subsections
describes one or more implementations of the Tabl eBui | der interface. These can be used

SUN/252 16

standalone, or with a st ar Tabl eFact ory. Some of these formats can be detected automatically (the
St ar Tabl eFact ory is capable of working out which registered handler can work with a given file,
possibly using a supplied filename to help the guesswork) while others must have the handler
specified explicitly.

In most cases the string supplied to name the table that st ar Tabl eFact ory should read is afilename
or a URL, referencing a plain or compressed copy of the stream from which the file is available. In
some cases an additional specifier can be given after a'# character to give additional information
about where in that stream the table is located.

3.6.1FITS

FITS is a very well-established format for storage of astronomical table or image data (see
https:/fits.gsfc.nasa.gov/). This reader can read tables stored in binary (XTENSI ON=' BI NTABLE') and
ASCIl (XTENSI ON=' TABLE') table extensions; any image data is ignored. Currently, binary table
extensions are read much more efficiently than ASCII ones.

When atableis stored in a BINTABLE extension in an uncompressed FITS file on disk, the table is
'mapped’ into memory; this generally means very fast loading and low memory usage. FITS tables
are thus usually efficient to use.

Limited support is provided for the semi-standard HEALPix-FITS convention; such information
about HEALPix level and coordinate system is read and made available for application usage and
user examination.

A private convention is used to support encoding of tables with more than 999 columns (not
possible in standard FITS); this was discussed on the FITSBITS mailing list in July 2017 in the
thread BINTABLE convention for >999 columns.

Header cards in the table's HDU header will be made available as table parameters. Only header
cards which are not used to specify the table format itself are visible as parameters (e.g. NAXIS,
TTYPE* etc cards are not). HISTORY and COMMENT cards are run together as one multi-line
value.

Any 64-bit integer column with a non-zero integer offset (TFORVh=' K', TSCALn=1, TZEROn<>0) IS
represented in the read table as Strings giving the decimal integer value, since no numeric type in
Java is capable of representing the whole range of possible inputs. Such columns are most
commonly seen representing unsigned long values.

Where a multi-extension FITS file contains more than one table, a single table may be specified
using the position indicator, which may take one of the following forms:

e The numeric index of the HDU. The first extension (first HDU after the primary HDU) is
numbered 1. Thus in a compressed FITS table named "spec23. fits. gz" with one primary
HDU and two BINTABLE extensions, you would view the first one using the name
"spec23.fits.gz" oOr "spec23.fits.gz#1" and the second one using the name
"spec23.fits.gz#2". The suffix "#0" is never used for a legal FITS file, since the primary
HDU cannot contain atable.

* The name of the extension. This is the value of the EXTNAME header in the HDU, or
aternatively the value of EXTNAMVE followed by "-" followed by the value of EXTVER. This
follows the recommendation in the FITS standard that EXTNAVE and EXTVER headers can be
used to identify an HDU. So in amulti-extension FITSfile"cat . fi ts" where atable extension
has EXTNAME=' UV_DATA and EXTVER=3, it could be referenced as "cat.fits#UV_DATA" Or
"cat . fits#UV_DATA- 3". Matching of these names s case-insensitive.

Files in this format may contain multiple tables; depending on the context, either one or all tables

SUN/252 17

will be read. Where only one table is required, either the first one in the file is used, or the required
one can be specified after the "#" character at the end of the filename.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading FITS tables, regardless of the filename.

There are actually two FITS-based input handlers, Fi t sTabl eBui | der and Fi t sPl usTabl eBui | der.
The former will work on any FITSfile, and acquires its metadata only from the FITS header of the
relevant TABLE/BINTABLE HDU itself; the latter works on FITS-plus files, and acquires
metadata from the embedded V OTable header.

To retrieve all the tablesin a multi-extension FITS files, use one of the makeSt ar Tabl es methods of
St ar Tabl eFact ory instead.

3.6.2 Column-oriented FITS

As well as normal binary and ASCII FITS tables, STIL supports FITS files which contain tabular
data stored in column-oriented format. This means that the table is stored in a BINTABLE
extension HDU, but that BINTABLE has a single row, with each cell of that row holding a whole
column's worth of data. The final (slowest-varying) dimension of each of these cells (declared via
the TDI Mh headers) is the same for every column, namely, the number of rows in the table that is
represented. The point of thisisthat all the cells for each column are stored contiguously, which for
very large, and especially very wide tables means that certain access patterns (basically, ones which
access only a small proportion of the columns in a table) can be much more efficient since they
require less I/O overhead in reading data blocks.

Such tables are perfectly legal FITS files, but general-purpose FITS software may not recognise
them as multi-row tables in the usual way. This format is mostly intended for the case where you
have a large table in some other format (possibly the result of an SQL query) and you wish to cache
it in away which can be read efficiently by a STIL-based application.

For performance reasons, it is advisable to access colfits files uncompressed on disk. Reading them
from aremote URL, or in gzipped form, may be rather slow (in earlier versionsit was not supported
at al).

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading colfits-basic tables, regardless of the filename.

Like norma FITS, there are two handlers for this format: Col Fit sPl usTabl eBui | der (like
FITS-plus) can read a VOTable as metadata from the primary HDU, and Col Fi t sTabl eBui | der
does not. This handler can read tables with more than the BINTABLE limit of 999 columns, as
discussed in Section 3.8.2.

3.6.3VOTable

VOTable is an XML-based format for tabular data endorsed by the International Virtual
Observatory Alliance; while the tabular data which can be encoded is by design close to what FITS
allows, it provides for much richer encoding of structure and metadata. Most of the table data
exchanged by VO servicesisin VOTable format, and it can be used for local table storage as well.

Any table which conforms to the VOTable 1.0, 1.1, 1.2, 1.3 or 1.4 specifications can be read. This
includes all the defined cell data serializations; cell data may be included in-line as XML elements
(TABLEDATA seridization), included/referenced as a FITS table (FITS seriaization), or
included/referenced as araw binary stream (BINARY or BINARY 2 serialization). The handler does
not attempt to be fussy about input VOTable documents, and it will have a good go at reading

SUN/252 18

V OTables which violate the standards in various ways.

Much, but not all, of the metadata contained in a VOTable document is retained when the table is
read in. The attributes unit, ucd, xtype and utype, and the elements coosys, TIMESYS and
DESCRI PTI ON attached to table columns or parameters, are read and may be used by the application
as appropriate or examined by the user. However, information encoded in the hierarchical structure
of the VOTable document, including GROUP structure, is not currently retained when a VOTable is
read.

V OTable documents may contain more than one actual table (TABLE element). To specify a specific
single table, the table position indicator is given by the zero-based index of the TABLE element in a
breadth-first search. Here is an example VOTable document:

<VOTABLE>
<RESOURCE>
<TABLE nane="Star Catal ogue"> ... </ TABLE>
<TABLE nane="CGal axy Catal ogue"> ... </ TABLE>
</ RESOURCE>
</ VOTABLE>
If this is available in a file named "cats.xml" then the two tables could be named as "cats.xml#0"

and "cats.xml#1" respectively.

Files in this format may contain multiple tables; depending on the context, either one or all tables
will be read. Where only one table is required, either the first one in the file is used, or the required
one can be specified after the "#" character at the end of the filename.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading VOTable tables, regardless of the filename.

The handler class for this format is vVOTabl eBui | der.

To retrieve al of the tables from a given VOTable document, use one of the makeSt ar Tabl es
methods of StarTableFactory instead.

Much more detailed information about the VOTable 1/0 facilities, which can be used independently
of the generic I/O described in this section, isgiven in Section 7.

3.64ECSV

The Enhanced Character Separated Values format was developed within the Astropy project and is
described in Astropy APE6 (DOI). It is composed of a YAML header followed by a CSV-like
body, and is intended to be a human-readable and maybe even human-writable format with rich
metadata. Most of the useful per-column and per-table metadata is preserved when de/serializing to
this format. The version supported by this reader is currently ECSV 1.0.

There are various ways to format the YAML header, but a simple example of an ECSV file looks
likethis:

%ECSV 1.0

H#H o---

delimter: '

datatype: [

{ name: index, dat at ype: int32 },
{ nanme: Species, datatype: string },
{ nane: Nane, datatype: string 1},
{ name: Legs, dat at ype: int32 1,
{ nane: Height, datatype: float64, unit: m},
{ name: Mamual, datatype: bool },
]

SUN/252 19

i ndex, Speci es, Nane, Legs, Hei ght, Marmal

1, pi g, Bl and, 4, , True

2, cow, Dai sy, 4, 2, True

3, gol df i sh, Dobbi n, , 0. 05, Fal se

4,ant,,6,0.001, Fal se

5,ant,, 6,0.001, Fal se

6, human, Mark, 2, 1. 9, True

If you follow this pattern, it's possible to write your own ECSV files by taking an existing CSV file
and decorating it with a header that gives column datatypes, and possibly other metadata such as
units. This alows you to force the datatype of given columns (the CSV reader guesses datatype
based on content, but can get it wrong) and it can also be read much more efficiently than a CSV

fileand its format can be detected automatically.

The header information can be provided either in the ECSV fileitself, or alongside aplain CSV file
from a separate source referenced using the header configuration option. In Gaia EDR3 for
instance, the ECSV headers are supplied alongside the CSV files available for raw download of all
tables in the Gaia source catalogue, so e.g. STILTS can read one of the gaia source CSV files with
full metadata as follows:

stilts tpipe
i fmt="ecsv(header=http://cdn. gea. esac. esa. i nt/ Gai a/ gedr 3/ ECSV_header s/ gai a_sour ce. headel
i n=http://cdn. gea. esac. esa. i nt/ Gai a/ gedr 3/ gai a_sour ce/ Gai aSour ce_000000- 003111. csv. gz

The ECSV datatypes that work well with this reader are bool , i nt 8, i nt 16, i nt 32, i nt 64, f | oat 32,
f1 oat 64 and string. Array-valued columns are also supported with some restrictions. Following
the ECSV 1.0 specification, columns representing arrays of the supported datatypes can be read, as
columns with datatype: string and a suitable subtype, €g. "int32[<dins>]" or
"fl oat 64[<di ms>] ". Fixed-length arrays (e.g. subtype: int32[3,10]) and 1-dimensional
variable-length arrays (e.g. subtype: float64[null]) are supported; however variable-length
arrays with more than one dimension (e.g. subtype: int32[4, null]) cannot be represented, and
are read in as string values. Null elements of array-valued cells are not supported; they are read as
NaNs for floating point data, and as zero/false for integer/boolean data. ECSV 1.0, required to work
with array-valued columns, is supported by Astropy v4.3 and later.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"ecsv(header=http://cdn. gea. esac. esa. i nt/ Gai a/ gedr 3/ ECSV_header s/ gai a_sour ce. header, col check=F
The following options are available:

header = <fil ename-or-url>
Location of afile containing a header to be applied to the start of the input file. By using this
you can apply your own ECSV-format metadata to plain CSV files.

col check = | GNORE| WARN| FAI L
Determines the action taken if the columns named in the YAML header differ from the
columns named in the first line of the CSV part of thefile.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading ECSV tables, regardless of the filename.

The handler class for files of thisformat iS EcsvTabl eBui | der .

3.6.5PDHA

NASA's Planetary Data System version 4 format is described at https://pds.nasa.gov/datastandards/.
Thisimplementation is based on v1.16.0 of PD$4.

SUN/252 20

PD$4 files consist of an XML Label file which provides detailed metadata, and which may also
contain references to external data files stored alongside it. This input handler looks for (binary,
character or delimited) tables in the Label; depending on the configuration it may restrict them to
thoseintheFi | e_Area_bservational area. The Label isthe file which has to be presented to this
input handler to read the table data. Because of the relationship between the label and the data files,
it isusually necessary to move them around together.

If there are multiple tables in the label, you can refer to an individual one using the "#" specifier
after the label file name by table name, I ocal _i dentifier, or 1-based index (e.g. "I abel . xm #1"
refersto thefirst table).

If there are Speci al _Const ants defined in the label, they are in most cases interpreted as blank
values in the output table data. At present, the following special values are interpreted as blanks:

sat ur at ed_const ant, nm ssi ng_constant, error_constant, i nval i d_const ant,
unknown_const ant , not _appl i cabl e_const ant, hi gh_i nstrunent _saturati on,
hi gh_representati on_saturation, | ow_i nst runment _sat uration,

| ow_representation_saturation.

Fields within top-level Groups are interpreted as array values. Any fields in nested groups are
ignored. For these array values only limited null-value substitution can be done (since array
elements are primitives and so cannot take null values).

This input handler is somewhat experimental, and the author is not a PDS expert. If it behaves
strangely or you have suggestions for how it could work better, please contact the author.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"pds4(checkmagi c=f al se, observati onal =t rue)". The following options are available:

checkmagi ¢ = true|false
Determines whether an initial test is made to see whether the file looks like PDS4 before
attempting to read it as one. The tests are ad-hoc and look for certain elements and namespaces
that are expected to appear near the start of a table-containing PD34 file, but it's not
bulletproof. Setting this true is generally a good idea to avoid attempting to parse non-PD$4
files, but you can set it false to attempt to read an PD34 file that starts with the wrong
sequence.

observational = true|false
Determines whether only tables within a <Fi | e_Area_Qbser vati onal > element of the PD$4
label should be included. If true, only observational tables are found, if false, other tables will
be found as well.

Files in this format may contain multiple tables; depending on the context, either one or all tables
will be read. Where only one table is required, either the first one in the file is used, or the required
one can be specified after the "#" character at the end of the filename.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading PD34 tables, regardless of the filename.

The handler class for files of thisformat is Pds4Tabl eBui | der .

3.6.6 Machine-Readable Table

The so-called "Machine-Readable Table" format is used by AAS journals, and based on the format
of readMe files wused by the CDS. Thee is some documentation at

SUN/252 21

https:.//journals.aas.org/mrt-standards/, which mostly builds on documentation at
http://vizier.u-strasbg.fr/doc/catstd.htx, but the format is in fact quite poorly specified, so this input
handler was largely developed on a best-efforts basis by looking at MRT tables actually in use by
AAS, and with assistance from AAS staff. As such, it's not guaranteed to succeed in reading all
MRT files out there, but it will try its best.

It only attempts to read MRT files themselves, there is currently no capability to read VizieR data
tables which provide the header and formatted data in separate files; however, if atableis present in
VizieR, there will be options to download it in more widely used formats that can be used instead.

An example looks like this:

Title: A search for nulti-planet systens with TESS using a Bayesi an
N body retrieval and machi ne | earning

Aut hor: Pearson K A

Tabl e: Stellar Paraneters

Byt e- by-byte Description of file: ajabd4elct2_nrt.txt

Bytes Format Units Label Expl anat i ons

1- 919 I D TESS I nput Catalog identifier
11- 15 F5.2 mag Tmag Apparent TESS band magni t ude
17- 21 F5.3 solRad R* Stel l ar radius
23- 26 14 K Tef f Ef fective tenperature
28- 32 F5.3 [cms2] log(g) 1og surface gravity
34- 38 F5.2 [Sun] [Fe/H Metallicity
40- 44 F5.3 ul Li near Linb Darkening

3 - - -

u2 Quadratic Linb Darkeni ng

231663901 12. 35 0.860 5600 4.489 0.00 0.439 0.138
149603524 9.72 1.280 6280 4.321 0.24 0.409 0.140
336732616 11.46 1.400 6351 4.229 0.00 0.398 0.140
231670397 9.85 2.070 6036 3.934 0.00 0.438 0.117

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"nrt (errmode=FAl L, checkmagi c=f al se) ". The following options are available:

errnmode = | GNORE| WARN| FAI L
Indicates what action should be taken if formatting errors are detected in the file at read time.

checkmagi ¢ = true|fal se
Determines whether an initial test is made to see whether the file looks like MRT before
attempting to read it as one; the test is that it starts with the string "Tit1e: ". Setting this true
Is generally a good idea to avoid attempting to parse non-MRT files, but you can set it false to
attempt to read an MRT file that starts with the wrong sequence.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading MRT tables, regardless of the filename.

The handler class for files of thisformat is M t Tabl eBui | der .

3.6.7 Par quet

Parquet is a columnar format developed within the Apache project. Data is compressed on disk and
read into memory before use.

Thisinput handler will read columns representing scalars, strings and one-dimensional arrays of the
same. It is not capable of reading multi-dimensiona arrays, more complex nested data structures, or

SUN/252 22

some more exotic data types like 96-bit integers. If such columns are encountered in an input file, a
warning will be emitted through the logging system and the column will not appear in the read
table. Support may be introduced for some additional typesif there is demand.

At present, only very limited metadata is read. Parquet does not seem(?) to have any standard
format for per-column metadata, so the only information read about each column apart from its
datatypeisits name.

Depending on the way that the table is accessed, the reader tries to take advantage of the column
and row block structure of parquet filesto read the datain parallel where possible.

Parquet support is currently somewhat experimental.

Note:

The parquet 1/0 handlers require large external libraries, which are not always bundied with
the library/application software because of their size. In some configurations, parquet
support may not be present, and attempts to read or write parquet files will result in a

message like:

Parquet-nr libraries not available

If you can supply the relevant libaries on the classpath at runtime, the parquet support will
work. At time of writing, the required libraries are included in the topcat-extra.jar
monolithic jar file; they can aso be found in the starjava github repository
(https://github.com/Starlink/starjavaltree/master/parquet/src/lib, use parquet-nr-stil.jar
and its dependencies), or you can acquire them from the Parquet MR package. These
arrangements may be revised in future releases, for instance if parquet usage becomes more
mainstream. The required dependencies are those of the Parquet MR submodule

parquet-cli, in particular the files parquet-cli-1.11.1.jar,
par quet-colum-1.11.1.j ar, par quet -comon-1.11.1.j ar,
par quet - encodi ng-1.11.1.j ar, parquet-format-structures-1.11.1.jar,
par quet - hadoop- 1. 11. 1- noshaded. j ar, par quet -j ackson-1.11.1.j ar,
comons-col | ections-3.2.2.jar, commons- configuration-1.6.jar,
commons- 1| ang-2.6.j ar, failureaccess-1.0.1.jar, guava-27.0.1-jre.jar,
hadoop-auth-2.7.3.jar, hadoop- common-2. 7. 3. j ar, log4j-1.2.17.jar,

slf4j-api-1.7.22.jar,slf4j-1o0g4j12-1.7.22.jar,snappy-java-1.1.7.3.jar.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"par quet (cachecol s=true, nThread=4) ". The following options are available:

cachecols = true|fal se| null
Forces whether to read all the column data at table load time. If t r ue, then when the table is
loaded, all data is read by column into local scratch disk files, which is generally the fastest
way to ingest all the data. If f al se, the table rows are read as required, and possibly cached
using the normal STIL mechanisms. If nul | (the default), the decision is taken automatically
based on available information.

nThread = <int>
Sets the number of read threads used for concurrently reading table columns if the columns are
cached at load time - see the cachecol s option. If the value is <=0 (the default), a value is
chosen based on the number of apparently available processors.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading parquet tables, regardless of the filename.

SUN/252 23

The handler class for files of thisformat is Par quet Tabl eBui | der .

3.6.8 HAPI

HAPI, the Heliophysics Data Application Programmer’ s Interface is a protocol for serving streamed
time series data. This reader can read HAPI CSV and binary tables if they include header
information (thei ncl ude=header request parameter must be present). An example HAPI URL is

https://vires. services/ hapi/ dat a?dat aset =GRACE_A MAGEst art =2009- 01- 01&st op=2009- 01- 02&i ncl

While HAPI data is normally accessed directly from the service, it is possible to download a HAPI
stream to alocal file and use this handler to read it from disk.

This format cannot be automatically identified by its content, so in genera it is necessary to specify
that atableisin HAPI format when reading it. However, if the input file has the extension ". hapi "
(case insengitive) an attempt will be made to read it using this format.

The handler classfor files of thisformat is Hapi Tabl eBui | der .

3.6.9 CDF

NASA's Common Data Format, described at https://cdf.gsfc.nasa.gov/, is abinary format for storing
self-described data. It is typically used to store tabular data for subject areas like space and solar
physics.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading CDF tables, regardless of the filename.

The handler class for files of thisformat is Cdf Tabl eBui | der .

3.6.10 Feather

The Feather file format is a column-oriented binary disk-based format based on Apache Arrow and
supported by (at least) Python, R and Julia. Some description of it is available at
https:.//github.com/wesm/feather and https://blog.rstudio.com/2016/03/29/feather/. It can be used for
large datasets, but it does not support array-valued columns. It can be a useful format to use for
exchanging datawith R, for which FITS /O isreported to be slow.

At present CATEGORY type columns are not supported, and metadata associated with TIME,
DATE and TIMESTAMP columns is not retrieved.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading feather tables, regardiess of the filename.

The handler class for files of thisformat is Feat her Tabl eBui | der .

3.6.11 ASCI|

In many cases tables are stored in some sort of unstructured plain text format, with cells separated
by spaces or some other delimiters. There is a wide variety of such formats depending on what
delimiters are used, how columns are identified, whether blank values are permitted and so on. It is
impossible to cope with them all, but the ASCII handler attempts to make a good guess about how
to interpret agiven ASCII file as atable, which in many casesis successful. In particular, if you just
have columns of numbers separated by something that looks like spaces, you should be just fine.

SUN/252 24

Here are the detailed rules for how the ASCII-format tables are interpreted:

Bytesin thefile are interpreted as ASCII characters

Each table row is represented by a single line of text

Lines are terminated by one or more contiguous line termination characters. line feed (0x0A)
or carriage return (0x0D)

Within a line, fields are separated by one or more whitespace characters. space (" ") or tab
(0x09)

A field is either an unquoted sequence of non-whitespace characters, or a sequence of
non-newline characters between matching single (') or double (") quote characters - spaces are
therefore allowed in quoted fields

Within a quoted field, whitespace characters are permitted and are treated literally

Within a quoted field, any character preceded by a backslash character ("\") is treated literally.
This allows quote characters to appear within a quoted string.

An empty quoted string (two adjacent quotes) or the string "nul | " (unquoted) represents the
null value

All data lines must contain the same number of fields (this is the number of columns in the
table)

The data type of a column is guessed according to the fields that appear in the table. If all the
fields in one column can be parsed as integers (or null values), then that column will turn into
an integer-type column. The types that are tried, in order of preference, are: Bool ean, Short

I nt eger, Long, Fl oat , Doubl e, Stri ng

Some specia values are permitted for floating point columns: NaN for not-a-number, which is
treated the same as a null value for most purposes, and I nfinity orinf for infinity (with or
without a preceding +/- sign). These values are matched case-insensitively.

Empty lines areignored

Anything after a hash character "#" (except one in aquoted string) on alineisignored asfar as
table data goes; any line which starts with a "!" is also ignored. However, lines which start
with a"#" or "!" at the start of the table (before any data lines) will be interpreted as metadata
asfollows:

* Thelast "#'/"!"-starting line before the first data line may contain the column names. If it
has the same number of fields as there are columns in the table, each field will be taken to
be the title of the corresponding column. Otherwise, it will be taken as a normal comment
line.

« Any comment lines before the first data line not covered by the above will be
concatenated to form the "description” parameter of the table.

If the list of rules above looks frightening, don't worry, in many cases it ought to make sense of a
table without you having to read the small print. Here is an example of a suitable ASCII-format

table:

#

Here is a list of sone aninals.

#

RECNO SPECI ES NANVE LEGS HElI GHT/ m
1 pi g "Pigling Bland" 4 0.8
2 cow Dai sy 4 2
3 gol dfi sh Dobbi n " 0. 05
4 ant " 6 0. 001
5 ant 6 0. 001
6 ant v 6 0. 001
7 "queen ant" "Ma\' am 6 2e-3
8 human " Mar k" 2 1.8

In this caseit will identify the following columns:

Nane Type

SUN/252 25

RECNO Shor t
SPECI ES String
NANVE String
LEGS Shor t

HEI GHT/ m Fl oat

It will also usethe text "Here is a list of some aninmals" asthe Description parameter of the
table. Without any of the comment lines, it would still interpret the table, but the columns would be
given the namescol 1..col 5.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "asci i (maxSanpl e=5000) ". The
following options are available:

maxSanpl e = <i nt>

Controls how many rows of the input file are sampled to determine column datatypes. When
reading ASCII files, since no type information is present in the input file, the handler has to
look at the column data to see what type of value appears to be present in each column, before
even starting to read the data in. By default it goes through the whole table when doing this,
which can be time-consuming for large tables. If this value is set, it limits the number of rows
that are sampled in this data characterisation pass, which can reduce read time substantially.
However, if values near the end of the table differ in apparent type from those near the start, it
can also result in getting the datatypes wrong.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that atable isin ASCII format when reading it. However, if the input file has the extension ". t xt "
(case insensitive) an attempt will be made to read it using this format.

The handler class for thisformat is Asci i Tabl eBui | der .

3.6.12 Comma-Separ ated Values

Comma-separated value ("CSV") format is a common semi-standard text-based format in which
fields are delimited by commas. Spreadsheets and databases are often able to export data in some
variant of it. The intention is to read tables in the version of the format spoken by MS Excel
amongst other applications, though the documentation on which it was based was not obtained
directly from Microsoft.

The rules for datawhich it understands are as follows:

* Each row must have the same number of comma-separated fields.

* Whitespace (space or tab) adjacent to acommaisignored.

* Adjacent commas, or a comma at the start or end of a line (whitespace apart) indicates a null
field.

» Lines are terminated by any sequence of carriage-return or newline characters ('\r' or \n’) (a
corollary of thisisthat blank lines are ignored).

* Cells may be enclosed in double quotes; quoted values may contain linebreaks (or any other
character); a double quote character within a quoted value is represented by two adjacent
double quotes.

* Thefirst line may be a header line containing column names rather than arow of data. Exactly
the same syntactic rules are followed for such arow as for data rows.

Note that you can not use a"#" character (or anything else) to introduce "comment” lines.

Because the CSV format contains no metadata beyond column names, the handler is forced to guess
the datatype of the values in each column. It does this by reading the whole file through once and
guessing on the basis of what it has seen (though see the maxSanpl e configuration option). This has
the disadvantages:

SUN/252 26

* Sometimes it guesses a different type than what you want (e.g. 32-bit integer rather than 64-bit
integer)
* It'sslow toread.
This means that CSV is not generally recommended if you can use another format instead. If you're
stuck with a large CSV file that's misbehaving or slow to use, one possibility is to turn it into an
ECSV filefile by adding some header lines by hand.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"csv(header =t r ue, maxSanpl e=100000) ". The following options are available:

header = true|false|null
Indicates whether the input CSV file contains the optional one-line header giving column
names. Options are:

* true: thefirst lineisaheader line containing column names

* false: dl linesaredatalines, and column names will be assigned automatically

* null: aguess will be made about whether the first line is a header or not depending on
what it looks like

The default value is nul | (auto-determination). This usually works OK, but can get into
trouble if all the columns ook like string values.

maxSanpl e = <int>

Controls how many rows of the input file are sampled to determine column datatypes. When
reading CSV files, since no type information is present in the input file, the handler has to look
at the column data to see what type of value appears to be present in each column, before even
starting to read the data in. By default it goes through the whole table when doing this, which
can be time-consuming for large tables. If thisvalue is set, it limits the number of rows that are
sampled in this data characterisation pass, which can reduce read time substantially. However,
if values near the end of the table differ in apparent type from those near the start, it can also
result in getting the datatypes wrong.

Thisformat cannot be automatically identified by its content, so in genera it is necessary to specify
that a table is in CSV format when reading it. However, if the input file has the extension ". csv"
(case insensitive) an attempt will be made to read it using this format.

An example looks like this:

RECNO, SPECI ES, NAME, LEGS, HEI GHT, MAMVAL
,pig,Pigling Bland, 4,0.8,true

, cow, Dai sy, 4,2.0,true

, gol df i sh, Dobbi n,, 0. 05, fal se
,ant,,6,0.001, fal se

,ant,,6,0.001, fal se

, queen ant, Ma' am 6, 0. 002, f al se

, human, Mark, 2, 1. 8, true

~NOOTDWNE

The handler class for this format is CsvTabl eBui | der .

3.6.13 Tab-Separated Table

Tab-Separated Table, or TST, is a text-based table format used by a number of astronomical tools
including Starlink's GAIA and ESO's SkyCat on which it is based. A definition of the format can be
found in Starlink Software Note 75. The implementation here ignores al comment lines. special
comments such asthe "#col um- uni t's: " are not processed.

An example looks like this:

SUN/252 27

Simpl e TST exanpl e; stellar photonetry catal ogue.
A. C. Davenhal | (Edi nburgh) 26/7/00.

Cat al ogue of U, B,V col ours.
UBV photonetry from Mount Punpkin Cbservatory,
see Sage, Rosenmary and Thynme (1988).

Start of paraneter definitions.
EQUI NOX: J2000.0
EPOCH: J1996. 35

idcol: -1
ra col: O
dec_col: 1

End of parameter definitions.

r a<t ab>dec<t ab>V<t ab>B_V<t ab>U B

--<t ab>---<tab>-<tab>---<tab>---

5:09:08. 7<tab> -8:45: 15<tab> 4.27<tab> -0.19<tab> -0.90
5:07:50.9<tab> -5:05: 11<tab> 2.79<tab> +0.13<tab> +0.10
5:01: 26. 3<tab> -7:10: 26<tab> 4.81<tab> -0.19<tab> -0.74
F:17j36.3<tab> -6:50:40<tab> 3.60<tab> -0.1l<tab> -0.47

EQD

This format cannot be automatically identified by its content, so in general it is necessary to specify
that atableisin TST format when reading it.

The handler class for this format is Tst Tabl eBui | der .

3.6.14 1PAC

CalTech's Infrared Processing and Analysis Center use a text-based format for storage of tabular
data, defined at http://irsa.ipac.caltech.edu/applicationss DDGEN/Doc/ipac_tbl.html. Tables can
store column name, type, units and null values, as well as table parameters.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that atableisin IPAC format when reading it. However, if the input file has the extension ™. t bl " or
".i pac" (caseinsensitive) an attempt will be made to read it using this format.

An example looks like this:

\ Tabl e nane = "ani mal s.vot"
\ Description = "Sone ani nal s"
\ Aut hor = "Mark Tayl or"
| RECNO | SPECIES | NAME | LEGS | HEIGHT | MAMVAL
I i nt I char I char I i nt I doubl e I char I
m
[null | null | null [null | null | null |
1 pig Pi gl ing Bl and 4 0.8 true
2 cow Dai sy 4 2.0 true
3 gol df i sh Dobbi n nul | 0. 05 fal se
4 ant nul | 6 0. 001 fal se
5 ant nul | 6 0. 001 fal se
6 gueen ant Ma' am 6 0. 002 fal se
7 human Mar k 2 1.8 true

The handler class for thisformat is| pacTabl eBui | der.

3.6.15GBIN

GBIN format is a specia-interest file format used within DPAC, the Data Processing and Analysis
Consortium working on data from the Gaia astrometry satellite. It is based on java serialization, and
in al of its various forms has the peculiarity that you only stand any chance of decoding it if you

SUN/252 28

have the Gaia data model classes on your java classpath at runtime. Since the set of relevant classes
is very large, and also depends on what version of the data model your GBIN file corresponds to,
those classes will not be packaged with this software, so some additional setup is required to read
GBIN files.

Aswell as the data model classes, you must provide on the runtime classpath the GaiaTools classes
required for GBIN reading. The table input handler accesses these by reflection, to avoid an
additional large library dependency for arather niche requirement. It islikely that since you have to
supply the required data model classes you will also have the required GaiaT ools classes to hand as
well, so this shouldn't constitute much of an additional burden for usage.

In practice, if you have a jar file or files for pretty much any java library or application which is
capable of reading a given GBIN file, just adding it or them to the classpath at runtime when using
this input handler ought to do the trick. Examples of such jar files are the
MDBExpl or er St andal one. jar file available from https.//gaiaesac.esa.int/mdbexp/, or the
gbcat.jar file you can build from the CU9/software/gbcat/ directory in the DPAC subversion
repository.

The GBIN format doesn't really store tables, it stores arrays of java objects, so the input handler has
to make some decisions about how to flatten these into table rows.

In its smplest form, the handler basically looks for public instance methods of the form get xxx()
and uses the xxx as column names. If the corresponding values are themselves objects with suitable
getter methods, those objects are added as new columns instead. This more or less follows the
practice of the gbcat (gai a. cul.tools.util.Goinlnterogator) tool. Method names are sorted
alphabetically. Arrays of complex objects are not handled well, and various other things may trip it
up. See the source code (e.g. uk. ac. st ar |l i nk. gbi n. Goi nTabl eProf i | e) for more details.

If the object types stored in the GBIN file are known to the special metadata-bearing class
gai a. cu9. t ool s. docunent at i onexport . Met adat aReader and its dependencies, and if that classis
on the runtime classpath, then the handler will be able to extract additional metadata as available,
including standardised column names, table and column descriptions, and UCDs. An example of a
jar file containing this metadata class aongside data model classes is
Gai aDat aLi bs-18. 3. 1-r515078. j ar . Note however at time of writing there are some deficiencies
with this metadata extraction functionality related to unresolved issues in the upstream gaia class
libraries and the relevant interface control document (GAIA-C9-SP-UB-XL-034-01, "External Data
Centres ICD"). Currently columns appear in the output table in a more or less random order, units
and Utypes are not extracted, and using the GBIN reader tends to cause a 700kbyte file "temp.xml*"
to be written in the current directory. If the upstream issues are fixed, this behaviour may improve.

Note: support for GBIN files is somewhat experimental. Please contact the author (who is not a
GBIN expert) if it doesn't seem to be working properly or you think it should do things differently.

Note: there is a known bug in some versions of GaiaTools (caused by a bug in its dependency
library zStd-jni) which in rare cases can fail to read al the rowsin a GBIN input file. If this bug is
encountered by the reader, it will by default fail with an error mentioning zStd-jni. In this case, the
best thing to do is to put a fixed version of zStd-jni or GaiaTools on the classpath. However, if
instead you set the config option r eadMet a=f al se the read will complete without error, though the
missing rows will not be recovered.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"gbi n(readMet a=f al se, hi er ar chi cal Nanes=t r ue) ". The following options are available:

readMeta = true|false
Configures whether the GBIN metadata will be read prior to reading the data. This may slow

SUN/252 29

things down dlightly, but means the row count can be determined up front, which may have
benefits for downstream processing.

Setting this false can prevent failing on an error related to a broken version of the zStd-jni
library in GaiaTools. Note however that in this case the data read, though not reporting an
error, will silently be missing some rows from the GBIN file.

hi erarchi cal Nanes = true|fal se
Configures whether column names in the output table should be forced to reflect the
compositional hierarchy of their position in the element objects. If set true, columns will have
names like "Astrometry_Al pha", if false they may just be called "Al pha". In case of name
duplication however, the hierarchical form is always used.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading GBIN tables, regardless of the filename.

The handler class for this format is Goi nTabl eBui | der .

3.6.16 WDC

Some support is provided for files produced by the World Data Centre for Solar Terrestrial Physics.
The format itself apparently has no name, but files in this format look something like the following:

Columm formats and units - (Fixed format col utms which are single space separated.)

Datetime (YYYY nm dd HHMVSS) %d 9%2d %2d %6d
%s
aa index - 3-HOURLY (Provisional) %3d nT

2000 01 01 000000 67
2000 01 01 030000 32

Support for this (obsolete?) format may not be very complete or robust.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that atableisin WDC format when reading it.

The handler class for this format isWbCTabl eBui | der .

3.7 Supplied Output Handlers

The table output handlers supplied with STIL are listed in this section, along with any peculiarities
they have in writing a Star Tabl e t0 a destination given by a string (usually a filename). As
described in Section 3.4, a St ar Tabl eCut put Will under normal circumstances permit output of a
table in any of these formats. Which format is used is determined by the "format" string passed to
St ar Tabl eQut put . wri t eSt ar Tabl e as described in the following subsections. If a null format
string is supplied, the name of the destination string may be used to select a format (e.g. a
destination ending " .fits" will, unless otherwise specified, result in writing FITS format).

Alternatively, the format-specific St ar Tabl ew i t er implementation classes themselves can be used
directly. These have configuration methods corresponding to the format name options listed below;
consult the relevant javadocs for details. The main advantage of using a St ar Tabl eCut put to
mediate between output handler implementations is to make it easy to switch between output
formats, especialy if thisis being done by the user at runtime.

3.71FITS

SUN/252 30

FITS is a very well-established format for storage of astronomical table or image data (see
https://fits.gsfc.nasa.gov/). This writer stores tables in a FITS file consisting of two HDUs
(Header+Data Units): a Primary HDU as required by the FITS standard, and a single extension of
type BINTABLE containing the table data.

There are afew variants of this format:

fits-plus

The primary HDU contains an array of bytes which stores the full table metadata as the text of
a VOTable document, along with headers that mark this has been done. Most FITS table
readers will ignore this altogether and treat the file just asif it contained only the table. When
it is re-read by this or compatible applications however, they can read out the metadata and
make it available for use. In this way you can store your data in the efficient and widely
portable FITS format without losing the additional metadata such as table parameters, column
UCDs, lengthy column descriptions etc that may be attached to the table.

fits-basic
The primary HDU contains only very minimal headers and no data.

fits-var
Behaves like fits-basic, but columns containing variable-length numeric array data are
stored using the P and Q formats where appropriate, rather than padding smaller arrays to the
size of the largest. This can make for more compact storage of variable-length array-valued
column data but may also result in tables less suitable for streaming.

fits-healpix
Used for storing HEALPix pixel data in a way that conforms to the HEALPiX-FITS
serialization convention. In most ways it behaves the sasme asfi t s- basi ¢, but it will rearrange
and rename columns as required to follow the convention, and it will fail if the table does not
contain the required HEAL Pix metadata (STI L_HPX_* parameters).

The default output format isfits-pl us; in genera you don't need to worry about this, it just gives
you some hidden benefitsover fi t s- basi c.

A private convention is used where required to support encoding of tables with more than 999
columns (not possible in standard FITS); this was discussed on the FITSBITS mailing list in July
2017 in the thread BINTABLE convention for >999 columns. If software unaware of this
convention (e.g. CFITSIO) is used to read such tables, it will only see the first 998 columns written
as intended, plus a column 999 containing an undescribed byte buffer.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "fits-pl us(date=true)". The
following options are available:

date = true|fal se
If true, the DATE-HDU header isfilled in with the current date; otherwise it is not included.

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to afilename with the extension ™. fit", ". fits" or
" fts" (caseinsensitive) will select it s-pl us format for output.

The handler classes for these formats are FitsTableWiter, FitsPlusTableWiter,
Heal pi xFi t sTabl eWiter and Vari abl eFi t sTabl eWiter.

To write the FITS header for the table extension, certain things need to be known which may not be
available from the st ar Tabl e object being written; in particular the number of rows and the size of

SUN/252 31

any variable-sized arrays (including variable-length strings) in the table. This may necessitate two
passes through the data to do the write.

To fix the value of the TNULLn magic value for a given column on output, set the value of the
Tabl es. NULL_VALUE_| NFO auxiliary metadata value, e.g.:

col I nfo. set AuxDat um(new Descri bedVal ue(Tabl es. NULL_VALUE | NFO, new I nteger(-99)));

Writing columns containing (scalar or array) unsigned byte values (TFORvhn = ' B') cannot be done
simply by providing byte data to write, since the java byte type is signed. To do it, you must
provide a column of javashort (16-bit) integers, and set the value of the Tabl es. UBYTE_FLAG | NFO
auxiliary metadata item to Bool ean. TRUE, €.0.:

col I nfo. set AuxDat um(new Descri bedVal ue(Tabl es. UBYTE_FLAG_| NFO, Bool ean. TRUE)) ;

Writing columns containing (scalar or array) unsigned long values cannot be done
straightforwardly, since, like FITS, the Java long type is signed. Instead, you can provide a column
of java st ri ng values giving the integer representation of the numbers required, and set the value of
the Bi nt abl eSt ar Tabl e. LONGOFF_I NFO auxiliary metadata item to the string representation of the
offset 2**63, e.q.:

col I nfo. set AuxDat um(new Descri bedVal ue(Bi nt abl eSt ar Tabl e. LONGOFF_I NFO, "922337203685477580¢

This will result in the values being written, where in range, with FITS headers TFORVvin = ' K,
TZERONn = ' 9223372036854775808263' . The same mechanism can be used for other long offsets if
required (though not for other integer types).

See the "Binary Table Extension" section of the FITS standard for more details of the FITS
BINTABLE format. These handler can write tables with more than the BINTABLE limit of 999
columns, as discussed in Section 3.8.2.

There is some support for the semi-standard HEALPix-FITS seriaization convention. If some of
the HPX_* _I NFO metadata items defined by the class Heal pi xTabl el nf o are present in the output
table's parameter list, the corresponding HEALPix-specific FITS headers will be written on a
best-efforts basis into the output BINTABLE HDU. This may or may not be good enough to make
that FITS file readable by external HEALPix-FITS-aware applications; one of the requirements of
the convention is that the HEALPix pixel index, if present, appears in the first column of the table
under the name "pPI XEL". An alternative is to use the handler Heal pi xFi t sTabl ewi t er, which tries
harder to write tables using the HEALPix convention. This will fail unless the required HPX_* _I NFO
metadata items mentioned above are present, and will reorder and rename columns as required for
maximum compatibility.

For column-oriented FITS output, see Section 3.7.2.

3.7.2 Column-oriented FITS

Column-oriented FITS output consists of a FITS file containing two HDUs (Header+Data Units); a
primary one (required by the FITS standard) and a single extension of type BINTABLE containing
the table data. Unlike normal FITS format however, this table consists of a single row in which each
cell holds the data for an entire column.

SUN/252 32

This can be a more efficient format to work with when dealing with very large, and especialy very
wide, tables. The benefits are greatest when the file size exceeds the amount of available physical
memory and operations are required which scan through the table using only a few of the columns
(many common operations, for instance plotting two columns against each other, fall into this
category). The overhead for reading and writing this format is somewhat higher than for normal
FITS however, and other applications may not be able to work with it (though it is alegal FITS
file), so in most cases normal FITS isamore suitable choice.

There are two variants of this format:

colfits-plus
The primary HDU contains an array of bytes which stores the table metadata in VOTable
format.

colfits-basic
The primary HDU contains no data.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "col fi ts-pl us(date=true)". The
following options are available:

date = true|fal se
If true, the DATE-HDU header isfilled in with the current date; otherwiseit is not included.

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to a filename with the extension ". col fits" (case
insensitive) will select col fi ts-pl us format for outpuit.

The handler classes for these formats are Col Fi t sTabl eW it er and Col Fi t sPl usTabl eWi ter.

For row-oriented FITS output, see Section 3.7.1.

3.7.3VOTable

VOTable is an XML-based format for tabular data endorsed by the International Virtual
Observatory Alliance and defined in the VOTable Recommendation. While the tabular data which
can be encoded is by design close to what FITS allows, it provides for much richer encoding of
structure and metadata. Most of the table data exchanged by VO servicesisin VOTable format, but
it can be used for local table storage as well.

When a table is saved to VOTable format, a document conforming to the VOTable specification
containing a single TABLE element within a single RESOURCE element is written. Where the
table contains such information (often obtained by reading an input VOTable), column and table
metadata will be written out as appropriate to the attributes uni t, ucd, xt ype and ut ype, and the
elements CoosYsS, TI MESYS and DESCRI PTI ON attached to table columns or parameters.

There are various ways that a VOTable can be written; by default the output serialization format is
TABLEDATA and the VOTable format version is 1.4, or a value controlled by the
vot abl e. ver si on system property. However, configuration options are available to adjust these
defaults.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"vot abl e(f or mat =Bl NARY2, ver si on=V13) ". The following options are available:

SUN/252 33

format = TABLEDATA| Bl NARY| Bl NARY2| FI TS
Givesthe serialization type (DATA element content) of output VOTables.

versi on = V10| V11| V12| V13| V14| V15
Gives the version of the VOTable format which will be used when writing the VOTable. "vi0"
isversion 1.0 etc.

inline = true|fal se
If true, STREAM elements are written base64-encoded within the body of the document, and
if false they are written to a new external binary file whose name is derived from that of the
output VOTable document. This is only applicable to BINARY, BINARY 2 and FITS formats
where output is not to a stream.

conpact = true|fal se|null
Controls whitespace formatting for TABLEDATA output, ignored for other formats. By
default a decision will be taken dependent on table width.

encodi ng = UTF-8| UTF-16] ...
Specifies the XML encoding used in the output VOTable. The default value is UTF-8. Note
that certain optimisations are in place for UTF-8 output which means that other encodings may
be significantly slower.

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to a filename with the extension ".vot",

".votabl e" or". xm " (case insensitive) will select vot abl e format for output.
The handler class for thisformat isvOTabl eWi ter .

For more control over writing VOTables, consult Section 7.4.

3.74 ECSV

The Enhanced Character Separated Values format was developed within the Astropy project and is
described in Astropy APE6 (DOI). It is composed of a YAML header followed by a CSV-like
body, and is intended to be a human-readable and maybe even human-writable format with rich
metadata. Most of the useful per-column and per-table metadata is preserved when de/serializing to
this format. The version supported by thiswriter is currently ECSV 1.0.

ECSV alows either a space or a comma for delimiting values, controlled by the deliniter
configuration option. If ecsv(delinmiter=comma) is used, then removing the YAML header will
leave a CSV file that can be interpreted by the CSV inputhandler or imported into other
CSV-capable applications.

Following the ECSV 1.0 specification, array-valued columns are supported. ECSV 1.0, required for
working with array-valued columns, is supported by Astropy v4.3 and later.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "ecsv(del i mi t er=comm) ". The
following options are available:

delimter = comma| space
Delimiter character, which for ECSV may be either a space or a comma. Permitted values are
"space" or "commma".

If no output format is explicitly chosen, writing to a filename with the extension ". ecsv" (case
insensitive) will select Ecsv format for output.

SUN/252

An example looks like this:

HHEHHFHFHFHHFHF TSR

%ECSV 1.0

dat at ype

nane: RECNO
dat at ype: int32

nanme: SPECI ES
dat atype: string

name: NAME
dat atype: string

description: How one shoul d address the ani ma

nanme: LEGS
dat atype: int32
net a:
utype: anatony:linmb

name: HElI GHT
dat atype: float64
unit: m
net a:
VOTabl e precision: 2

name: NMAMVAL
dat at ype: boo

net a:
nane: ani mal s. vot
Description: Sone aninals
Aut hor: Mark Tayl or

RECNO SPECI ES NAME LEGS HEI GAT MAMVAL

~NOoOObRhWNE

The handler class for thisformat is EcsvTabl eWi ter.

pig "Pigling Bland" 4 0.8 True
cow Daisy 4 2.0 True

gol dfi sh Dobbin "" 0.05 Fal se
ant "" 6 0.001 Fal se

ant "" 6 0.001 Fal se

"queen ant" Ma'am 6 0.002 Fal se
human Mark 2 1.8 True

3.7.5 Parquet

in public & private.

34

Parquet is a columnar format developed within the Apache project. Data is compressed on disk and
read into memory before use.

At present, only very limited metadata is written. Parquet does not seem(?) to have any standard
format for per-column metadata, so the only information written about each column apart from its
datatypeisits name.

Parquet support is currently somewhat experimental.

Note:

The parquet 1/0O handlers require large external libraries, which are not aways bundled with
the library/application software because of their size. In some configurations, parquet
support may not be present, and attempts to read or write parquet files will result in a

message like:

Parquet-nr libraries not avail able

If you can supply the relevant libaries on the classpath at runtime, the parquet support will
work. At time of writing, the required libraries are included in the topcat-extra.jar

SUN/252 35

monolithic jar file; they can aso be found in the starjava github repository
(https://github.com/Starlink/starjavaltree/master/parquet/src/lib, use parquet-nr-stil.jar
and its dependencies), or you can acquire them from the Parquet MR package. These
arrangements may be revised in future releases, for instance if parquet usage becomes more
mainstream. The required dependencies are those of the Parquet MR submodule

parquet-cli, in particular the files parquet-cli-1.11.1.jar,
parquet-colum-1.11.1.jar, par quet-common-1.11.1.jar,
par quet -encodi ng-1.11.1.j ar, parquet-format-structures-1.11.1.j ar,
par quet - hadoop- 1. 11. 1- noshaded. j ar, parquet -jackson-1.11.1.jar,
conmmons-col | ections-3.2.2.jar, comons- configuration-1.6.jar,
conmons- | ang-2. 6. j ar, failureaccess-1.0.1.jar, guava-27.0.1-jre.jar,
hadoop-auth-2.7.3.jar, hadoop- conmon-2. 7. 3. j ar, log4j-1.2.17.jar,

slfdj-api-1.7.22.jar,slf4j-10g4j12-1.7.22.jar,snappy-java-1.1.7.3.jar.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "par quet (gr oupAr r ay=f al se) ".
The following options are available:

groupArray = true|false
Controls the low-level detail of how array-valued columns are written. For an array-valued
int32 column named IVAL, gr oupArray=f al se Will write it as"repeated int32 |VAL" while
groupArray=true Will writeit as"optional group IVAL (LIST) { repeated group list {
optional int32 iteny }". | dont know why you'd want to do it the latter way, but some
other parquet writers seem to do that by default, so there must be some good reason.

If no output format is explicitly chosen, writing to a filename with the extension ". par quet " or
". parq" (caseinsensitive) will select par quet format for output.

The handler class for files of thisformat is Par quet Tabl eWi ter.

3.7.6 Feather

The Feather file format is a column-oriented binary disk-based format based on Apache Arrow and
supported by (at least) Python, R and Julia. Some description of it is available at
https://github.com/wesm/feather and https://blog.rstudio.com/2016/03/29/feather/. 1t can be used for
large datasets, but it does not support array-valued columns. It can be a useful format to use for
exchanging datawith R, for which FITS1/O isreported to be slow.

Thiswriter is somewhat experimental; please report problemsif you encounter them.

If no output format is explicitly chosen, writing to a filename with the extension ".fea" or
". feather" (caseinsensitive) will select f eat her format for output.

The handler class for this format is Feat her Tabl eWiter.

3.7.7 ASCI|
Writes to a simple plain-text format intended to be comprehensible by humans or machines.

The first line is a comment, starting with a "#" character, naming the columns, and an attempt is
made to line up data in columns using spaces. No metadata apart from column names is written.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.

SUN/252 36

asci i (maxCel | =158, maxPar an=160) ". The following options are available:

maxCel | = <int>
Maximum width in characters of an output table cell. Cells longer than thiswill be truncated.

maxPar am = <i nt >
Maximum width in characters of an output table parameter. Parameters with values longer than
thiswill be truncated.

paranms = true|fal se
Whether to output table parameters as well as row data.

sanpl edRows = <int>
The number of rows examined on a first pass of the table to determine the width of each
column. Only a representative number of rows needs to be examined, but if a formatted cell
value after this limit is wider than the cells up to it, then such later wide cells may get
truncated. If the value is <=0, al rows are examined in the first pass; thisis the default, but it
can be configured to some other value if that takes too long.

If no output format is explicitly chosen, writing to a filename with the extension ". txt" (case
insensitive) will select ascii format for output.

An example looks like this:

RECNO SPECIES NAME LEGS HEI GHT MAMVAL
1 pi g "Pigling Bland" 4 0.8 true
2 cow Dai sy 4 2.0 true
3 gol dfi sh Dobbin " 0.05 false
4 ant " 6 0.001 false
5 ant " 6 0.001 false
6 "queen ant" "Ma\'ant 6 0.002 false
7 human Mar k 2 1.8 true

The handler class for thisformat iS Asci i Tabl eWiter.

3.7.8 Comma-Separ ated Values

Writes tables in the semi-standard Comma-Separated Values format. This does not preserve any
metadata apart from column names, and is generally inefficient to read, but it can be useful for
importing into certain external applications, such as some databases or spreadsheets.

By default, the first line is a header line giving the column names, but this can be inhibited using the
header =f al se configuration option.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"csv(header =t r ue, maxCel | =160) ". The following options are available:

header = true|false
If true, the first line of the CSV output will be a header containing the column names; if false,
no header line iswritten and all lines represent data rows.

maxCel | = <int>
Maximum width in characters of an output table cell. Cells longer than thiswill be truncated.

If no output format is explicitly chosen, writing to a filename with the extension ". csv" (case
insensitive) will select csv format for output.

An example looks like this:

SUN/252 37

RECNO, SPECI ES, NAMVE, LEGS, HEI GHT, MAMVAL
1, pig,Pigling Bland, 4,0.8,true

2, cow, Dai sy, 4,2.0,true

3, gol df i sh, Dobbi n, , 0. 05, fal se
4,ant,,6,0.001,fal se
5,ant,,6,0.001, fal se

6, queen ant, Ma' am 6, 0. 002, f al se

7, human, Mark, 2, 1. 8,true

The handler class for this format isCsvTabl eWiter.

3.7.9 Tab-Separated Table

Tab-Separated Table, or TST, is a text-based table format used by a number of astronomical tools
including Starlink's GAIA and ESO's SkyCat on which it is based. A definition of the format can be
found in Starlink Software Note 75.

If no output format is explicitly chosen, writing to a filename with the extension ". tst" (case
insensitive) will select TST format for output.

An example looks like this:

ani mal s. vot

Tabl e paraneters
Description: Sonme animals
Aut hor: Mark Tayl or

Attenpted guesses about identity of colums in the table.

These have been inferred from col um UCDs and/or names

in the original table data.

The al gorithm which identifies these colums is not particularly reliable,
so it is possible that these are incorrect.

id_col: 2

ra_col: -1

dec_col: -1

This TST file generated by STIL v4.2-1
RECNO SPECI ES NAME LEGS HElI GHT MAMVAL

1 pig Pigling Bland 4 0.8 true

2 cow Daisy 4 2.0 true

3 gol dfi sh Dobbi n 0.05 fal se
4 ant 6 0.001 fal se

5 ant 6 0.001 fal se

6 queen ant Ma'am 6 0.002 fal se

F human Mark 2 1.8 true

The handler class for thisformat is Tst Tabl eWi ter.

3.7.101PAC

Writes output in the format used by Cal Tech's Infrared Processing and Analysis Center, and defined
at http://irsa.ipac.caltech.edu/applicationss DDGEN/Doc/ipac_tbl.html. Column name, type, units
and null values are written, as well as table parameters.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, eg.
"i pac(maxCel | =1000, maxPar amr100000) ". The following options are available:

maxCel | = <int>

SUN/252 38

Maximum width in characters of an output table cell. Cells longer than this will be truncated.

maxParam = <i nt >
Maximum width in characters of an output table parameter. Parameters with values longer than
thiswill be truncated.

paranms = true|fal se
Whether to output table parameters as well as row data.

sanpl edRows = <int>
The number of rows examined on a first pass of the table to determine the width of each
column. Only a representative number of rows needs to be examined, but if a formatted cell
value after this limit is wider than the cells up to it, then such later wide cells may get
truncated. If the value is <=0, all rows are examined in the first pass; this is the default, but it
can be configured to some other value if that takes too long.

If no output format is explicitly chosen, writing to a filename with the extension ™. t bl " or ". i pac”
(case insensitive) will select | PAC format for output.

An example looks likethis:

\ Tabl e nane = "ani mal s. vot"
\ Description = "Sone ani nal s"
\ Aut hor = "Mark Tayl or"
| RECNO | SPECIES = | NAME | LEGS | HEIGHT | MAMVAL |
| int | char | char I i nt I doubl e I char I
I I I
| null | null | null | null | null | null |
1 pig Pi gl ing Bl and 4 0.8 true
2 cow Dai sy 4 2.0 true
3 gol df i sh Dobbi n nul | 0.05 fal se
4 ant nul | 6 0. 001 fal se
5 ant nul | 6 0.001 fal se
6 gueen ant Ma' am 6 0. 002 fal se
7 human Mar k 2 1.8 true

The handler classfor thisformat iS| pacTabl ewiter.

3.7.11 Plain Text

Writes tables in a simple text-based format designed to be read by humans. No reader exists for this
format.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"t ext (maxCel | =40, maxPar an=160) ". The following options are available:

maxCel | = <int>
Maximum width in characters of an output table cell. Cells longer than this will be truncated.

maxParam = <i nt >
Maximum width in characters of an output table parameter. Parameters with values longer than
thiswill be truncated.

parans = true|false
Whether to output table parameters as well as row data.

sanmpl edRows = <int>
The number of rows examined on a first pass of the table to determine the width of each
column. Only a representative number of rows needs to be examined, but if a formatted cell
value after this limit is wider than the cells up to it, then such later wide cells may get
truncated. If the value is <=0, all rows are examined in the first pass; this is the default, but it

SUN/252

39

can be configured to some other value if that takes too long.

Multiple tables may be written to a single output file using this format.

An example looks like this:

Tabl e name: ani nal s. vot
Description: Sone aninmals
Aut hor: Mark Tayl or

[Fom oo S R E - E - +
| RECNO | SPECIES | NAME | LEGS | HEIGHT | MAMVAL |
Fommm oo - Fom e e Fom e e e oo oo - . Fommm oo Fommm oo +
1	pig	Pigling Bland	4	0.8	true
2	cow	Daisy	4	2.0	true
3	goldfish	Dobbin		0.05	false
4	ant		6	0.001	false
5	ant		6	0.001	false
6	queen ant	Ma'am	6	0.002	false
7	human	Mark	2	1.8	true
B - Fom oo B B B - B - +

The handler class for this format is Text Tabl eWi t er.

3.7.12HTML

Writesabasic HTML TABLE element suitable for use as a web page or for insertion into one.

The handler behaviour may be modified by specifying one or more comma-separated name=value

configuration

options in parentheses after the handler name, e.g.

"ht m (maxCel | =200, st andal one=f al se) ". The following options are available:

maxCel | = <int>
Maximum width in characters of an output table cell. Cellslonger than thiswill be truncated.

st andal one =

true|fal se

If true, the output is a freestanding HTML document complete with HTML, HEAD and
BODY tags. If false, the output isjust a TABLE element.

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to a filename with the extension". ht mi " or ". ht m

(caseinsensitive) will select HTML format for output.

An example looks like this:

<TABLE BORDER='1'>
<CAPTI ON>ani nal s. vot </ STRONG></ CAPTI ON>

<THEAD>

<TR> <TH>RECNO</ TH> <TH>SPECI ES</ TH> <TH>NAME</ TH> <TH>LEGS</ TH> <TH>HElI GHT</ TH> <TH>MAMVAL</"
<TR> <TH> </ TH> <TH> </ TH> <TH> </ TH> <TH> </ TH> <TH>(mM </ TH> <TH> </
<TR><TD col span='6' ></ TD></ TR>

</ THEAD>
<TBODY>
<TR> <TD>1</ TD>
<TR> <TD>2</ TD>
<TR> <TD>3</ TD>
<TR> <TD>4</ TD>
<TR> <TD>5</ TD>
<TR> <TD>6</ TD>
<TR> <TD>7</ TD>
</ TBODY>
</ TABLE>

<TD>pi g</ TD> <TD>Pi gl i ng Bl and</ TD> <TD>4</ TD> <TD>0. 8</ TD> <TD>t rue</ TD></ TR
<TD>cow</ TD> <TD>Dai sy</ TD> <TD>4</ TD> <TD>2. 0</ TD> <TD>t r ue</ TD></ TR>

<TD>gol df i sh</ TD> <TD>Dobbi n</ TD> <TD> </ TD> <TD>0. 05</ TD> <TD>f al se</ TD:
<TD>ant </ TD> <TD> </ TD> <TD>6</ TD> <TD>0. 001</ TD> <TD>f al se</ TD></ TR>
<TD>ant </ TD> <TD> </ TD> <TD>6</ TD> <TD>0. 001</ TD> <TD>f al se</ TD></ TR>
<TD>queen ant </ TD> <TD>Ma' anx/ TD> <TD>6</ TD> <TD>0. 002</ TD> <TD>f al se</ TI
<TD>human</ TD> <TD>Mar k</ TD> <TD>2</ TD> <TD>1. 8</ TD> <TD>t rue</ TD></ TR>

SUN/252 40

The handler class for this format iSHTM_Tabl eWi t er.

3.7.13 LaTeX

Writes atable asalLaTeX t abul ar environment, suitable for insertion into a document intended for
publication. Thisisonly likely to be useful for fairly small tables.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "I at ex(st andal one=f al se)". The
following options are available:

standal one = true|fal se
If true, the output is a freestanding LaTeX document consisting of a tabul ar environment
within at abl e within adocunent . If false, the output isjust at abul ar environment.

If no output format is explicitly chosen, writing to a filename with the extension ". tex" (case
insensitive) will select LaTex format for output.

An example looks likethis:

\begin{tabular}{|r|l|1|r|r]l]}
\ hli ne
\mul ticolum{1}{]| c|}{RECNG &
\mul ticolum{1}{c|}{SPECI ES} &
\mul ticol urm{l}{c|}{NAI\/E} &
\mul ti colum{1}{c|}{LEGS} &
\multicolum{1}{c|}{HEI GHT} &
\rmul ticolum{1}{c|}{MAMVAL} \\
\ hline
1 &pig &Pigling Bland & 4 & 0.8 & true\\
2 &cow & Daisy & 4 & 2.0 & true\\
3 & goldfish & Dobbin & & 0.05 & fal se\\
4 &ant & & 6 & 0.001 & fal se\\
5 &ant & & 6 & 0.001 & fal se\\
6 & queen ant & Ma'am & 6 & 0.002 & fal se\\
7 & human & Mark & 2 & 1.8 & true\\
I

\ hl i ne\ end{tabul ar}

The handler class for thisformat is Lat exTabl eWi ter.

3.7.14 Mirage

Mirage was a nice standalone tool for analysis of multidimensional data, from which TOPCAT took
some inspiration. It was described in a 2007 paper 2007ASPC..371..391H, but no significant
development seems to have taken place since then. This format is therefore probably obsolete, but
you can still write table output in Mirage-compatible format if you like.

If no output format is explicitly chosen, writing to a filename with the extension ". ni r age" (case
insensitive) will select i r age format for output.

An example looks like this:

Witten by uk.ac.starlink.mmrage. MrageFormatter
Omtted colum 5: MAMVAL(Bool ean)

Col utTm nanes

#
#
#
#
#
format var RECNO SPECI ES NAME LEGS HEI GHT
#

Text col unms

SUN/252 41

format text SPECIES
format text NAME

Tabl e data

pig Pigling_ Bland 4 0.8

cow Daisy 4 2.0

gol df i sh Dobbi n <bl ank> 0. 05
ant <bl ank> 6 0.001

ant <bl ank> 6 0.001
queen_ant Ma'am 6 0. 002
human Mark 2 1.8

~NOORAWNRE HH

The handler classfor thisformat isM rageTabl eWi ter.

3.8 Non-Standard FITS Conventions

STIL uses a few private conventions when writing and reading FITS files. These are not private in
the sense that non-STIL code is prevented from cooperating with them, but STIL does not assume
that other code, or FITS tables it encounters, will use these conventions. Instead, they offer (in some
cases) added value for tables that were written by STIL and are subsequently re-read by STIL,
while causing the minimum of trouble for non-STIL readers.

3.8.1FITSplus

When writing tables to FITS BINTABLE format, STIL can optionally store additional metadata in
the FITSfile using a private convention known as "FITS-plus’. The table is written exactly as usual
inaBINTABLE extension HDU, but the primary HDU (HDU#0) contains a sequence of characters,
stored as a 1-d array of bytes using UTF-8 encoding, which forms the text of a DATA-less
V OTable document. Note that the Primary HDU cannot be used to store table data, so under normal
circumstances has no interesting content in a FITS file used just for table storage. The FITS tables
in the subsequent extensions are understood to contain the data.

The point of this is that the VOTable can contain al the rich metadata about the table(s), but the
bulk data are in aform which can be read efficiently. Crucialy, the resulting FITSfileis a perfectly
good FITStable on its own, so non-V OTable-aware readers can read it in just the usual way, though
of course they do not benefit from the additional metadata stored in the VOTable header.

In practice, STIL normally writes FITS files using this convention (it writes the VOTable metadata
into the Primary HDU) and when reading a FITS files it looks for use of this convention (examines
the Primary HDU for VOTable metadata and uses it if present). But if an input file does not follow
this convention, the metadata is taken directly from the BINTABLE header as normal.
Non-FITS-plus-aware (i.e. non-STIL) readers will ignore the Primary HDU, since it has no purpose
in a standard FITS file containing only a table, and it doesn't look like anything else that such
readers are usually expecting. The upshot is that for nearly all purposes you can forget about use of
this convention when writing and reading FITS tables using STIL and other libraries, but STIL may
be able to recover rich metadata from files that it has written itself.

To be recognised as a FITS-plus file, the Primary HDU (and hence the FITS file) must begin like
this:

SIMPLE = T
BITPIX = 8
NAXIS = 1
NAXI S1 = ?7?7?
VOTMETA = T

The sequence and values of the given header cards must be as shown, except for Naxi s1 which
contains the number of bytes in the data block; any comments are ignored.

SUN/252 42

The content of the Primary HDU must be a VOTable document containing zero or more TABLE
elements, one for each BINTABLE extension appearing later in the FITS file. Each such TABLE
must not contain a DATA child; the table content is taken from the BINTABLE in the next unused
table HDU. For instance the Primary HDU content annotating a single table might look like this:

<?xm version="1.0"?>

<VOTABLE version="1.3" xm ns="http://ww.ivoa.net/xm/VOrlabl e/vl. 3">

<RESOURCE>

<TABLE nrows="1000">
<FI ELD dat at ype="doubl " nanme="RA" ucd="pos. eq.ra; neta. nai n"/>
<FI ELD dat at ype="doubl e" name="Dec" ucd="pos. eq. dec; net a. mai n"/ >
<!-- Dunmmy VOTable - no DATA el ement here -->

</ TABLE>

</ RESOURCE>

</ VOTABLE>

The first extension HDU would then contain the two-column BINTABLE corresponding to the

given metadata.

The VOTable metadata MUST be compatible with the structure of the annotated BINTABLE(S) in
terms of number and datatypes of columns.

Note: This arrangement bears some similarity to VOTable/FITS encoding, in which the output file
Is a VOTable which references an inline or external FITS file containing the bulk data. However,
the VOTable/FITS format is inconvenient in that either (for in-line data) the FITS file is
base64-encoded and so hard to read efficiently especially for random access, or (for referenced
data) the tableis split across two files.

3.8.2WideFITS

The FITS BINTABLE standard (FITS Standard v3.0, section 7.3) permits a maximum of 999
columns in a binary table extension. Up to version 3.2 of STIL, attempting to write a table with
more than 999 columns using one of the supported FITS-based writers failed with an error. In later
versions, a non-standard convention is used which can store wider tables in a FITS BINTABLE
extension. The various STIL FITS-based readers can (in their default configurations) read these
tables transparently, allowing round-tripping of arbitrarily wide tables to FITS files. Note however
that other FITS-compliant software is not in general aware of this convention, and will see a
999-column table. The first 998 columns will appear as intended, but subsequent ones will
effectively be hidden.

The rest of this section describes the convention that is used to store tables with more than 999
columnsin FITS BINTABLE extensions.

The BINTABLE extension type requires table column metadata to be described using 8-character
keywords of the form TxXxxxnnn, where TXXXX represents one of an open set of mandatory, reserved
or user-defined root keywords up to five characters in length, for instance TFORM (mandatory),
TUNI T (reserved), TUCD (user-defined). The nnn part is an integer between 1 and 999 indicating the
index of the column to which the keyword in question refers. Since the header syntax confines this
indexed part of the keyword to three digits, there is an upper limit of 999 columns in BINTABLE
extensions.

Note that the FITS/BINTABLE format does not entail any restriction on the storage of column data
beyond the 999 column limit in the data part of the HDU, the problem is just that client software
cannot be informed about the layout of this data using the header cardsin the usual way.

The following convention is used by STIL FITS-based I/O handlers to accommodate wide tables in
FITSfiles:.

Definitions:

SUN/252 43

BINTABLE columns are those columns defined using the FITS BINTABLE standard

Data columns are the columns to be encoded

N_ToOrT isthe total number of data columns to be stored

Data columns with (1-based) indexes from 999 to N_Tor inclusive are known as extended
columns. Their datais stored within the container column.

BINTABLE column 999 is known as the container column It contains the byte data for
all the extended columns.

Convention:

The resul

All column data (for columns 1 to N_ToT) islaid out in the data part of the HDU in exactly
the same way as if there were no 999-column limit.

The TFI ELDS header is declared with the value 999.

The container column is declared in the header with some TFORMB99 value corresponding
to the total field length required by all the extended columns ('B' is the obvious data type,
but any lega TFORM value that gives the right width MAY be used). The byte count
implied by TFORMB99 MUST be equal to the total byte count implied by all extended
columns.

Other TXxxx999 headers MAY optionally be declared to describe the container column in
accordance with the usua rules, e.g. TTYPE999 to give it aname.

The NaxiI s1 header is declared in the usual way to give the width of atable row in bytes.
Thisis equal to the sum of all the BINTABLE column widths as usual. It is also equal to
the sum of all the data column widths, which has the same value.

Headers for Data columns 1-998 are declared as usual, corresponding to BINTABLE
columns 1-998.

Keyword XT_I caL indicates the index of the container column. It MUST be present with
the integer value 999 to indicate that this convention isin use.

Keyword xT_NcoL indicates the total number of data columns encoded. It MUST be
present with an integer value equal to N_TOT.

Metadata for each extended column is encoded with keywords of the form 'H ERARCH XT
T™XXXXnnnnn', where TXxXxx are the same keyword roots as used for normal BINTABLE
extensions, and nnnnn is a decimal number written as usual (no leading zeros, as many
digits as are required). Thus the formats for data columns 999, 1000, 1001 eic are
declared with the keywords H ERARCH XT TFORMB99, Hl ERARCH XT TFORMLO00, HI ERARCH
XT TFORMLOO1, etc. Note this uses the ESO HIERARCH convention described at
https:/fits.gsfc.nasa.gov/registry/hierarch_keyword.html. The name space token has been
chosen as 'xT' (extended table).

This convention MUST NOT be used for N TOr<=999.

ting HDU is a completely legal FITS BINTABLE extension. Readers aware of this

convention may use it to extract column data and metadata beyond the 999-column limit. Readers
unaware of this convention will see 998 columnsin their intended form, and an additional (possibly
large) column 999 which contains byte data but which cannot be easily interpreted.

An example header might look like this:

XTENSI ON= ' Bl NTABLE

bi nary tabl e extension

/
BITPI X = 8 / 8-bit bytes
NAXIS = 2 [/ 2-dinensional table
NAXI S1 = 9229 / wdth of table in bytes
NAXI S2 = 26 / nunber of rows in table
PCOUNT = 0/ size of special data area
GCOUNT = 1/ one data group
TFI ELDS = 999 / nunber of col ums
XT_ICOL = 999 / index of container colum
XT_NCOL = 1204 / total colums including extended
TTYPEL = 'posid_1'"' / label for colum 1

SUN/252 44

TFORML = 'J / format for colum 1
TTYPE2 = 'instrunent_1' / label for colum 2
TFORMZ = '"4A ' / format for colum 2
TTYPE3 = 'edge_code_1' / label for colum 3
TFORMZ = ' ' / format for columm 3
TUCD3 = 'met a. code. qual '

TTYPE998= 'var _min_s_2'
TFORMB98= ' D '
TUNI T998= ' count s/ s'
TTYPE999= ' XT_MORECOLS'
TFORMD99= ' 813l '

| abel for colum 998
format for col um 998
units for colum 998
| abel for columm 999
format for col um 999

. — ~—

Hl ERARCH XT TTYPE999 ='var_mn_u_2'" / label for colum 999
H ERARCH XT TFORMD99 ='D [/ format for colum 999

H ERARCH XT TUNI T999 = 'counts/s' / units for colum 999

H ERARCH XT TTYPE1000 = 'var_prob_h_2' / label for colum 1000
H ERARCH XT TFORMLOO0O ='D [/ format for columm 1000

H ERARCH XT TTYPE1203 = 'var_prob_w 2' / label for columm 1203
H ERARCH XT TFORML203 ='D [/ format for colum 1203

H ERARCH XT TTYPE1204 = 'var_sigma_w 2' / label for colum 1204
H ERARCH XT TFORML204 ='D [/ format for colum 1204

H ERARCH XT TUNI T1204 = 'counts/s' / units for colum 1204
END

This general approach was suggested by William Pence on the FITSBITS list in June 2012, and by
Francois-Xavier Pineau (CDS) in private conversation in 2016. The details have been filled in by
Mark Taylor (Bristol), and discussed in some detail onthe FITSBITS list in July 2017.

3.9 Table Schemes

When a string is used to specify atable, it is usually the name of an external resource (file or URL)
containing a byte stream. However, STIL also provides a pluggable interface for referencing tables
that do not originate from a byte scheme. This is done using the Tabl eSchene interface, either
directly, or viaa st ar Tabl eFact or y that maintains alist of registered schemes.

The form of a scheme specification is:

: <schene- nane>: <schene- speci fi c-part >

where <schene- nane> is a registered scheme name or the classname of a class that implements
Tabl eScheme and has a no-arg constructor. So for instance

Star Tabl e rows10 = new St ar Tabl eFactory(). makeSt ar Tabl e(": 1 oop: 10");
creates a 10-row single-column table, as described by the loop scheme documentation below.

The following subsections describe the schemes provided with STIL. Others can be implemented
and installed into the st ar Tabl eFact ory using the addschene method, or at runtime using the
startabl e. schemres System property.

3.9.1j dbc
Usage: : j dbc: <j dbc- part>

Interacts with the JDBC system (JDBC sort-of stands for Java DataBase Connectivity) to execute
an SQL query on a connected database. The jdbc:... specification is the JDBC URL. For
historical compatibility reasons, specifications of this scheme may omit the leading colon character,
so that the following are both legal, and are equivalent:

j dbc: mysql :/ /1 ocal host/dbl #SELECT TOP 10 ra, dec FROM gsc
:jdbc: mysql ://1 ocal host/dbl #SELECT TOP 10 ra, dec FROM gsc

SUN/252 45

In order for this to work, you must have access to a suitable database with a JDBC driver, and some
standard JDBC configuration is required to set the driver up. The following steps are necessary:

1. thedriver class must be available on the runtime classpath
2. thejdbc. drivers system property must be set to the driver classname

More detailed information about how to set up the JDBC system to connect with an available
database, and of how to construct JDBC URLS, is provided elsewhere in the documentation.

3.9.21 00p

Usage: : | oop: <count >| <st art >, <end>[, <st ep>]

Generates a table whose single column increments over a given range.

The specification may either be a single value N giving the number of rows, which yields valuesin
the range 0..N-1, or two or three comma-separated values giving the start, end and optionally step
corresponding to the conventional specification of aloop variable.

The supplied numeric parameters are interpreted as floating point values, but the output column
type will be 32- or 64-bit integer or 64-bit floating point, depending on the values that it has to take.

Examples:

* :loop:5:ab-row table whose integer column hasvaluesO, 1, 2, 3, 4

* :loop: 10, 20: a10-row table whose integer column has values 10, 11, ... 19
* :loop:1,2,0.25: al0-row table whose floating point column has values 1.00, 1.25, 1.50, 1.75
* :loop:1el10: aten billion row table, with 64-bit integer values

Example:

.1 oop: 6

+-- -+

|0

+-- -+

| O |

| 1]

| 2 |

| 3|

| 4 |

| 5|

+-- -+

3.9.3test

Usage: : test: [<nrows[, <opt s-i bsfvnk*>]]

Generates a table containing test data. The idea is to include columns of different data types, for
instance to provide an example for testing 1/0 handler implementations. The columns will contain
some variety of more or less meaningless values, but the content is reproducible between runs, so
the same specification will produce the same output each time. Updates of the implementation
might change the output however, so the output is not guaranteed to be the same for all time.

The table specification has two comma-separated parameters:

* <nrow>: rOW count
* <opts>: astring of letter options specifying what types of datawill be included; options are:

SUN/252 46

* i aninteger index column

b: afew basic columns

s aselection of typed scalar columns

f: aselection of fixed-length 1-d array columns

* v:aselection of variable-length 1-d array columns
m: a selection of multi-dimensional array columns
k: almost a thousand columns

*: equivalent to all of the above

If <opt s> and/or <nr ow> are omitted, some default values are used.

Example:
:test:10,is
[S F N [S [R F N [IS [- o e e oo [S
| i_index | s_byte | s_short | s_int | s_long | s_float | s_double | s_string | s_bool e
R U R Hoenanos R Foeemas Foeeme s e m e amaaas RN

0 0 0 0 0 0.0 0.0 zZero fal se

1 1 1 1 1.0 1.0 one true

2 2 2 2 2.0 2.0 t wo fal se

3 3 3 3 3.0 3.0 t hree true

4 4 4 4 4.0 4.0 four fal se

5 5 5 5 5 5.0 five true

6 6 6 6 6 6.0 si x fal se

7 7 7 7 7 7.0 7.0 true

8 8 8 8 8 8.0 8.0 oy B>

9 9 9 9 9 true
B o m e - - B [o m e - - B Fomm e e e - o e e e e e oo S
3.9.4cl ass

Usage: : cl ass: <Tabl eSchene- cl assnane>: <schene- spec>

Uses an instance of a named class that implements the uk. ac. starlink. t abl e. Tabl eSchere
interface and that has a no-arg constructor. Arguments to be passed to an instance of the named
class are appended after a colon following the classname.

For example, the specification ":cl ass: uk. ac. starlink.tabl e. LoopTabl eScheme: 10" would
return a table constructed by the code new
uk. ac.starlink.tabl e. LoopTabl eSchene(). createTabl e("10").

Example:

:class: uk.ac.starlink.tabl e. LoopTabl eSchene: 5
+-- -+
| i

oo+
|
|
|
|
|

—
' hAWNRO

-+

3.9.5 hapi

Usage:

: hapi : <server-url >; <dat aset >; st art =<st art >; st op=<st op>[; maxChunk=<n>] [; fai | OnLi mi t =<t rue| f al s

Generates a table by interacting with a HAPI service. HAPI, the Heliophysics Data Application

SUN/252 47

Programmer’ s Interface is a protocol for serving streamed time series data.

In most cases it is not essential to use this scheme, since pointing the HAPI table input handler at a
URL with suitable parameters will be able to read the data, but this scheme provides some added
value by negotiating with the server to make sure that the correct version-sensitive request
parameter names and the most efficient data stream format are used, and can split the request into
multiple chunks if the service rejects the whole query as too large.

The first token in the specification is the base URL of the HAPI service, the second is the dataset
identifier, and others, as defined by the HAPI protocol, are supplied as <name>=<val ue> pairs,
separated by a semicolon ("; ") or an ampersand ("&"). The start and stop parameters, giving
| SO-8601-like bounds for the interval requested, are required.

Additionally, some parameters may be supplied which affect load behaviour but are not transmitted
to the HAPI service. These are:

max Chunk=<n>
divides the request up into at most <n> smaller chunks if the server refuses to supply the whole
range at once.

fail OnLimt=<true|fal se>
determines what happens if the service does refuse to serve the whole range (in chunks or
otherwise); if true, the table load will fail, but if false as many rows as are available will be
loaded.

Some variant syntax is permitted; an ampersand ("&") may be used instead of a semicolon to
separate tokens, and the names "ti ne. mi n" and "ti me. max" may be used in place of "start" and
"St 0F)II.

Note that since semicolons and/or ampersands form part of the syntax, and these characters have
special meaning in some contexts, it may be necessary to quote the scheme specification on the
command line.

Example:

shapi:https://vires. services/hapi; GRACE_A MAG start=2009-01-01T00: 00: 00; st op=2009- 01
+

| |
2009- 01- 01T0O0: 00: 03. 607Z | -74.136357526 | -78.905620222
2009- 01- 01T0O: 00: 05. 607Z | -74.009378676 I - 78.884853931

|

| |

| |

+ +

2009- 01-01T0O: 00: 07. 607Z | -73. 882397005 -78. 864406236

I I
I I
| 2009-01-01T00: 00: 06. 607Z | -73.945887793 | -78.874590667 |
I I
| 2009- 01- 01T00: 00: 08. 607Z |

-73. 818903534

- 78. 854396448

3.101/0 using SQL databases

With appropriate configuration, STIL can read and write tables from a relationa database such as
MySQL. You can obtain a st ar Tabl e which is the result of a given SQL query on a database table,
or store a St ar Tabl e as a new table in an existing database. Note that this does not allow you to
work on the database 'live. The classes that control these operations mostly live in the
uk. ac. starlink.tabl e. j dbc package.

If a username and/or password is required for use of the table, and thisis not specified in the query
URL, st ar Tabl eFact ory will arrange to prompt for it. By default this prompt is to standard output
(expecting a response on standard input), but some other mechanism, for instance a graphical one,

- 01TO00: 00:

SUN/252 48
can be used by modifying the factory's JDBCHandler.

3.10.1 JDBC Configuration

JavalSTIL does not come with the facility to use any particular SQL database "out of the box";
some additional configuration must be done before it can work. This is standard JDBC practice, as
explained in the documentation of the j ava. sql . Dri ver Manager class. In short, what you need to
do is define the "j dbc. drivers" system property to include the name(s) of the JDBC driver(s)
which you wish to use. For instance to enable use of MySQL with the Connector/J database you
might start up javawith acommand line like this:

java -classpath /ny/jars/mysql -connector-java-3.0.8-stabl e-bin.jar:mapp.jar
-DO dbc. drivers=com nysql . j dbc. Dri ver
my. pat h. MyAppl i cation
One gotcha to note is that an invocation like this will not work if you are using 'java -jar' to
invoke your application; if the -j ar flag is used then any class path set on the command line or in
the CLASSPATH environment variable or elsewhere is completely ignored. This is a consequence
of Java's security model.

For both the reader and the writer described below, the string passed to specify the database
guery/table may or may not require additional authentication before the read/write can be carried
out. The general ruleisthat an attempt will be made to connect with the database without asking the
user for authentication, but if this fails the user will be queried for username and password,
following which a second attempt will be made. If username/password has aready been solicited,
this will be used on subsequent connection attempts. How the user is queried (e.g. whether it's done
graphically or on the command line) is controlled by the JDBCHand!I er 'S JDBCAut hent i cat or Object,
which can be set by application code if required. If generic 1/0 is being used, you can use the
get / set JDBCHandl er methods of the St ar Tabl eFact ory Or St ar Tabl eCQut put being used.

To the author's knowledge, STIL has so far been used with the RDBMSs and drivers listed below.
Note however that this information is incomplete and out of date. If you have updates, feel free
to pass them on and they may be incorporated here.

MySQL
MySQL has been tested on Linux with the Connector/J driver and seems to work; tested
versions are server 3.23.55 with driver 3.0.8 and server 4.1.20 with driver 5.0.4. Sometimes
tables with very many (hundreds of) columns cannot be written owing to SQL statement length
restrictions. Note there is known to be a column metadata bug in version 3.0.6 of the driver
which can cause a ClassCastException error when tables are written.

PostgreSQL
PostgreSQL 7.4.1 apparently works with its own JDBC driver. Note the performance of this
driver appearsto be rather poor, at least for writing tables.

Oracle
You can use Oracle with the JDBC driver that comes as part of its Basic Instant Client
Package. URLs look something like
"j dbc: oracl e: thin: @/ host name: 1521/ dat abase#SELECT ... ".

SQL Server

There is more than one JDBC driver known to work with SQL Server, including JTDS and its
own driver. Some evidence suggests that j TDS may be the better choice, but your mileage may
vary.

Sybase ASE
There has been a successful use of Sybase 12.5.2 and jConnect (jconn3.jar) using a JDBC
URL like "j dbc: sybase: Tds: host nane: por t / dbnane?user =XXX&passwor d=XXX#SELECT. . . ".
An earlier attempt using Sybase ASE 11.9.2 failed.

SUN/252 49

It is probably possible to use other RDBM Ss and drivers, but you may have to do some homework.

3.10.2 Reading from a Database
See the IDBC Scheme.

3.10.3 Writing to a Database

You can write out a St ar Tabl e as a new table in an SQL-compatible RDBMS. Note this will
require appropriate access privileges and may overwrite any existing table of the same name. The
general form of the string which specifies the destination of the table being written is:

j dbc: <driver-specific-url >#<newt abl e- nane>

Hereis an example for MySQL with Connector/J:

j dbc: mysql :/ /1 ocal host/astrol?user=nbt #newt ab

which would write a new table called "newtab" in the MySQL database "astrol" on the local host
with the access privileges of user mbt.

3.11 Authentication

Where STIL isgiven an HTTP/HTTPS URL to read, typically for table input, in most cases it reads
the resource via methods of the Aut hManager class rather than with a direct URL. openSt rean() or
similar. This has the effect of managing authentication in cases where authentication requirements
are specified in VO-compliant ways by the remote service. The default behaviour in this case is
simply to deny access to resources for which authentication is required, but if a non-trivial
User I nterface object isinstalled on the default Aut hManager instance, the user will be queried for
credentials when a recognised authentication challenge is encountered, and subsequent access will
be granted if authentication and authorization are successful.

This user interaction and negotiation of authentication isinvisible to STIL client code and requires
no action other than an initial setup of the preferred user interface. Thisistypically done asfollows:

Aut hManager . get I nst ance() . set Userlnterface(Userlnterface.CLI);

This invocation would install a command-line user interface, so that the user would be queried on
the console for username and password when required. Other User | nt er f ace implementations (e.g.
QUl, createFixed) can be used instead. If no such setup is done (or equivalently following
set User I nterface(nul I')) STIL should behave just as if URLSs are dereferenced in the usual way.
However, the accessis till being handled by the Aut hmvanager in this case, so unforseen differences
in behaviour are not impossible.

Note: These authentication arrangementsin STIL are new at version 4.2, and rely on VO standards
that are still under discussion. The API and behaviour may change in future releases, and at time of
writing not all data services that provide authentication advertise it in a way that STIL can work
with. It is hoped that authentication interoperability will improve in future versions of STIL and of
server-side software. The authentication management is currently handled by the
uk. ac. st arlink. aut h package bundled with STIL, but the AUTH package may be split off into a
standalone product at some point in the future.

SUN/252 50

4 Storage Policies

Sometimes STIL needs to store the data from a table for later use. This is necessary for instance
when it creates a St ar Tabl e object by reading a VOTable document: it parses the XML by reading
through from start to finish, but must be able to supply the cell data through the st ar Tabl e's data
access methods without doing another parse later. Another example is when converting a
sequential-only access table to a random-access one (see the example below, and Section 2.3.4) -
the data must be stored somewhere they can be accessed in anon-sequential way at alater date.

The obvious thing to do is to store such data in object arrays or lists in memory. However, if the
tables get very large this is no longer appropriate because memory will fill up, and the application
will fail with an cut O Meror yEr ror (Java's garbage collection based memory management means it
Is not much good at using virtual memory). So sometimes it would be better to store the data in a
temporary disk file. There may be other decisions to make as well, for instance the location or
format (perhaps row- or column-oriented) to use for atemporary disk file.

Since on the whole you don't want to worry about these choices when writing an application, STIL
provides away of dealing with them which is highly configurable, but behavesin a'sensible’ way if
you don't take any special steps. Thisis based around the st or agePol i cy class.

A storagePol i cy IS afactory for Rowst or e Objects, and a Rowst or e iS an object to which you can
write the metadata and data of a table once, and perform random access reads on it at a later date.
Any of the STIL classes which need to do this sort of table data caching use a St or agePol i cy
object; they have policy get/set methods and usually constructors which take a st or agePol i cy too.
Application code which needs to stash table data away should follow the same procedure.

By way of example: the randonTabl e method takes a (possibly non-random-access) table and
returns a random-access one containing the same data. Here is roughly how it doesiit:

static StarTabl e randonirabl e(StarTabl e seqTabl e, StoragePolicy policy)
throws | CException {

/1l Get a new row store object fromthe policy.
RowSt ore rowStore = policy. nakeRowSt ore();

/1 Informthe row store about the table nmetadata - we do this by

/'l passing the table itself, but this could be a data-less StarTable
/1 object if the data were not avail able yet.

rowSt ore. accept Met adat a(seqTable);

/'l Loop over the rows in the input table, passing each one in turn
/1 to the row store.
RowSequence rowSeq = seqTabl e. get RowSequence() ;
while (rowSeqg.next()) {
rowst ore. accept Row(rowSeq. get Row());

// Informthe row store that there are no nore rows to cone.
rowSt ore. endRows() ;

/1l Extract and return a table fromthe row store. This consists of
/1 the netadata and data we've witten in there, but is guaranteed
/1 random access.

return rowStore. getStarTabl e();

}

Most times you won't have to write this kind of code since the STIL classes will be doing it behind
the scenes for you.

4.1 Available Policies

The storage policies currently supplied as static members of the St oragePolicy class are as

SUN/252 51

follows:

PREFER_MEMORY
Stores table data in memory. Currently implemented using an Arr ayLi st Of Qbj ect[] arrays.

PREFER_DI SK
Generally attempts to store data in a temporary disk file, using row-oriented storage (elements
of each row are mostly contiguous on disk).

ADAPTI VE
Stores table data in memory for relatively small tables, and in a temporary disk file for larger
ones. Storage is row-oriented.

S| DEWAYS
Generally attempts to store data in temporary disk files using column-oriented storage
(elements of each column are contiguous on disk). This may be more efficient for certain
access patterns for tables which are very large and, in particular, very wide. It's generally more
expensive on system resources than PREFER_DISK however, (it writes and maps one file per
column) so it is only the best choice in rather specialised circumstances.

DI SCARD
Metadata is retained, but the rows are ssimply thrown away. The table returned from the row
store has arow count of zero.

For the disk-based policies above (PREFER DISK and SIDEWAYYS), if storage on disk is
impossible (e.g. the security manager prevents access to local disk) then they will fall back to
memory-based storage. They may also decide to use memory-based storage for rather small tables.
Any temporary disk files are written to the default temporary directory (j ava. i o. t npdi r), and will
be deleted when the RowStore is garbage collected, or on normal termination of the VM. These
policies are currently implemented using mapped file access.

You are quite at liberty to implement and use your own St or agePol i cy objects, possibly on top of
existing ones. For instance you could implement one which stored only the first ten rows of any

array.

4.2 Default Policy

Any time a storage policy is required and has not been specified explicitly, STIL will get one by
calling the static method

St oragePol i cy. get Def aul t Pol i cy()

(application code should follow the same procedure). You can modify the value returned by this
method in two ways. you can use the St or agePol i cy. set Def aul t Pol i cy() Static method, or set
the system property st art abl e. st or age (this string is available as the constant PREF_PROPERTY).

The permissible valuesfor st art abl e. st or age are currently as follows:

memory

Use the PREFER_MEMORY policy
disk

Use the PREFER_DI SK policy
sideways

Use the sI DEWAYS policy

discard
Use the DI SCARD policy

SUN/252 52

Any other value is examined to see if it is the name of a loadable class which is a subclass of
St or agePol i cy and has a no-arg constructor. If it is, an instance of this class is constructed and
installed as the default.

This means that without any code modification you can alter how applications cache their table data
by setting a system property at runtime. The file . starjava. properties in the user's home
directory is examined during static initialization of StoragePol i cy for property assignments, so
adding the line

start abl e. st orage=di sk
in that file will have the same effect as specifying

-Dstartabl e. st orage=di sk
on the java command line.

If it has not been set otherwise, the 'default’ default storage policy is ADAPTI VE.

SUN/252 53

5 GUI Support

STIL provides a number of facilities to make life easier if you are writing table-aware applications
with agraphical user interface. Most of these livein theuk. ac. starlink. t abl e. gui package.

5.1 Drag and Drop

From a user's point of view dragging is done by clicking down a mouse button on some visual
component (the "drag source") and moving the mouse until it is over a second component (the
"drop target") at which point the button is released. The semantics of this are defined by the
application, but it usualy signals that the dragged object (in this case a table) has been moved or
copied from the drag source to the drop target; it's an intuitive and user-friendly way to offer
transfer of an object from one place (application window) to another. STIL's generic I/O classes
provide methods to make drag and drop of tables very straightforward.

Dragging and dropping are handled separately but in either case, you will need to construct a new
j avax. swi ng. Transf er Handl er object (subclassing Tr ansf er Handl er itself and overriding some
methods as below) and install it on the Swing JConponent which is to do be the drag source/drop
target using itsset Tr ansf er Handl er method.

To alow a Swing component to accept tables that are dropped onto it, implement
Tr ansf er Handl er 'Scanl nport and i nport Dat a methods like this:

cl ass Tabl eDragTransfer Handl er extends TransferHandl er {
St ar Tabl eFactory factory = new Star Tabl eFactory();

public bool ean canl nport(JConponent conp, DataFlavor[] flavors) {
return factory.canlnport(flavors);
}

publi c bool ean inportData(JConponent conp, Transferable dropped) {
try {
StarTabl e table = factory. makeSt ar Tabl e(dropped);
processDroppedTabl e(table);
return true;

}

catch (| OException e) {
e.printStackTrace();
return fal se;

}
}
}

Then any time a table is dropped on that window, your processDr oppedTabl e method will be
caled onit.

To alow tables to be dragged off of a component, implement the cr eat eTr ansf er abl e method like
this:

cl ass Tabl eDropTransfer Handl er extends TransferHandl er {
St ar Tabl eQut put witer = new Star Tabl eCut put () ;

protected Transferabl e createTransferabl e(JConponent conp) {
Star Tabl e table = get MyTabl e();
return witer.transferStarTable(table);

}
(you may want to override get Sour ceAct i ons and get Vi sual Represent ati on as well. For some
Swing components (see the Swing Data Transfer documentation for a list), this is al that is
required. For others, you will need to arrange to recognise the drag gesture and trigger the

SUN/252 54

Transf er Handl er 'S expor t AsDr ag method as well; you can use a Dr agLi st ener for this or see its
source code for an example of how to do it.

Because of the way that Swing's Drag and Drop facilities work, this is not restricted to transferring
tables between windows in the same application; if you incorporate one or other of these
capabilities into your application, it will be able to exchange tables with any other application that
does the same, even if it's running in a different Java Virtual Machine or on a different host - it just
needs to have windows open on the same display device. TOPCAT is an example; you can drag
tables off of or onto the Table List in the Control Window.

5.2 Table L oad Dialogues

Some graphical components exist to make it easier to load or save tables. They are effectively
table-friendly alternativesto using a JFi | eChooser .

In earlier versions of the library, there was a drop-in component which gave you a ready-made
dialogue to load tables from a wide range of sources (local file, JIDBC database, VO services, €tc).
However, this was not widely used and imposed some restrictions (dialogue modality) on the client
application, so at STIL version 3.0 they have been withdrawn. There is still a pluggable framework
for implementing and using source-specific load dialogues, but client code now has to do a bit more
work to incorporate these into an actual application. Thisiswhat TOPCAT does.

The main interface for this functionality is Tabl eLoadDi al og. Implementations of this interface
provide a GUI component which allows the user to specify what table will be loaded, and performs
the load of one or more tables based on this specification when requested to do so. An application
can embed instances of this into user-visible windows in order to provide load functionality. A
number of Tabl eLoadDi al og implementations are provided within STIL for access to local disk,
JDBC databases etc. The starjava set contains more, including access to virtual observatory
services. Further custom load types can be provided at runtime by providing additional
implementations of this interface. The partial implementation Abstract Tabl eLoadDi al og IS
provided for the convenience of implementors.

5.3 Table Save Dialogues

Tabl eSaveChooser IS used for saving tables. As well as alowing the user to select the table's
destination, it also allows selection of the output file format from the list of those which the
St ar Tabl eQut put knows about.

Like the load dialogue, it provides a pluggable framework for destination-specific GUI components.
These are provided by implementations of the Tabl eSaveDi al og class, which can be plugged in as
required. Implementations for saving to local and remote filesystems and JDBC databases are
provided within STIL.

SUN/252 55

6 Processing Star Tables

The uk. ac. starlink.tabl e package provides many generic facilities for table processing. The
most straightforward one to use is the Rowti st St ar Tabl e, described in the next subsection, which
gives you a St ar Tabl e whose data are stored in memory, so you can set and get cells or rows
somewhat like atabular version of an ArraylLi st .

For more flexible and efficient table processing, you may want to look at the later subsections
below, which make use of "pull-model” processing.

If all you want to do is to read tables in or write them out however, you may not need to read the
information in this section at all.

6.1 Writable Table

If you want to store tabular datain memory, possibly to output it using STIL's output facilities, the
easiest way to do it iS to use a Rowti st St ar Tabl e object. You construct it with information about
the kind of value which will be in each column, and then populate it with data by adding rows.
Normal read/write access is provided via a number of methods, so you can insert and delete rows,
set and get table cells, and so on.

The following code creates and populates a table containing some information about some
astronomical objects:

/1 Set up information about the col ums.

Col umminfo[] collnfos = new Columlinfo[3];

colInfos[O] new Col uml nfo("Nanme", String.class, "Object nane");
collnfos[1] new Col uml nfo("RA", Double.class, "Ri ght Ascension");
colInfos[2] new Col umml nfo("Dec", Double.class, "Declination");

/1l Construct a new, enpty table with these col ums.
RowLi st St ar Tabl e astro = new Rowli st Star Tabl e(col I nfos);

/1 Popul ate the rows of the table with actual data.
astro. addRow(new Cbject[] { "OuM nebula",

new Doubl e(168.63), new Double(55.03) });
astro. addRowm(new Object[] { "Wirlpool gal axy",

new Doubl e(202.43), new Double(47.22) });
astro. addRow(new Object[] { "MLO8",

new Doubl e(167.83), new Double(55.68) });

6.2Wrap It Up

The RowLi st St ar Tabl e described in the previous section is adequate for many table processing
purposes, but since it controls how storage is done (in a Li st of rows) it imposes a number of
restrictions - an obvious one is that all the data have to fit in memory at once.

A number of other classes are provided for more flexible table handling, which make heavy use of
the "pull-model" of processing, in which the work of turning one table to another is not done at the
time such a transformation is specified, but only when the transformed table data are actually
required, for instance to write out to disk as a new table file or to display in a GUI component such
as aJTabl e. One big advantage of this is that calculations which are never used never need to be
done. Another isthat in many cases it means you can process large tables without having to allocate
large amounts of memory. For multi-step processes, it is also often faster.

The central ideato get used to is that of a"wrapper” table. This is a table which wraps itself round
another one (its "base" table), using calls to the base table to provide the basic data/lmetadata but

SUN/252 56

making some some modifications before it returns it to the caller. Tables can be wrapped around
each other many layers deep like an onion. This is rather like the way that
java.io. Filterlnput Streansandtosomeextentjava. util.stream Streanswork.

Although they don't have to, most wrapper table classes inherit from W apper St ar Tabl e. Thisis a
no-op wrapper, which ssimply delegates all its calls to the base table. Its subclasses generally leave
most of the methods alone, but override those which relate to the behaviour they want to change.
Hereis an example of avery smple wrapper table, which simply capitalizes its base table's name:

class CapitalizeStarTabl e extends Wapper Star Tabl e {
public CapitalizeStarTabl e(StarTable baseTable) {
super (baseTable);

public String getNane() {
return getBaseTabl e(). get Nane() .t oUpper Case();
}

}

As you can see, this has a constructor which passes the base table to the w apper St ar Tabl e
constructor itself, which takes the base table as an argument. Wrapper tables which do any
meaningful wrapping will have a constructor which takes a table, though they may take additional
arguments as well. More often it is the data part which is modified and the metadata which is left
the same - some examples of this are given in Section 6.4. Some wrapper tables wrap more than one
table, for instance joining two base tables to produce a third one which draws data and/or metadata
from both (e.g. Concat St ar Tabl e, Joi nSt ar Tabl e).

The idea of wrappers is used on some components other than st ar Tabl eS themselves: there are
W apper RowSequenceS and W apper Col ums as well. These can be useful in implementing wrapper
tables.

Working with wrappers can often be more efficient than, for instance, doing a calculation which
goes through all the rows of a table calculating new vaues and storing them in a
RowLi st St ar Tabl e. If you familiarise yourself with the set of wrapper tables supplied by STIL,
hopefully you will often find there are ones there which you can use or adapt to do much of the
work for you.

6.3 Wrapper Classes

Hereisalist of some of the wrapper classes provided, with brief descriptions:

Col umPer nmut edSt ar Tabl e
Views its base table with the columns in a different order.

RowPer nmut edSt ar Tabl e
Views its base table with the rows in a different order.

RowSubset St ar Tabl e
Views its base table with only some of the rows showing.

Pr ogr essBar St ar Tabl e
Behaves exactly like its base table, but any RowSequence taken out on it controls a
JProgr essBar , SO the user can monitor progress in processing atable.

Progr essLi neSt ar Tabl e
Like ProgressBar StarTabl e, but controls an animated line of text on the terminal for
command-line applications.

Joi nSt ar Tabl e
Glues a number of tablestogether side-by-side.

Concat St ar Tabl e

SUN/252

Glues a number of tables together top-to-bottom.

6.4 Examples

This section gives afew examples of how STIL's wrapper classes can be used or adapted to perform
useful table processing. If you follow what's going on here, you should be able to write table

processing classes which fit in well with the existing STIL infrastructure.

6.4.1 Sorted Table

This example shows how you can wrap a table to provide a sorted view of it. It subclasses
RowPer mut edSt ar Tabl e, which is a wrapper that presents its base table with the rows in a different

order.

cl ass SortedStarTabl e ext ends RowPer nut edSt ar Tabl e {

/1l Constructs a new table froma base table, sorted on a given col um.
SortedSt ar Tabl e(Star Tabl e baseTable, int sortCol) throws | OException {

}
/
/
c

/1 Call the superclass constructor - this will throw an exception
/1 if baseTabl e does not have random access.

super (baseTable);

assert baseTabl e. | sRandom() ;

/1 Check that the colum we are being asked to sort on has
/1 a defined sort order.
O ass clazz = baseTabl e. get Col uml nfo(sort Col).getContentd ass();
if (! Conparable.class.isAssignableFrom clazz)) {

throw new I |1 egal Argunent Exception(clazz + " not Conparable");
}

/1 Fill an array with objects which contain both the index of each
/1l row, and the object in the selected colum in that row.
int nrow = (int) getRowCount();
RowKey[] keys = new RowKey[nrow];
for (int irow=0; irow < nrow, |rowt+)
Obj ect val ue = baseTable.getCell (irow, sortCol);
keys[irow] new RowKey((Conparable) value, irow);

}
/1 Sort the array on the values of the objects in the col um;

/1l the row indices will get sorted into the right order too.
Arrays.sort(keys);

/! Read out the values of the rowindices into a pernutation array.
long[] rowMap = new |long[nrow];
for (int irow=0; irow < nrow, irow+) {

rowmvap[irow] = keys[irow].index_;

/1l Finally set the row permnmutation map of this table to the one
/1 we have just worked out.
set Rowivap(rowivap);

Defines a class (just a structure really) which can hold
a row i ndex and a value (fromour selected colum).
ass RowKey i mpl enents Conparable {

Conpar abl e val ue_;

int index_;

RowKey(Conparabl e value, int index) {
val ue_ = val ue;
i ndex_ = index;

}
public int conpareTo(Object o) {
Rowkey ot her = (RowKey) o;
return this.value_. conpareTo(other.value_);

SUN/252 58

6.4.2 Turn aset of arraysinto a StarTable

Suppose you have three arrays representing a set of points on the plane, giving an index number and
an x and y coordinate, and you would like to manipulate them as a StarTable. One way is to use the
Col urmSt ar Tabl e class, which gives you a table of a specified number of rows but initially no
columns, to which you can add data a column at a time. Each added column is an instance of
Col urmbat a; the Ar r ayCol urm class provides a convenient implementation which wraps an array of
objects or primitives (one element per row).

St ar Tabl e nakeTabl e(int[] index, double[] x, double[] y) {
i nt nRow = index. | engt h;
Col utmSt ar Tabl e tabl e = Col umsSt ar Tabl e. makeTabl eW t hRows(nRow) ;
t abl e. addCol um(ArrayCol umm. makeCol utm("I ndex", index));
t abl e. addCol um(ArrayCol umm. makeCol utm("x", x));
t abl e. addCol um(ArrayCol um. makeCol um("y", y));
return tabl e;

A more general way to approach this is to write a new implementation of St ar Tabl e; thisis like
what happens in Swing if you write your own Tabl eMbdel to provide datafor aJTabl e. In order to
do this you will usually want to subclass one of the existing implementations, probably
Abstract St ar Tabl e, Randonst ar Tabl e Or W apper St ar Tabl e. Hereis how it can be done:

cl ass Poi ntsStarTabl e extends Randontt ar Tabl e {

/1 Define the netadata object for each of the col ums.

Col umlinfo[] collnfos_ = new Col uml nfol[]
new Col uml nfo("Index", Integer.class, "point index"),
new Col umlnfo("X', Double.class, "x co-ordinate"),
new Col utmlinfo("Y', Double.class, "y co-ordinate"),

¥

/1 Menmber variables are arrays hol ding the actual data.
int[] index_;

doubl e[] x_;

doubl e[] y_;

| ong nRow_;

public PointsStarTable(int[] index, double[] x, double[] y) {
i ndex_ = index;
X_ = X;

y_ =Y,
nRow_ = (long) index_.Ilength;

public int getCol umCount () {
return 3;

public | ong get RowCount () {
return nRow_;
}

public Col uml nfo get Col umlnfo(int icol) {
return colInfos_[icol];

public Object getCell(long Irow, int icol) {
int irow = checkedLongTolnt(lrow);
switch (icol) {
case 0: return new Integer(index_[irow]);
case 1: return new Double(x_[irow]);
case 2: return new Double(y_[irow]);
default: throw new I11| egal Argunment Exception();

SUN/252 59

}

In this case it is only necessary to implement the get Cel | method; Randonst ar Tabl e implements
the other data access methods (get Row, get RowSequence, get RowAccess) in terms of this. Note that
for more complicated behaviour, more methods may need to be implemented.

6.4.3 Add a new column

In this example we will append to a table a new column in which each cell contains the sum of all
the other numeric cellsin that row.

First, we define a wrapper table class which contains only a single column, the one which we want
to add. We subclass Abst r act St ar Tabl e, implementing its abstract methods as well as the get Cel |
method which may be required if the base table is random-access.

cl ass SunCol umSt ar Tabl e ext ends Abstract Star Tabl e {

St ar Tabl e baseTabl e_;
Col umlinfo col InfoO_ =
new Col uml nfo("Suni', Doubl e.cl ass, "Sum of other colums");

/1l Constructs a new summation table froma base table.
SuntCol umsSt ar Tabl e(St ar Tabl e baseTable) {
baseTabl e_ = baseTabl ¢;

/1 Has a single colum.

public int getColumCount () {
return 1,

}

/1 The single colum is the sumof the other col ums.
public Col uml nfo get Col umlnfo(int icol
if (icol I'=0) throw new IlIlegal Argunent Exception();
return col I nfoO_;

}

/1 Has the sanme nunber of rows as the base table.
public | ong get RowCount () {
return baseTabl e_. get RowCount () ;

/1 Provides random access iff the base table does.
publ i c bool ean i sRandon() {
return baseTabl e_. i sRandon();

/1l CGet the row fromthe base table, and sumelenments to produce val ue.
public Object getCell(long irow, int icol) throws |IOException {

if (icol I'=0) throw new IlI|egal Argunent Exception();

return cal cul ateSun{ baseTable_.getRow(irow));

}
/1 Use a Wapper RowSequence based on the base table's RowSequence.
/1 Wapping a RowSequence is quite |ike wapping the table itself;
/1 we just need to override the nethods which require new behaviour.
publ i c RowSequence get RowSequence() throws | OException {
final RowSequence baseSeq = baseTabl e_. get RowSequence();
return new W apper RowSequence(baseSeq) {
public Object getCell(int icol) throws |OException {
if (icol '=0) throw new IIIlegal Argunment Exception();
} return cal cul ateSum baseSeq. get Rowm));
public Object[] getRow() throws | OException {
return new Cbject[] { getCell(0) };
b
}

/1 Do the sane for the RowAccess.
publ i c RowAccess get RowAccess() throws | OCexception {

SUN/252 60

final RowAccess baseAcc = baseTabl e_. get RowAccess();
return new W apper RowAccess(baseAcc) {
public Object getCell(int icol) throws |OException {
if (icol '=0) throw new Il|egal Argunment Exception();
return cal cul ateSum(baseAcc. get Row());

}

public Object[] getRow() throws | OException {
return new Object[] { getCell(0) };

}

}s

/ getRowSplittable nust also be overridden. Here we use the
/ basic inplenmentation fromthe utility class Tables,

/ but if you expect to be doing parallel processing a

/ nmore careful i|nplenentation based on the base table's

/ RowSplittable may be required.

ublic RowSplittable get RowSplittable() throws | OException {
return Tabl es. getDefaul t RowSplittable(this);

/ This nmethod does the arithmetic work, sumring all the nuneric
/ colums in a row (array of cell value objects) and returning
/ a Doubl e.
Doubl e cal cul ateSum(Cbject[] row) {

doubl e sum = 0.0;
for (int icol =0; icol <rowlength; icol++) {

oj ect value = row icol];

if (value instanceof Nunber)

sum += ((Nunber) val ue). doubl eVal ue();

}
/
/
/
/
/
p
}
/
/
/

}

return new Doubl e(sum);

}

We could use this class on its own if we just wanted a 1-column table containing summed values.
The following snippet however combines an instance of this class with the table that it is summing
from, resulting in an n+1 column table in which the last column is the sum of the others:

St ar Tabl e get Conbi nedTabl e(StarTable inTable) {
StarTabl e[] tableSet = new StarTable[2];
tableSet[O] = inTable;
tableSet[1] = new SunCol umsSt ar Tabl e(i nTabl e);
St ar Tabl e combi nedTabl e = new Joi nStar Tabl e(tabl eSet);
return conbi nedTabl e;

SUN/252 61

7 VOTable Access

VOTable is an XML-based format for storage and transmission of tabular data, endorsed by the
International Virtual Observatory Alliance, who make avallable the schema
(http://lwww.ivoa.net/xml/VOTable/v1.1) and documentation
(http://www.ivoa.net/Documents/latest/VOT.html). The current version of STIL provides full
support for versions 1.0, 1.1, 1.2, 1.3 and (draft) 1.4 of the format.

As with the other handlers tabular data can be read from and written to VOTable documents using
the generic facilities described in Section 3. However if you know you're going to be dealing with
VOTables the VOTable-specific parts of the library can be used on their own; this may be more
convenient and it also allows access to some features specific to VOTables.

The VOTable functionality is provided in the package uk.ac.starlink.votable. It has the
following features:

Reads all VOTable dataformats (TABLEDATA/FITS/BINARY)
Writes all VOTable data formats

Full access to document structure asa DOM

Full handling of array types

Flexible table output

Hybrid (SAX/DOM) parsing for memory & CPU efficiency
Large table access (not limited by memory)

Fast

Resolution of relative URLS

Sequential/random access to tabular data

Best efforts parsing of non-conforming documents

Optional disk-based caching of table data when read

Most of these are described in subsequent sections.

7.1 Star Table Representation of VOTables

As for other table formats, STIL represents a VOTable TABLE element to the programmer as a
St ar Tabl e Object, in this case a vost ar Tabl e. Since the data models used by the star Tabl e
interface and the VOTable definition of a TABLE are pretty similar, it's mostly obvious how the
one maps onto the other. However, for those who want a detailed understanding of exactly how to
interpret or control one from the other, the following subsections go through these mappings in
detail.

7.1.1 Structure

It isimportant to understand that when STIL readsin aaVOTable document, it creates one or more
StarTables from one or all of the TABLE elements and then discards the document. This means that
information in the document's structure which does not map naturally onto the StarTable model
may be lost. Such information currently includes GROUPing of PARAMETERs and FIELDs, and
the hierarchical relationship between tables arranged in RESOURCE elements. The meaning of
references from FIELDs to COOSYS and TIMESY S elements is preserved, though the textual
details may change. It is possible that some of this lost metadata will be stored in some way in
VOTable-type StarTables in the future, but some loss of information is an inevitable consequence
of the fact that STIL's model of a table is designed to provide a generic rather than a
V OTable-specific way of describing tabular data.

If you want to avoid this kind of data loss, you should use the custom VOTable document parser
described in Section 7.3.2, which retains the entire structure of the document.

SUN/252 62

7.1.2 Parameters

When a st ar Tabl e is created by reading a TABLE element, its parameter list (as accessed using
get Par anet er s) is assembled by collecting al the PARAM elementsin the TABLE element and all
the PARAM and INFO elements in its parent RESOURCE. When a VOTable is written, all the
parameters are written as PARAMsin the TABLE.

7.1.3 Column M etadata

There is a one-to-one correspondence between a St ar Tabl e's Col urmi nf o Objects (accessed using
get Col unml nf o) and the FIELD elements contained in the corresponding TABLE. The attributes of
each fields are interpreted (for reading) or determined (for writing) in a number of different ways:

dat at ype and ar r aysi ze values depend on the class and shape of objects held in the column.
name, uni t, ucd and Ut ype values can be accessed using the corresponding methods on the
Col umml nf o object (get / set Name(), Unit String(), UCD() and Ut ype() respectively).

ID width, precision and type are held as String-type auxiliary metadata items in the
Col unmi nfo oObject, keyed by constants defined by the vostarTable class (1 D_I NFO,
W DTH_I NFO, PRECI SI ON_I NFOand TYPE_I NFO respectively).

LI NK elements are represented by URL-type auxiliary metadata items in the Col uml nfo
object, keyed by their ti t1 e or, if it doesn't have one, | D attribute.

Magic bad values for integer columns are represented by the Tabl es. NULL_VALUE_|I NFO
auxiliary metadata item.

Columns representing unsi gnedByt e values are marked with a Bool ean. TRUE value of their
Tabl es. UBYTE_FLAG | NFO auxiliary metadata item, as well as having ajavashort integer data
type (the javabyt e typeis no good because it's signed).

So if you have read a VOTable and want to determine the name, ucd and | D attributes of the first
column and its magic blank value, you can do it like this:

St ar Tabl e tabl e = readVOTabl e();

Col uminfo col 0 = tabl e. get Col uml nfo(0);

String nane0 = col 0. get Nane() ;

String ucd0 = col 0. get UCIX) ;

String id0 = (String) col 0. get AuxDat unval ue(VOSt ar Tabl e. | D_I NFO,
String. cl ass);

Nunber bl ankO = (Nunber) col 0. get AuxDat unval ue(Tabl es. NULL_VALUE_I NFQ,

Nurber . cl ass) ;

And if you are preparing a table to be written as a VOTable and want to set the nane, ucd and 1 D
attributes of a certain column, fix it to use a particular magic null integer value, and have it contain
anelement <LINK title="docs' href="...'>"youcan setitsCol uml nfo up likethis:

Col ummli nfo configureColum(String nane, String ucd, String id, Number bl ank,
URL docURL) {
Col uminfo i nfo = new Col uml nf o(nane) ;
i nfo.set UCD(ucd);
i nfo. set AuxDat un(new Descri bedVal ue(VOStarTabl e. ID_INFQ, id));
i nfo. set AuxDat un{ new Descri bedVal ue(Tabl es. NULL_VALUE | NFQ, b ank));
i nfo.set A]l‘JXDat un(new Descri bedVal ue(new URLVal uel nfo(™docs", nul), docURL));
return info;

7.1.4 Data Types

The class and shape of each column in a St ar Tabl e (accessed using the get/ set Cont ent O ass()

SUN/252 63

and get / set Shape() methods of Col unnl nf 0) correspond to the dat at ype and ar r aysi ze attributes
of the corresponding FIELD element in the VOTable. You are not expected to access the dat at ype
and ar r aysi ze attributes directly.

How Java classes map to VOTable data types for the content of columns is similar to elsewhere in
STIL. In general, scalars are represented by the corresponding primitive wrapper class (I nt eger,
Doubl e, Bool ean €tc), and arrays are represented by an array of primitives of the corresponding type
(int[], double[], bool ean[]). Arrays are only ever one-dimensional - information about any
multidimensional shape they may have is supplied separately (use the get Shape method on the
corresponding Col unml nf o). There are a couple of exceptions to this: arrays with dat at ype="char"

or "uni codeChar" are represented by String objects since that is almost always what is intended
(n-dimensional arrays of char are treated as if they were (n-1)-dimensional arrays of Strings), and
unsi gnedByt e types are represented as if they were short s, since in Java bytes are always signed.
Complex values are represented as if they were an array of the corresponding type but with an extra
dimension of size two (the most rapidly varying).

The following table summarises how all VOTable datatypes are represented:

dat at ype Cl ass for scal ar Cl ass for arraysize>1
bool ean Bool ean bool ean[]

bi t bool ean[] bool ean[|

unsi gnedByt e Short short[]

short Short short][]

i nt I nt eger int[]

| ong Long | ong[]

char Char String or String[]
uni codeChar Char String or String[]
fl oat Fl oat float[]

doubl e Doubl e doubl e[]

f I oat Conpl ex float[] float[]

doubl eConpl ex doubl e[] doubl e[]

7.2 DATA Element Serialization Formats

The actual table data (the cell contents, as opposed to metadata such as column names and
characteristics) in a VOTable are stored in a TABLE's DATA element. The VOTable standard
alows it to be stored in a number of ways; It may be present as XML elementsin a TABLEDATA
element, or as binary data in one of two seriaization formats, BINARY or FITS; if binary the data
may either be available externally from a given URL or present in a STREAM element encoded as
character data using the Base64 scheme (Base64 is defined in RFC2045). For VOTable version
>=1.3, BINARY is deprecated in favour of the new BINARY?2 format. See the VOTable 1.3
standard for discussion of the differences.

To summarise, the possible formats are:

TABLEDATA

BINARY at externa URL (deprecated at VOTable 1.3+)
BINARY inline (base64-encoded) (deprecated at VOTable 1.3+)
BINARY 2 at external URL (VOTable 1.3+ only)

BINARY 2 inline (base64-encoded) (VOTable 1.3+ only)

FITS a externa URL

FITS inline (base64-encoded)

and here are examples of what the different forms of the DATA element look like:

<! -- TABLEDATA f or mat,
<DATA>
<TABLEDATA>
<TR> <TD>1. 0</ TD> <TD>first</ TD>

inline -->

</ TR>

SUN/252 64

<TR> <TD>2. 0</ TD> <TD>second</ TD> </ TR>
<TR> <TD>3. 0</ TD> <TD>t hird</ TD> </ TR>
</ TABLEDATA>
</ DATA>

<l-- BINARY format, inline -->
<DATA>
<BI NARY>
<STREAM encodi ng=' base64' >
P4AAAAAAAAVITEX]I ZdEAAAAAAAAAGE 2V) b25k QEAAAAAAAAVOad yZA==
</ STREAM>
</ Bl NARY>
</ DATA>

<l-- BINARY format, to external file -->
<DATA>
<Bl NARY>
<STREAM href="fil e:/ home/ nbt / Bl NARY. dat a"/ >
</ Bl NARY>
</ DATA>

External files may also be compressed using gzip. The FITS ones look pretty much like the binary
ones, though in the case of an externally referenced FITS file, the file in the URL is a fully
functioning FITS file with (at least) one BINTABLE extension.

In the case of FITS data the VOTable standard leaves it up to the application how to resolve
differences between metadata in the FITS stream and in the VOTable which references it. For a
legal VOTable document STIL behaves as if it uses the metadata from the VOTable and ignores
any in FITS headers, but if they are inconsistent to the extent that the FIELD elements and FITS
headers describe different kinds of data, results may be unpredictable.

At the time of writing, most VOTablesin the wild are writtenin TABLEDATA format. This has the
advantage that it is human-readable, and it's easy to write and read using standard XML tools.
However, it is not a very suitable format for large tables because of the high overheads of
processing time and storage/bandwidth, especially for numerical data. For efficient transport of
large tables therefore, one of the binary formats is recommended.

STIL can read and write VOTables in any of these formats. In the case of reading, you just need to
point the library at a document or TABLE element and it will work out what format the table data
are stored in and decode them accordingly - the user doesn't need to know whether it's
TABLEDATA or externa gzipped FITS or whatever. In the case of writing, you can choose which
format is used.

7.3 Reading VOTables

STIL offers a number of options for reading a VOTable document, described in the following
sections. If you just want to read one table or all of the tables stored in a VOTable document,
obtaining the result as one or more StarTable, the most convenient way is to use the VOTable
handler's versions of the STIL generic table reading methods, as described in Section 7.3.1. If you
need access to the structure of the VOTable document however, you can use the DOM or SAX-like
facilites described in the sections Section 7.3.2 and Section 7.3.3 below.

7.3.1 Generic VOTable Read

The simplest way to read tables from a VOTable document is to use the generic table reading
method described in Section 3.2 (or Section 3.3 for streaming) in which you just submit the location
of a document to a St ar Tabl eFact ory, and get back one or more st ar Tabl e objects. If you're after
one of severa TABLE elements in a document, you can specify this by giving its number as the
URL's fragment ID (the bit after the # sign, or the third argument of streanstar Tabl e for
streaming).

SUN/252 65

The following code would give you st ar Tabl es read from the first and fourth TABLE elementsin
the file "tabledoc.xml":

St ar Tabl eFactory factory = new Star Tabl eFactory();
StarTabl e tabl eA = factory. makeSt ar Tabl e("tabl edoc. xm ", "votable");
StarTabl e tableB = factory. makeSt ar Tabl e("tabl edoc. xm #3", "votable");

or equivalently

VOTabl eBui | der vot Bui | der = new VOTabl eBui | der () ;
bool ean want Random = f al se;
St oragePol i cy policy = StoragePolicy. getDefaul tPolicy();
Star Tabl e tabl eA =
vot Bui | der. naekeSt ar Tabl e(Dat aSour ce. nakeDat aSour ce("tabl edoc. xm "),
want Random policy);
StarTabl e tabl eB =
vot Bui | der. makeSt ar Tabl e(Dat aSour ce. makeDat aSour ce("t abl edoc. xm #3"),
want Random policy);

Note this will perform two separate parses of the document, one for each table built.

If you want all the tables in the document, do this:

VOTabl eBui | der vot Bui | der = new VOTabl eBui | der () ;

Dat aSour ce datsrc = DataSource. nakeDat aSource("tabl edoc. xm ");

St oragePol i cy policy = StoragePolicy. getDefaultPolicy();

Tabl eSequence tseq = votBuil der. nakeSt ar Tabl es(datsrc, policy);

List tList = new ArraylList();

for (StarTable table; (table = tseq.nextTable()) != null;) {
tList.add(table);

which only performs a single pass and so is more efficient.

All the data and metadata from the TABLES in the VOTable document are available from the
resulting St ar Tabl e objects, as table parameters, Col umml nf oS or the data themselves. If you are
just trying to extract the data and metadata from a single TABLE element somewherein aVOTable
document, this procedure is probably all you need.

7.3.2 Table-Aware DOM Processing

VOTable documents consist of a hierarchy of RESOURCE, DEFINITIONS, COOSYS, TABLE
elements and so on. The methods described in the previous subsection effectively approximate this
as aflat list of TABLE elements. If you are interested in the structure of the VOTable document in
more detail than the table items that can be extracted from it, you will need to examine it in a
different way, based on the XML. The usual way of doing this for an XML document in Javaisto
obtain a DOM (Document Object Model) based on the XML - thisis an API defined by the W3C
representing a tree-like structure of elements and attributes which can be navigated by using
methods like get Fi r st Chi | d and get Par ent Node.

STIL provides you with aDOM which can be viewed exactly like a standard one (it implements the
DOM API) but has some special features.

* All elements in it are instances of the voel enent class (which itself implements the DOM
El enent interface). This provides a few convenience methods such as get Chi | dr enByNamre
which can be useful but don't do anything that you couldn't do with the El ement interface
alone.

 Some of the elements, according to their name, are instances of specialised subclasses of

SUN/252 66

VOE! enent which provide methods specific to their role in a VOTable document. For instance
every GROUP element in the tree is represented by a Gr oupE! enent ; this class has a method
get Fi el ds which returns all the FIELD elements associated with that group (this method
examines its FIEL Dref children and locates their FIELD elements elsewhere in the DOM). The
various specific element types are not considered in detail here - see the javadocs for the
subclasses of VOEl enent .

» The most important of these special element subclasses is Tabl eEl enent . A Tabl eEl enent Can
provide the table data stored within it; to access these data you don't need to know whether it is
stored in TABLEDATA, FITS or BINARY form etc.

* Full ID/ref cross-referencing is supported for elements which have ID attributes in the
VOTable specification - this is required so that for instance FIELDref elements can access
their FIELDs, and TABLE elements can define their structure by reference to previousy
defined ones. If you need to locate cross-references by hand you can use the get El enent Byl d
method.

* In most cases, the DOM you acquire will not contain the bulk data in the VOTable XML.
Specifically, the children of TABLEDATA elements (alot of TR and TDs) and of STREAM
elements (long Base64-encoded strings containing FITS/binary data) will be absent. User code
inspecting the DOM s rarely interested in these elements, only in the table data they represent,
and this can be obtained from the corresponding TABLE element.

« The DOM is modifiable - that is you can add, remove and relocate nodes within it in the
standard ways permitted by the DOM API.

To acquire this DOM you will use a VCEl enent Factory, usually feeding a File, URL oOr
| nput St reamto one of its makeVCEl ement methods. The bulk data-less DOM mentioned above is
possible because the VOE! enent Fact ory processes the XML document using SAX, building aDOM
as it goes along, but when it gets to the bulk data-bearing elements it interprets their data on the fly
and stores it in aform which can be accessed efficiently later rather than inserting the elements into
the DOM. SAX (Simple API for XML) is an event driven processing model which, unlike DOM,
does not imply memory usage that scales with the size of the document. In this way any but the
weirdest VOTable documents can be turned into a DOM of very modest size. This means you can
have all the benefits of a DOM (full access to the hierarchical structure) without the disadvantages
usually associated with DOM-based VOTable processing (potentially huge memory footprint). Of
course in order to be accessed later, the data extracted from a stream of TR elements or from the
inline content of a STREAM element has to get stored somewhere. Where it gets put is determined
by the VOEI enent Fact ory'S St or agePol i cy (See Section 4).

If for some reason you want to work with a full DOM containing the TABLEDATA or STREAM
children, you can parse the document to produce a DOM Docunent or El ement asusual (e.g. using a
Docunent Bui | der) and feed that to one of the the VOEI enent Fact ory's makeVCEl ement methods
instead.

Having obtained your DOM, the easiest way to access the data of a TABLE element isto locate the
relevant Tabl eEl enent inthetree and turn it into a st ar Tabl e using the VoSt ar Tabl e adapter class.
You can interrogate the resulting object for its data and metadata in the usual way as described in
Section 2. This st ar Tabl e may or may not provide random access (i sRandom may or may not
return true), according to how the data were obtained. If it's a binary stream from a remote URL it
may only be possible to read rows from start to finish arow at atime, but if it wasin TABLEDATA
form it will be possible to access cells in any order. If you need random access for a table and you
don't haveit (or don't know if you do) then use the methods described in Section 2.3.4.

It is possible to access the table data directly (without making it into a St ar Tabl e) by using the
get Dat a method of the Tabl eEl enent , but in this case you need to work a bit harder to extract some
of the data and metadata in useful forms. See the Tabul ar Dat a documentation for details.

One point to note about VOEI enent Fact or y's parsing is that it is not restricted to elements named in

SUN/252 67

the VOTable standard, so a document which does not conform to the standard can still be processed
asaVOTableif partsof it contain VOTable-like structures.

Here is an example of using this approach to read the structure of a, possibly complex, VOTable
document. This program locates the third TABLE child of the first RESOURCE element and prints
out its column titles and table data.

void printThirdTable(File votFile) throws | OException, SAXException {

/'l Create a tree of VCElenents fromthe given XM. file.
VCE! enent top = new VOEl enent Fact ory() . makeVCEl enent (votFile);

/1 Find the first RESOURCE el enent using standard DOM net hods.
NodeLi st resources = top. get El enent sByTagName(" RESOURCE");
El ement resource = (Elenment) resources.iten(0);

/'l Locate the third TABLE child of this resource using one of the
/1 VCEl enent conveni ence met hods.

VCEl enent vResource = (VOEl enent) resource;

VOE!l enent [] tables = vResource. get Chil drenByNanme("TABLE");

Tabl eEl enment tabl eEl = (Tabl eEl enment) tables[2];

// Turn it into a StarTable so we can access its data.
St ar Tabl e starTabl e = new VOSt ar Tabl e(tabl eEl);

/1 Wite out the colum name for each of its col ums.

int nCol = starTabl e. get Col utmCount () ;

for (int iCol =0; iCol < nCol; iCol++) {
String col Name = star Tabl e. get Col umminfo(i Col).getNane();
Systemout.print(col Name + "\t");

Systemout. println();

/] Iterate through its data rows, printing out each el ement.
for (RowSequence rSeq = star Tabl e. get RowSequence(); rSeq.next();) {
Cbj ect[] row = rSeq. get Row);
for (Int iCol = 0; iCol < nCol; iCol++) {
Systemout.print(rowf iCol] + "\t");

Systemout.printlin();
}

Versions of STIL prior to V2.0 worked somewhat differently to this - they produced a tree structure
representing the VOTable document which resembled, but wasn't, a DOM (it didn't implement the
W3C DOM API). The current approach is more powerful and in some cases less fiddly to use.

7.3.3 Table-Aware SAX Processing

SAX (Simple API for XML) is an event-based model for processing XML streams, defined in the
org.xm .sax package. While generally a bit more effort to use than DOM, it provides more
flexibility and possibilities for efficiency, since you can decide what to do with each element rather
than always store it in memory. Although a DOM built using the mechanism described in the
previous section will usualy itself be pretty small, it will normaly have to store table data
somewhere in memory or on disk, so if you don't need, and wish to avoid, this overhead, you'd
better use event-based processing directly. This section describes how to do that.

The basic tool to use for VOTable-aware SAX-based processing is a Tabl eCont ent Handl er , which
IS a SAX Cont ent Handl er implementation that monitors all the SAX events and when it comes
across a TABLE element containing DATA it passes SAX-like messages to a user-supplied
Tabl eHandl er which can do what it likes with them. Tabl eHandl er is a callback interface for
dealing with table metadata and data events defined by STIL in the spirit of the existing SAX
callback interfaces such as Cont ent Handl er, Lexi cal Handl er €tc. You define a Tabl eHandl er by
implementing the methods st ar t Tabl e, r owbat a and endTabl e.

SUN/252 68

For full details of how to use this, see the appropriate javadocs, but here is a simple example which
counts the rows in each TABLE in aVOTable stream.

i mport javax.xm . parsers. SAXPar ser Factory;

i mport org.xm .sax. Content Handl er

i mport org.xm .sax. | nput Source;

i mport org.xnl .sax. XM_Reader ;

i mport uk.ac.starlink.table.StarTabl e;

i mport uk.ac.starlink.votabl e. Tabl eCont ent Handl er;
i mport uk.ac.starlink.votabl e. Tabl eHandl er;

voi d sunmmari seVot abl eDocunent (I nput Streamin) throws Exception {

/1 Set up a handler which responds to TABLE-triggered events in
/1 a suitable way.
Tabl eHandl er tabl eHandl er = new Tabl eHandl er () {

I ong rowCount; // Nunmber of rows seen in this table.

/1l Start of table: print out the table name.

public void startTable(StarTable neta) {
rowCount = 0O;
Systemout.println("Table:

+ met a. get Name());

/1 New row. increnent the running total of rows in this table.
public void rowbata(Object[] row) {
rowCount ++;

/1 End of table: print out the sunmary.
public void endTabl e() {
Systemout.println(rowCount + " rows");

}s

/1l Install it into a Tabl eContentHandl er ready for use.
Tabl eCont ent Handl er vot Cont ent Handl er = new Tabl eContent Handl er (true);
vot Cont ent Handl er. set Tabl eHandl er (tabl eHandl er);

/1 Get a SAX parser in the usual way.
XM_Reader parser = SAXParser Factory. newl nstance(). newSAXPar ser ()
. get XMLReader () ;

/Il Install our table-aware content handler in it.
par ser. set Cont ent Handl er (vot Cont ent Handl er);

/1 Performthe parse; this will go through the XM. stream sendi ng

/1 SAX events to votContentHandler, which in turn will forward

/1l table events to tabl eHandl er, which responds by printing the summary.
parser.parse(new | nputSource(in));

7.3.4 Standar ds Confor mance

The VOTable parser provided is believed to be able to parse correctly any VOTable document
which conforms to the 1.0, 1.1, 1.2, 1.3 or (draft) 1.4 VOTable recommendations. In addition, it
will happily cope with documents which violate the standard in that they contain extra elements or
attributes; such elements or attributes will be inserted into the resulting DOM but ignored as far as
producing St ar Tabl eS goes. In general, if there is something obvious that the parser can do to make
sense of adocument outside of the letter of the standard, then it tries to do that.

There is currently one instance in which it can be useful for the parser deliberately to violate the
standard, as a workaround for an error commonly encountered in VOTable documents. According
to the standard, if aFIELD (or PARAM) element is declared like this:

<FI ELD dat at ype="char"/ > (1)

SUN/252 69

it is considered equivalent to

<FI ELD dat at ype="char" arraysi ze="1"/> (2)

that is, it describes a column in which each cell contains a single character (the same remarks apply
to dat at ype="uni codeChar"). In fact, when people (or machines) write (1) above, what they often
mean to say is

<FI ELD dat at ype="char" arraysi ze="*"/> (3)

that is, it describes a column in which each cell contains a variable length string. In particular, some
tables returned from the service have contained this defect. Working to the letter of the standard,
this can lead to columns in which only the first character of the string in cell is visible. By default
STIL interprets (1) above, in accordance with the standard, to mean (2). However, if you want to
work around the problem and interpret (1) to mean (3), by using VCEI enent Fact ory'S set Stri ct
method or STRI CT_DEFAULT variable, or from outside the program by setting the system property
votable.strict="fal se".

7.4 Writing VOTables

To write a VOTable using STIL you have to prepare a St ar Tabl e object which defines the output
table's metadata and data. The uk. ac. starlink. t abl e package provides a rich set of facilities for
creating and modifying these, as described in Section 6 (see Section 6.4.2 for an example of how to
turn a set of arraysinto a st ar Tabl e). In general the FIELD arr aysi ze and dat at ype attributes are
determined from column classes using the same mappings described in Section 7.1.4.

A range of facilities for writing St ar Tabl es out as VOTables is offered, allowing control over the
data format and the structure of the resulting document.

7.4.1 Generic table output

Depending on your application, you may wish to provide the option of output to tables in arange of
different formats including VOTable. This can be easily done using the generic output facilities
described in Section 3.4.

7.4.2 Single VOTable output

The simplest way to output atable in VOTable format isto use avorabl ewi t er, which will output
aVOTable document with the simplest structure capable of holding a TABLE element, namely:

<VOTABLE version="1.0">
<RESOQURCE>
<TABLE>
<l-- .. FIELD el enents here -->
<DATA>
<l-- table data here -->
</ DATA>
</ TABLE>
</ RESOURCE>
</ VOTABLE>

The writer can be configured/constructed to write its output in any of the formats described in
Section 7.2 (TABLEDATA, inline FITS etc) by using its set Dat aFor mat and set | nl i ne methods.

In the case of streamed output which is not inline, the streamed (BINARY or FITS) data will be
written to awith aname similar to that of the main XML output file.

Assuming that you have your st ar Tabl e ready to output, here is how you could write it out in two
of the possible formats:

SUN/252 70

void output All Formats(StarTable table) throws | OException {

/'l Create a default StarTabl eQutput, used for turning |ocation
/1 strings into output streans.
St ar Tabl eQut put sto = new Star Tabl eCut put () ;

/1 Obtain a witer for inline TABLEDATA out put.
VOTabl eWiter voWiter =
new VOTabl eWiter(DataFornmat. TABLEDATA, true, VOTabl eVersion.V13);

/1 Use it to wite the table to a named file.
voWiter.witeStarTable(table, "tabledata-inline.xm", sto);

/1 Modify the witer's characteristics to use it for referenced FITS output.
voW i ter. set Dat aFormat (Dat aFormat. FI TS);
voWiter.setlnline(false);

/] Use it to wite the table to a different naned file.

// The witer will choose a nane like "fits-href-data.fits" for the
/Il actual FITS file referenced in the XM.

voWiter.witeStarTable(table, "fits-href.xm", sto);

7.4.3 TABLE element output

You may wish for more flexibility, such as the possibility to write a VOTable document with a
more complicated structure than a ssimple VOTABLE/RESOURCE/TABLE one, or to have more
control over the output destination for referenced STREAM data. In this case you can use the
VOSeri al i zer class which handles only the output of TABLE elements themselves (the hard part),
leaving you free to embed these in whatever XML superstructure you wish.

Once you have obtained your VOSeri al i zer by specifying the table it will serialize and the data
format it will use, you should invoke its witeFields method followed by either
writelnlineDataEl ement OF writeHref Dat aEl ement . For inline output, the output should be sent
to the same stream to which the XML itself is written. In the latter case however, you can decide
where the streamed data go, allowing possibilities such as sending them to a separate file in a
location of your choosing, creating a new MIME attachment to a message, or sending it down a
separate channel to a client. In this case you will need to ensure that the href associated with it
(written into the STREAM element's hr ef attribute) will direct areader to the right place.

Here is an example of how you could write a number of inline tables in TABLEDATA format in
the same RESOURCE element:

void witeTables(StarTable[] tables) throws | OException {
Buf feredWiter out =
new BufferedWiter(new QutputStreanmi¥iter(Systemout));

out.write("<VOTABLE version="1.1 >\n");
out.write("<RESOURCE>\n");
out.wite("<DESCRI PTI ON>Sone tabl es</ DESCRI PTI ON>\ n");
for (int i =0; i <tables.length; i++) {
VCSeri al i zer. nakeSeri al i zer (Dat aFor mat . TABLEDATA, tables[i])
} .writelnlineTabl eEl enent(out);
out.wite("</ RESOURCE>\n");
out.write("</VOTABLE>\n");
out.flush();

}

and here is how you could write a table with its data streamed to a binary file with a given name
(rather than the automatically chosen one selected by vorabl ewi ter):

void witeTable(StarTable table, File binaryFile) throws | OException {
Buf feredWiter out =
new BufferedWiter(new QutputStreanmiViter(Systemout));

SUN/252 71

out.write("<VOTABLE version="1.1">\n");
out.wite("<RESOURCE>\n");
out.write("<TABLE>\n");
Dat aCut put St ream bi nQut =
new Dat aQut put St rean(new Fil eQut put Strean(binaryFile));
VCSeri al i zer. makeSeri al i zer (Dat aFor nat. Bl NARY, table)
.writeHref Tabl eEl enent (out, "file:" + binaryFile, binCut);
bi nQut . cl ose();
out.wite("</ TABLE>\n");
out.write("<RESOURCE>\n");
out.wite("<VOTABLE>\n");
out.flush();
}

VOSerializer contains some more fine-grained methods too which can be used if you want still
further control over the output, for instance to insert some GROUP elements after the FIELDs in a
table. Here is an example of that:

Buf feredWiter out =
new BufferedWiter(new QutputStreanmiWViter(Systemout));

out.wite("<VOTABLE version="1.1 >\n");
out.write("<RESOURCE>\n");
out.wite("<TABLE>\n");

VCSerializer ser = VOSerializer

. makeSeri al i zer (Dat aFor mat . TABLEDATA, table);
ser.witeFields(out);
out.wite("<GROUP><FIELDref ref="RA'/><FlIELDref ref="DEC /></GROUP>");
ser.witelnlineTabl ekl erent(out);

out.wite("</ TABLE>\n");
out.wite("</RESOURCE>\n");
out.wite("</VOTABLE>");

Note that since STIL v4.1, alongside >writel nlineDataElement(BufferedWriter) VOSerializer has
another method >writelnlineDataElementUTF8(OutputStream). This does the same thing, but
allows some optimisations, so can be used for better performance if you know that the UTF-8 XML
encodingisin use.

7.44V0OTableVersion

There are a number of versions of the VOTable standard. These do not differ very much, but there
are some changes between the versions - see for instance the change list in the appendix of the most
recent VOTable document. When writing VOTables, you can either specify explicitly which
version you want to write, or use the current default.

The hard-coded default for VOTable output version is given by the value of the
VOTabl eVer si on. DEFAULT_VERSI ON_STRI NG constant, currently "1. 4", but this can be overridden at
runtime by setting the "vot abl e. ver si on" System property, e.g. to "1.2".

To set the output version programmatically, you can supply one of the provided static instances of
the vOTabl eVer si on in an appropriate context, e.g.:

new VOTabl eWiter(DataFormat. Bl NARY, true, VOTabl eVersion. V12)

or

VCSeri al i zer. nakeSeri al i zer (Dat aFor mat . TABLEDATA, VOTabl eVer si on. V10, table)

SUN/252

72

SUN/252 73

A System Properties

This section contains a list of system properties which influence the behaviour of STIL. You don't
have to set any of these; the relevant components will use reasonable defaults if they are undefined.
Note that in certain security contexts it may not be possible to access system properties; in this case
STIL will silently ignore any such settings.

A.ljava.io.tmpdir

java.io.tnpdir is a standard Java system property which is used by the disk-based storage
policies. It determines where the JVM writes temporary files, including those written by these
storage policies (see Section 4 and Appendix A.8). The default value is typically "/tnmp" on
Unix-like platforms.

A.2java.util.concurrent.ForkJoinPool.common.parallelism

java.util.concurrent. ForkJoi nPool . common. paral l el i smis a standard Java system property
which controls the number of processing cores apparently available from the system. By default it is
typically set to one less than the number of cores on the current machine. To inhibit parallelisation
you can set thisto 1.

A.3jdbc.drivers

Thej dbc. drivers property is astandard JDBC property which names JDBC driver classes that can
be used to talk to SQL databases. See Section 3.10.1 for more details.

A.4 mark.wor karound

The mar k. wor kar ound determines whether a workaround is employed to fix bugs in which certain
| nput St r eamimplementations lie about their abiilty to do mar k/ r eset operations (mar k returns true
when it should return false). Several classes in various versions of Sun's J2SE do this. It can result
in an error with a message like "Resetting to invalid mark”. Setting this property true works around
it. By default it is set false.

A.5 star.connectors

The star. connect ors property names additional remote filestore implementations. Its value is a
colon-separated list of class names, where each element of the list must be the name of a class on
the classpath which implements the Connect or interface. It is used in the graphical filestore
browsersin Section 5.2 and Section 5.3. See Connect or Manager for more details.

A.6 startablereaders

The startabl e. reader s property provides additional input handlers which st ar Tabl eFact ory can
use for loading tables in named format mode. Its value is a colon-separated list of class names,
where each element of the list must be the name of a class on the classpath which implements the
Tabl eBui | der interface and has a no-arg constructor. When a new Star Tabl eFactory IS
constructed, an instance of each such named class is created and added to its known handler list.
Users of the library can therefore read tables in the format that the new handler understands by
giving its format name when doing the load.

A.7 startable.schemes

SUN/252 74

The startabl e. schenes property Can be set to a (colon-separated) list of custom table scheme
handler classes. Each class must implement the Tabl eSchene interface, and must have a no-arg
constructor. The schemes thus named will be available alongside the standard ones listed in Section
3.9.

A.8 startable.storage

The startabl e. storage property sets the initial value of the default storage policy, which
influences where bulk table data will be cached. The recognised values are:

* nenory: table datawill normally be stored in memory (St or agePol i cy. PREFER_MEMORY)

» disk: tabledatawill normally be stored in temporary disk files (St or agePol i cy. PREFER_DI SK)

* adaptive: table data will be stored in memory for small tables and on disk for larger ones
(St or agePol i cy. ADAPTI VE)

* sideways: table data will normally be stored in temporary disk files using a column-oriented
arrangement (St or agePol i cy. S| DEWAYS)

 discard: table data will normaly be thrown away, leaving only metadata
(St or agePol i cy. DI SCARD)

The default setting is equivalent to "adapt i ve".

You may aso give the name of a subclass of storagePol i cy which has a no-arg constructor, in
which case an instance of this class will be used as the default policy. See Section 4 for further
discussion.

See Section 4 for further discussion of storage policies.

A.9 startable.unmap

The startabl e. unmap property controls how memory-mapped buffers (MappedByt eBuf f er S) that
have been allocated by STIL are unmapped when it can be determined that they will no longer be
used. Specifically, it controls the implementation of the unmapper class that will be used. See the
implementation and comments in that class for further discussion. This is currently only used for
FITSinput, but it may be extended for other purposesin future versions.

Possible values are:

* sun: Best efforts unmapping based on available sun. ni sc classes, discovered by reflection.

* cleaner: Buffers are unmapped using non-J2SE classes including sun. nisc. d eaner,
discovered by reflection. Expected to work for java6 through java8.

* unsafe: Buffers are unmapped using non-J2SE classes including sun. misc. Unsaf e,
discovered by reflection. Expected to work for java9 and possibly later versions.

* none: No attempt is made to unmap buffers explicitly. They will be unmapped only when
garbage collected.

Y ou can aso use the classname of an unmapper implementation that has a no-arg constructor. If no
value is supplied, sun-like behaviour is used where possible, but it falls back to none if the relevant
classes are not available.

In general you are advised to leave this parameter alone. It is provided because the sun-like
unmapping is doing fundamentally inadvisable things, and although | think it's done in away which
will not cause problems, nasty consequences like JVM crashes are possible if 1've made mistakes,
SO it's a good idea to have a switch here that allows the dangerous behaviour to be switched off
(startabl e. unmap=none).

A.10 startablewriters

SUN/252 75

Thestartabl e. witers property provides additional output handlers which st ar Tabl eCut put can
use for writing tables. Its value is a colon-separated list of class names, where each element of the
list must be the name of a class on the classpath which implements the st ar Tabl ew i t er interface
and has a no-arg constructor. When a new st ar Tabl eQut put IS constructed, an instance of each
such named class is created and added to its handler list. Users of the library can therefore write
tables in the format that the new handler knows how to write to by giving its format name when
performing the write.

A.11 votable.namespacing

The vot abl e. namespaci ng property determines how XML namespacing is handled in VOTable
documents. It may take one of the following fixed values:

* none: No namespace handling is done. If the VOTable document contains xni ns declarations,
the parser will probably become confused. (Namespaci ng. NONE)

* lax: Anything that looks like it is probably a VOTable element is treated as a VOTable
element, regardless of whether the namespacing has been declared correctly or not.
(Narmespaci ng. LAX)

* strict: Only elements declared to be in one of the official VOTable namespaces are treated as
VOTable elements. If the VOTable document does not contain appropriate xm ns declarations,
the parser may not treat it asaVOTable. (Nanespaci ng. STRI CT)

Alternatively, the property value may be the fully qualified classname of an implementation of the
Namespaci ng class which has a no-arg constructor; in this case that class will be instantiated and it
will be used for VOTable namespace handling.

If no value is given, the default is currently 1 ax handling. In versions of STIL prior to 2.8, the
behaviour was not configurable, and corresponded approximately to a value for this property of
none.

A.12 votable.strict

The votabl e. strict property determines whether VOTable parsing is done strictly according to
the letter of the standard. See Section 7.3.4 for details.

A.13 votable.version

The votabl e. versi on property selects the verson of the VOTable standard which output
VOTables will conform to by default. May take the values "1. 0", "1. 1", "1. 2" "1. 3" or. "1. 4". By
default, version 1.3 VOTables are written.

SUN/252 76

B Table Tools

Some user applications based on STIL are available in the following packages:

STILTS
STIL Tool Set, contains command-line tools for generic table and V OTable manipulation.

TOPCAT
Tool for OPerations on Catalogues And Tables, an interactive GUI application for table
visualisation and manipulation.

SUN/252 77

C Release Notes

STIL is released under the terms of the GNU Lesser Generd Public License
(http://www.gnu.org/copyleft/Igpl.html). 1t has been developed and tested under Sun's Java SE 8,
but is believed to run under other 8/1.8 or later versions of the Java SE.

An attempt is made to keep backwardly-incompatible changes to the public API of this library to a
minimum. However, rewrites and improvements may to lead to API-level incompatibilities in some
cases, as described in Appendix C.3. The author would be happy to advise people who have used
previous versions and want help adapting their code to the current STIL release.

C.1 Acknowledgements

My thanks are due to a number of people who have contributed help to me in writing this document
and the STIL software, including:

Alasdair Allan (Starlink, Exeter)
Malcolm Currie (Starlink, RAL)
Clive Davenhall (AstroGrid, RoE)
Pierre Didelon (CEA)

Peter Draper (Starlink, Durham)
David Giaretta (Starlink, RAL)
Paul Harrison (ESO)

Jonathan Irwin (10A)

Nickolai Kouropatkine (Fermilab)
Clive Page (AstroGrid, Leicester)
Chris Stoughton (Fermilab)

STIL iswritten in Java and contains code from the following non-Starlink libraries:

* Ant's Bzip2 compression/decompression code
» JCDFisused for reading CDF files

* JARROW isused for reading Feather files

* Snakeyaml isused for YAML parsing in the ECSV input handler
* JSON-javaisused for JSON I/O in Feather and ECSV handlers

C.2 Package Dependencies

STIL is currently available in severa forms; you may have the sti | . jar file which contains most
of the important classes, or a full starjava instalation, or a standalone TOPCAT jar file, or the
stil_jars. zi p file containing various packages in separate jar files, or in some other form. None
of these is definitive; different packages are required for different usages. If you are keen to prepare
a small class library you can identify functionality you are not going to need and prepare a class
library omitting those classes. In most cases, STIL classes will cope with absence of such packages
without falling over.

Thefollowing isalist of what packages are required for what functions:

uk.ac.starlink.table
uk.ac.starlink.table.formats
uk.ac. starlink.table.jdbc
uk. ac. starlink.tabl e. storage
uk. ac.starlink.table.text
uk.ac.starlink.util

Core table processing.

SUN/252 78

uk.ac.starlink.fits
FITS table processing.

uk. ac. starlink.votabl e
uk. ac. starlink. vot abl e. dom
VOTable processing.

uk. ac. starlink. vot abl e. soap
StarTabl e <-> VOTable seriadization/deserialization for use with SOAP RPC methods.
Moribund?

uk. ac. starl i nk. cdf
uk.ac. bristol.star. cdf
CDF table processing.

uk. ac. starlink. feat her

uk.ac. bristol.star.feather

uk.ac.bristol.star.fbs.*
Feather table processing.

uk. ac. starlink. ecsv
org.yam . snakeyam . *
ECSV table processing

uk. ac. starlink. pds4
gov. nasa. pds. *

PD$4 table processing

uk. ac.starlink.mrage
Mirage-format table output

org.json

JSON library used as part of Feather support.

uk.ac.starlink.table.gu
Graphical components for tables, mainly load/save dial ogues.

uk. ac. starlink.connect
org. apache. axi s. *
Generic code for browsing remote filespaces in load/save dial ogues.

uk.ac.starlink.astrogrid
org.astrogrid.*
Browsing MySpace remote filesystems in |oad/save dialogues.

uk.ac.starlink.srb
edu. sdsc. grid. *
Browsing SRB remote filesystems in load/save dial ogues.

C.3Version History

Version 1.0 (30 Jan 2004)
Initial public release.

Version 1.0-2 (11 Feb 2004)
e Added RowLi st St ar Tabl e.

Version 1.0-3 (12 Feb 2004)

e Considerably improved performance of inline (base64-encoded) BINARY/FITS table
parsing.

SUN/252 79

Version 1.0-4 (17 Mar 2004)

VOTable-derived StarTables now pick up parameters from INFO elements as well as
PARAM elements.

Text format output handler now by default outputs table parameters as well as the table
data and column metadata.

Version 1.1 (29 Mar 2004)

New ASCII format output handler can write tables in the same text-based format used by
the ASCII input handler.

Joi nSt ar Tabl e can now deduplicate column names.

New class Concat St ar Tabl e permits adding the rows of one table after the rows of
another.

Version 1.1-1 (11 May 2004)

Improved PostgreSQL compatibility

Version 2.0 (20 October 2004)
Version 2.0 isamajor revision incorporating some non-backwardly-compatible changes to the
public API. The main differences are as follows.

RowSequence interface modified

The RowSequence interface has been modified; a new cl ose method has been introduced,
and the old advance() and get Rowi ndex() methods have been withdrawn (these latter
were not very useful and in some cases problematic to implement).

Setter methods added to Star Table interface

The methods set Nare() and set URL() have been added to the St ar Tabl e interface.

Pluggable storage policies

The st or agePol i cy class was introduced, which allows you to influence whether cached
table data are stored in memory or on disk. This has led to backwardly-incompatible
changes to public interfaces and classes. makeSt ar Tabl e NOw takes a new St or agePol i cy
argument, and VOEI enrent Fact or y's methods are now instance methods rather than static
ones.

Input table format now either specified explicitly or detected automatically

The St ar Tabl eFact ory class's makeSt ar Tabl e methods now come in two flavours - with
and without a format name. This corresponds to two table reading modes: named format
mode and automatic format detection mode. In named format mode you specify the
format of the table you are trying to read and in automatic format detection mode you rely
on the factory to work it out using magic numbers. Although automatic detection works
well for VOTable and FITS, it's poor for text-based formats like ASCII and CSV. This
has resulted in addition of some new two-argument nakeSt ar Tabl e methods and the
withdrawal of the getBuilders method in favour of two new methods
get Def aul t Bui | ders and get KnownBui | ders (Similarly for setter methods) which deal
with the handlers used in automatic detection mode and the ones available for named
format mode respectively. Note that the ASCII table format is not automatically detected,
so to use ASCII tables you now have to specify the format explicitly.

VOTable parsing over hauled

The voEl ement class has been rewritten and now implements the DOM El enent interface.
This means that the hierarchical structure which you can navigate to obtain information
about the VOTable document and extract table data actually is a DOM rather than just
being sat on top of one. Y ou can therefore now use it just as a normal DOM tree (making
use of the methods defined in the or g. wac. dominterface, interoperating with third-party
components which require a DOM). This has had a number of additional benefits and

SUN/252 80

conseqguences:

 VOTable handling now fully meets version 1.1 of the VOTable standard. This
includes full 1D/ref crossreferencing (e.g. a TABLE element obtaining its structure
by reference to a previously defined one) which was absent in previous versions.

» VOTable processing is now independent of Java version; in previous versions it
failed on J2SE1.5/5.0 due to absence of some Crimson parser classes.

* TheVCEl enent Fact ory class now has instance methods rather than static methods.

* By instaling a st or agePol i cy. DI SCARD into a VOEI enent Fact ory it IS now possible
to obtain a data-less (structure only, hence minimal resource) VOTable DOM.

TableSink interface modified
Some Tabl eSi nk methods now throw exceptions.

Comma-Separ ated Value format supported
There are now CSV input and output handlers. The input handler is not by default
installed in the st ar Tabl eFact ory's list for automatic format detection, but CSV-format
tables can be loaded using named format mode. The format is intended to match the
(widely-used) variety used by Microsoft Excel amongst others (with optional column
names).

New 'FITS-plus format introduced

Handlers are introduced for avariant of FITS called 'FITS-plus. ThisisaFITSfilewith a
BINTABLE extension in HDU#1 as usual, but with the VOTable text containing its
metadata stored in a byte array in the primary HDU. This means that the rich VOTable
metadata are available when reading it with a matching input handler, but it looks like a
perfectly normal FITS table without the metadata when read by a norma FITS-aware
application. This is now the format in which FITS tables are written by default (unless
you choose the format name "basi c-fits").

ASCII-format input handler improvements

* Now runsin limited memory, but requires two passes of stream (data caching as per
current St or agePol i cy).

* Now uses short /Fl oat typesin preferenceto I nt eger /Doubl e if the input data make
this appropriate.

* Now preserves negative zero values (often important for sexagesmal
representations).

* Now understandsd or D as an exponent letter aswell ase or E.

* A 'l'character in column 1 is now understood to introduce a comment line.

Table matching
There have been several changes including performance enhancements and improved
functionality in the table matching classes in the package uk. ac. st arl i nk. t abl e. j oi n..
These work and have full javadocs, but they are still experimental, subject to substantial
change in future releases, and not documented properly in this document.

Null handling improvements
There is now a mechanism for flagging the magic value you would like to use when
encoding nulls in an integer output column (NULL_VALUE_I NFO) Nulls in FITS and
VOTable/FITS tables are now preserved correctly on output.

Miscellaneous
There have been a number of miscellaneous improvements and bugfixes in various parts
of the library, including the following:

* FITSfiles now store column descriptionsin Tcowwk headers.

* A type-trandation bug in the JDBC handler has been fixed, so that it now works with
PostgreSQL (and possibly other JIDBC implementations).

* New class Enpt ySt ar Tabl e added.

SUN/252 81

Version 2.0-1 (October 2004)

» Fixed bugs related to reading streamed (rather than mapped) FITS tables
* Fixed abuginVOTable 1.1 schema namespace declaration on output

Version 2.0-2

» Better documentation (Section 7.1) and facilities for manipulation of VOTable FIELD
attributes from st ar Tabl e object

Version 2.0-3

» Fixed two more bugs in VOTable 1.1 namespace declaration on output; output elements
were being declared in the unnamed namespace rather than the VOTable 1.1 one, and the
VOTable schema location was wrong. Both of these errors arose from the fact that the
example VOTable in the recommendation document was declared in a wrong/misleading
fashion.

» Added architecture cartoon to SUN/252.

Version 2.1 (4 February 2005)
Some of the public interfaces have been modified in backwardly incompatible ways at this
release. However, it is not expected that much user code will need to be changed.

RequireRandom flag in Star TableFactory
The want Random flag has been changed in name and semantics to requi r eRandom in
St ar Tabl eFact ory. When set, any table returned from the factory is now guaranteed to
have random access.

Table output to streams
St ar Tabl ecut put Now has a new method wri t eSt ar Tabl e which writes a table to an
Qut put St reamas Well as the one which writes to alocation string (usually filename). This
is supported by changes to the writeStarTabl e methods which Star Tabl eWiter
implementations must provide.

Tableload dialogue

The uk. ac. starlink.table.gui.StarTabl eChooser table loader dialogue has been
improved in several ways. Loading is now done asynchronously, so that the GUI does not
lock up when a long load is taking place (a load cancel button can be pressed).
Additionally, custom load dialogues have been made pluggable, so that you can add new
load sub-dialogues by implementing Tabl eLoadDi al og (most likely subclassing
Basi cTabl eLoadDi al og) and nhaming the classin the st art abl e. | oad. di al ogs property.
A dialogue for browsing AstroGrid's MySpace remote filestore is available, but for
reasons of size STIL is not by default packaged with all the classes required to make it
work (AXI1S and the CDK are missing).

Star Table parameter method
A new utility method set Par anet er has been added to the st ar Tabl e interface.

BeanStar Table
A new StarTable implementation, BeanSt ar Tabl e which can store Java Beans has been
introduced. Thisis handy for storing arrays of objects of the same kind without having to
write a custom table implementation.

Undeclared character arraysi ze workaround
A workaround has been introduced to cope with a common error in VOTable documents
in which FIELD elements for string values lack the required arraysi ze attribute; by
default it is now assumed to have the value "*" rather than "1" as the standard dictates.
See Section 7.3.4.

Minor changes

SUN/252 82

* LINK elements can now be added to FIELDs in a VOTable on output by adding a
suitable URL -type metadatum to the corresponding Columninfo.

 Temporary files are now deleted by finalizers (may lead to better reclamation of
temporary file space during operation).

* Fixed abuginVOTable parsing when TD elements were empty.

* V1.1VOTable tableswritten now contain the declaration

xsi :schemalLocati on="http://ww.ivoa. net/xm /VOrabl e/vl.1
http://ww.ivoa. net/xm/VOTabl e/v1. 1"

instead of

Xsi : noNanmespaceSchemalLocati on="http://ww. i voa. net/xmn / VOTabl e/ v1. 1"

(thanks to Paul Harrison for suggesting this correction).

Version 2.2 (17 March 2005)
New tool:

t pi pe command introduced
The tpipe command has been tentatively introduced at this release. This useful
command-line tool is experimental and may undergo major changes or be moved to a
separate package altogether in future releases.

There have been changes to some of the main interfaces:

RowSequence hasNext withdrawn
The hasNext () method has been withdrawn from the RowSequence interface and the
next () method, which used to be declared voi d, now returns bool ean indicating whether
there is another row. Thisis quite likely to break existing code, but the fix is easy; simply

replace:
RowSequence rseq = tabl e. get RowSequence();
while (rseq. hasNext()) {
rseq. next();
| c.
with

RowSequence rseq = tabl e. get RowSequence();
while (rseqg.next()) {

}

TableBuilder streaming
A new method streanttar Tabl e has been added to the Tabl eBui | der interface to
provide improved support for table streaming.

GUI table chooser s changed
There have been severa changes in the wuk.ac.starlink.gui package.
St ar Tabl eChooser and St ar Tabl eSaver have been replaced by Tabl eLoadChooser and
Tabl eSaveChooser, and these both now use a graphical widget which can view files in
remote filestores (such as MySpace and SRB) if the relevant classes are present.

Minor changes:

SUN/252 83

Added Tabl es. sort Tabl e method.

Added Expl odedSt ar Tabl e.

Added Concat St ar Tabl e.

VOTables now write ar r aysi ze="1" explicitly for scalar character fields.

VOTable BINARY input handler refuses to attempt reading assumed-size character
fields.

Severa bugfixes in JDBC output handler for writing new SQL tables;, now writes String
(VARCHAR) fields, better NULL value handling, avoids some SQL reserved words for
column names.

Better NULL value handling for some text-like output formats.

Version 2.3 (29 April 2005)

New streaming convenience method introduced on StarTableFactory.

New Axisbased sStarTable<->VOTable seridizer/deserializer classes in
uk. ac. starlink. vot abl e. soap package.

New Tabl eCont ent Handl er class provides table-aware SAX processing of VOTable
document streams.

Improved documentation of storage policiesin SUN/252.

Missing ar r aysi ze attribute for character fieldsis now interpreted by default according to
the VOTable standard rather than by default being worked around - i.e. an unspecified
vot abl e. strict System property now counts as true rather than false. Thisis the reverse
of the behavioursin versions 2.1 and 2.2. See Section 7.3.4.

Now overwrites existing tables when attempting to write tables to SQL database if atable
of the same name already exists.

Fixed PostgreSQL bug - can now write String columns correctly.

t abl ecopy command deprecated and t pi pe withdrawn - these are now available within
the new package STILTS.

Version 2.3-1 (30 June 2005)

Added convenience methods writel nlineTabl eEl enent, writeHref Tabl eEl enent to
VCSeri al i zer.

Fixed abug in vost ar Tabl e parameter setting.

Fixed a bug in Concat St ar Tabl e which was leading to ClassCastExceptions when used
sequentialy.

Version 2.3-2 (30 September 2005)

Some changes to Rowivat cher class.

Fixed some bugsin the VOTable DOM implementation connected with nul I values.
MatchEngine now returns metadata on match scores.

The string "nul 1 " (unquoted) in ASCII input handler isinterpreted as a blank entry.

Fixed bug in ASCII input handler which misidentified blank lines, or DOS-format line
ends, as end of file.

Version 2.4 (10 May 2006)
The following API change has taken place:

New method st ar Tabl ew i t er. get M meType has been introduced.

Additionally, there are the following minor improvements and bugfixes:

Now copes with 'K'-format FITS binary table columns (64-bit integers).

Added IPAC Table Format input handler.

Added noheader option to CSV output format.

Added rar k. wor kar ound System property.

Blank values in boolean columns are now handled as null rather than false (changes to
FITS handlers, VOTable handlers and cell renderer).

SUN/252 84

» Fixed bug which was writing some integer null values as empty TD elements (illegal) -
now uses magic bad value where available.

* CSV & ASCII input handlers now (try to) detect sexagesimal and 1SO-8601 format data
columns and mark the unit string appropriately.

» Fixed bug writing unclosed LINK elementsin output VOTables.

Version 2.5 (7 July 2006)

» Support for new column-oriented FITS file format (Section 3.6.2, Section 3.7.2).

* New StoragePolicy SIDEWAY S storage (Section 4.1).

 FITSPLUS files now only recognised if VOTMETA header card has the value "T", not
justif itis present.

* Increased the maximum field width written by text and (especially) ascii output
handlers.

* TUCDnNNn header cards now used in FITS files to transmit UCDs (non-standard
mechanism).

Version 2.6 (3 August 2006)

* Replaced Rowst epper class by RowSequence in vot abl e package. As well as being a bit
tidier, this improves efficiency considerably for column-oriented access in some cases
(esp. fits-plug/coalfits-plus).

o Dramatically improved efficiency of fits-plus & (especialy) col fits-plus format
access in some situations (related to above point).

* colfits-basic format isnow auto-detected.

* Added TST (tab-separated table) input and output handlers.

» Efficiency improvements for column-oriented access.

Version 2.6-1 (Starlink Hokulei release)

* Modified and extended JpBCFor mat t er API for more flexible use with creating tables in
RDBMS.

* Modified presentation of HTML version of SUN/252 using CSS.

» Fixed bug in handling of single quotesin FITS file metadata.

Version 2.6-2 (23 July 2007)

* Add new exception Unr epeat abl eSequenceExcept i on.

e Add new classes Sequential Resul t Set Star Table and RandonResul t Set St ar Tabl e
which are st ar Tabl e implementations built directly on JDBC Resul t Set objects.

* Joi nFi xActi on interface and implementation changed. Now better at deduplicating the
names of joined tables.

* Fix error in output of FITS table TNULL n header cards - write them as numeric not string
values.

* Improve error message for broken CSV files.

Version 2.6-3 (4 Sep 2007)

e Added get Ut ype and set Ut ype utility methods.

* Added Rowpi pe interface and implementations and new cr eat eCut put Si nk methods in
St ar Tabl eCut put .

* FITSfiles now read/write Utypes using TUTYPnn header cards.

Version 2.6-4 (30 Oct 2007)
* Minor changes to interface and implementation of RowPi pe and OnceRowPi pe.

Version 2.6-5 (6 Dec 2007)
* Improvements and modifications to crossmatching functionality in

SUN/252 85

uk. ac. starlink.tabl e.j oi n, including multi-pair join.

* FITSreader now imports table HDU header cards as table parameters.

» Embedded spaces in output ASCII format table column names are now substituted with
underscores.

* Added quoting of SQL identifiers for JDBC statement execution.

Version 2.6-6 (28 Jan 2008)

* Downgraded from WARNING to INFO log messages about the (extremely common)
VOTable syntax error of omitting a FIELD/PARAM element's dat at ype attribute.

* Avoid some truncations of double (and float?) fields in t ext -mode output (may result in
longer fields too).

Version 2.6-7 (4 Apr 2008)

* Some missing classesreinstated in the stil.jar file.
* Minor changes to matching classes.

Version 2.7 (19 Aug 2008)
* Variable-length arrays are now mostly supported for FITS binary tables:

* Columns with TFORM cards containing the ‘P or 'Q' data type descriptors will be
read correctly for FITS BINTABLE extensions read from random access sources
(which basically means from disk). Tables read from a sequential-only stream will,
as before, fail to read variable length array-valued columns.

* Thenew Vari abl eFi t sTabl ewiter TabléWriter implementation can write tablesin
which variable-length columns are represented in the FITS BINTABLE extension by
columns with the 'P or 'Q’ data type descriptors.

* New method makeByt eSt or e introduced in class St or agePol i cy.

e Various Val uel nfo keys for FITS-specific column auxiliary metadata items are now
available as static members of Bi nt abl eSt ar Tabl e.

» Fixesto JDBCFor mat t er - safer checks on column and table name syntax.

» Sexagesimal field identification for ASCII input files less stringent (now permits minutes
or seconds equal to 60).

* HEALPIx bug fix (PixTools bug fix update).

 Take more steps to use StoragePolicy when loading JDBC tables, avoiding some
JDBC-driver-based out of memory issues.

Version 2.7-1 (27 Mar 2009)

* More careful header consistency checks in fits-plus files - corrupted/modified fits-plus
less likely to generate errors.
* FitsBINTABLE TZERO/TSCAL value reading improvements:

* Columns with integer TZERO values now read as integers rather than floating point
values where possible. This includes unsigned longs ('K"), which were previously
represented as doubles with lost precision. Unsigned longs which are too large
however (>263) areread asnulls.

 It's now configurable whether byte columns are written as signed bytes
(TFORM=B,TZERO=-128) or as signed shorts (TFORM=1I).

* More comprehensive testing.

» Fixed bug in calculating value scaled double ('D") values.

» Fixed bug in typing value for scaled float ('E’) arrays.

* The fixed length Substring Array Convention for string arrays (TFORMhn=r Aw) iS nOwW
understood for FITS binary tables.

Version 2.7-2 (17 July 2009)

SUN/252 86

VOTable xtype and ref column attributes can be read and written by use of suitable
Columninfo aux data keys, defined as static members of VOStarTable.

Version 2.8 (2 Oct 2009)

VOTable namespace handling has been improved. Previously VOTable documents with
xm ns namespacing declarations were mostly rejected by STIL. Now the behaviour is
configurable.

* A new class Nanespaci ng is introduced which takes care of pluggable namespace
handling.

» The default is now lax handling; anything that looks like it is probably a VOTable
element is treated as such. This means that documents both with and without xmins
declarations should work. The behaviour of previous versions was approximately
that corresponding to none.

* A new system property votable.namespacing has been introduced to control
behaviour from outside the JVM.

* New VOElement methods get El ement sByVOTagNane and get VOTagNarme have been
introduced for convenience of use of elements in the VOTable namespace.

e The semantics of the VOElement methods get Chi | dByNane and get Chi | dr enByNane
are slightly changed (now return only elements in VVOTable namespace.

VOTable 1.2 is now supported. The supported version is the PR 2009-09-29, which is not
expected to differ significantly from the REC when it is approved. Support for versions
1.0 and 1.1 isunaffected. API changes are:

* Fiel drRef El ement and Par anRef El enent have new get Ucd and get Ut ype methods.
* Fiel dEl ement has new get Xt ype method.

Be more careful in XML, including VOTable, output; fix VOTable output encoding to be
UTF-8, and ensure no illegal XML characters are written.

HTML table output isnow HTML 4.01 by default (includes THEAD and TBODY tags).
Work around illegally truncated type declarationsin IPAC tables.

Bug fixed in crossmatching output: entries which should have been null were sometimes
written as non-null (typically large negative numbers) in FITS and in non-TABLEDATA
VOTable output. This affected cells in otherwise non-nullable columns where the entire
row was absent. The previous behaviour is not likely to have been mistaken for genuine
results.

Versions 2.9*x
STIL versons 2.9x, 2.9-1x, 2.9-2x, 2.9-3x did not get a public release, since the
backwardly-incompatible changes they contained were not stable, but were present in some
versions of TOPCAT and STILTS. Details of what changed in which of these versions are
only available by examining relevant versions of the XML sources for SUN/252 (sun252.xml)
in the version control system. All the changes are amalgamated into version 3.0.

Version 3.0 (23 December 2010)
This major release contains some new capabilities and some backward incompatibilities with
respect to the previous public release, version 2.8. The magjor changes are in the following

areas.
* Multipletable read (new capability)
* Multiple table write (new capability)
» GUI load/save dialogues (major overhaul)

New Adaptive storage policy as default

Anyone implementing a table read handler, write handler, load dialogue or save dialogue will
need to make some adjustments since the relevant interfaces have changed. Anyone using the
GUI load dialogue classes in package uk. ac. starlink. tabl e. gui (asfar as| know, nobody

SUN/252 87

apart from me is) will require significant rewriting. Other users of the library will probably
find no or only minor issues if compiling against the new version. In most cases significant
changes will be marked by compilation errors rather than silent changes in behaviour. The
exception is use of the new Adaptive storage policy which is now the default; this change is
expected to be beneficial rather than problematic in most cases.

If you experience any difficulties in upgrading from a previous version to this one, please
contact the author, who will be happy to advise or assist.

The changes in more detail are asfollows:
Multiple table read:

* New Ml tiTabl eBui | der interface which Tabl eBui | ders may implement if they
know how to load multiple tables from the same source. The FITS and VOTable
handlers now implement this.

* Three new nmkeSt ar Tabl es methods added to StarTableFactory. These return a
Tabl eSequence Which contains multiple tables. Multiple tables are only a possibility
if the relevant handler implements the new mul ti Tabl eBui | der interface (of the
supplied handlers, FITS and VOTable).

o StarTableFactory methods nakeSt ar Tabl e(URL) and makeSt ar Tabl e(URL, Stri ng)
are deprecated. They are very thin utility wrappers around existing methods which
may be replaced easily in caling code using the URLDat aSource class. These
methods may be removed in afuture release.

Multiple table write:

* New interface Mul ti St ar Tabl eW it er, which extends St ar Tabl ew i t er, for output
handlers which can write multiple tables to the same container. Corresponding
methods added to St ar Tabl eQut put .

* MultiStarTableWriter is implemented for most variants of the FITS and VOTable
output handlers, to generate multi-extension FITS and multi-TABLE VOTable
outputs respectively. Implementations for some other output handlers generating
output that may not be machine-readable as a multi-table file are provided as well.

GUI load/save dialogues:
There have been substantial changes to the GUI load framework, mainly to support
multiple table load and non-modal load dialogues. The main interface is till called
Tabl eLoadDi al og, but its definition has changed considerably. See the javadocs for
details.

The save dialogue framework has also undergone some incompatible changes to support
writing of multiple files, though these are less dramatic. There are backwardly
incompatible effects on the APIs of Savewsrker, TableSaveChooser and
Tabl eSaveDi al og and itsimplementations.

Storage policies:

* New StoragePolicy ADAPTI VE, which effectively uses memory for relatively small
tables and scratch disk files for relatively large ones. The intention is that for most
purposes this can be used without the user or the programmer having to guess
whether small or large tables are likely to be in use. The implementation makes use
in some circumstances of direct byte buffer allocation (=nal | oc()), which means
that the size of the controlling java process can grow beyond the size of the
maximum specified java heap. The Adaptive storage policy isthe new default.

* Added method t oByt eBuf f er s t0 Byt eSt or e Class.

* Implementation changes in Disk storage policy to reduce memory footprint.

Other:

SUN/252

88

o Library now distributed as zip of jars (stil_jars.zip) as an aternative to
monolithic jar file (stil.jar). This may be more appropriate for those using the
library in aframework that contains other third party class libraries.

* VOTabl eBui | der. makeSt ar Tabl e now works in a streaming fashion. This should be
much faster in the case of a VOTable document containing many TABLE elements.
There is a possibility that behaviour will change dlightly (some post-positioned
INFO/PARAM elements may not get picked up, tables may be successfully loaded
from invalid XML documents) - | don't believe these are likely to cause trouble, but
please aert meif you disagree.

* Updated VOTable 1.2 schemato final version (elementFormDefault="qualified").

* New attribute Utype for val uel nfos. Vauelnfo has new method get U ype,
DefaultValuelnfo has new method setUtype, and Tabl es. get/set Utype iS
deprecated.

* FITS files now store table names in EXTNAME (and possibly EXTVAR) header
cards.

* Added configurable JDBC type conversion framework for reading results from SQL
queries. By default JDBC results with Date-type contents will now be turned into
String values, but this can be configured by supplying a custom TypeMapper .
Previoudly they were left as Date-type objects, which meant that without special
attention they could not be written by general-purpose table output handlers.

» Better behaviour (warn + failover) when attempting to read large files on 32-bit OS
or VM.

« VOTable PARAM output now works out nullability and unspecified array and
element size values from the data rather than leaving them as unspecified.

» Thewant Randomparameter of Tabl eBui | der . makeSt ar Tabl e has been deprecated in
the documentation.

» Fixed an obscure bug which could under rare circumstances cause truncation of
strings with |eading/trailing whitespace read from text-format files.

* Fixed bug in TST table outpuit.

 Fixed bug in CSV file parsing that could ignore header row in absence of
non-numeric columns.

» Fixed minor bug in CSV file parsing which ignored first row in no-header CSV file
when calculating column Element Size values.

Version 3.0-1 (9 May 2011)

Random Groups HDUs are now tolerated, though not interpreted, within FITSfiles.
JDBC table input handler now effectively downcasts Biglnteger/BigDecimal types to
Long/Double. The PostgreSQL JDBC driver seems to use the Big* types routinely for
numeric values (which | don't think it used to do).

Add get Lengt h method to Byt eSt or e interface.

Add workaround for J2SE bug #4795134, which could cause errors when reading
compressed FITSfiles.

Fix FITS character handling bug which could cause corrupted FITS files on output in
presence of non-ASCII characters.

Version 3.0-2 (30 June 2011)

Fixed a significant crossmatching bug in SkyMatchEngine. If all pointsin atable were on
one side of the RA=0 line, but the error radius extended across that line, matches on the
other side could be missed. Matches could also be missed if different tables used different
conventional ranges for RA (e.g. -180..180 in one case and 0..360 in another). This fix
may in some, but not most, cases result in slower matching than previously.

Added new public class vorabl eDOVBui | der which provides a SAX Cont ent Handl er
implementation with similar functionality to VOEI enent Fact ory.

SUN/252 89

Version 3.0-3 (27 October 2011)

PARAMref with no referent no longer causes uncaught NullPointerException.

Version 3.0-4 (17 December 2012)

Support for VOTable version 1.3 is now implemented. When reading version-1.3
VOTables, empty TD elements, indicating null values, are permitted for all data types, and
the new BINARY 2 serialization format is supported. When writing version-1.3 VOTables
in the TABLEDATA seridization format, empty TD elements are used rather than
marking magic values with the VALUES/nul | attribute.

Selection of VOTable version for output is now done on a more configurable basis; see
the new subsection Section 7.4.4.

VOTable output no longer writes schemal ocation attribute by default.

Infinite values are now encoded correctly in VOTable output ("+Inf"/"-1nf", not
"Infinity"/"-Infinity").

The VOTable MIME type is now parameterised with the (standard, VOTable 1.3)
parameter "seriaization” rather than the (non-standard) parameter "encoding” to indicate
serialization type (TABLEDATA, BINARY etc)

You can now reference tables in multi-extension FITS files by name (EXTNAME or
EXTNAME-EXTVER) as an aternative to by HDU index.

IPAC output format is now supported.

IPAC format "I ong"/"I " column type, which has apparently now become official, is now
accepted in input without warning.

IPAC headers may now use minus signs instead of whitespace.

Now copes with 1-column CSV files.

Fix bug which failed when attempting to read FITS files with complex array columns
(TFORVh=r C/ r M).

Fix integer arithmetic bug in Fi | eByt eSt or e Which failed when attempting to cache very
large (multi-Gb) buffers.

Fix serious and long-standing bug (bad TZERO header, causes subsequent reads to fail)
for FITS output of boolean array columns.

Version 3.0-5 (1 July 2013)

Add read-only support for CDF (NASA Common Data Format) files.

Fix CSV regression bug introduced at v3.0-4 - CSV files now work again with
MSDOS-style line breaks.

Fixed FITS output bug which could result in badly-formed string-valued header cards (no
closing quote).

Version 3.0-6 (4 July 2014)

Move get Cel | Render er method out of val uel nf o interface, and get Cel | Edi t or out of
Def aul t Val uel nf 0. Those methods never belonged there.

Add get Domai nMapper s method to val uel nf o.

Fix TST input handler so TST files with fewer than 3 columns can be read.

Removed the (GPL) LICENCE.txt file from the distribution. The software is to be
considered as LGPL.

Version 3.0-7 (3 October 2014)

Add support in package uk. ac. starlink. table.gui for displaying table models up to
2731 rows (larger than 2°27) in a JTable.

Attempting to write FITS tables with >999 columns now fails with a more helpful error
message.

Improved Unicode handling in VOTables. Fixed a serious bug in VOTable BINARY or
BINARY2 output which generated unreadable output if any non-empty column had

SUN/252 90

datatype="unicodeChar". Round-tripping VOTables will now aso preserve datatype
unicodeChar, rather than squashing the type to char (the serializer tests for a column aux
metadata item of VOStarTable DATATYPE_INFO with value "unicodeChar"). Some
lurking Unicode-related issues remain.

Version 3.0-8 (13 November 2014)

* Add (experimental) read-only support for Gaiadl DPAC GBIN format.
* Add utility codetot abl e. j dbc. TypeMapper s for convenience of JDBC export when you
need a'T' separator in Timestamp | SO-8601 serializations.

Version 3.0-9 (6 Feb 2015)

* Reworked part of the FITS input implementation, in particular adjusting the way memory
mapping is done to reduce resource requirements on some platforms. If you notice any
difference, it should be reduced virtual and perhaps resident memory usage, and some
(~10%7?) performance improvements, when reading large FITS/colfits files. If you were
having problems with large memory allocations leading to disk thrashing and system
lockup when scanning files larger than RAM (this didn't happen on all OSes), these will
hopefully have gone away. However, please report anything that appears to be working
worse than before, or continued memory usage issues.

» Colfits files can now be accessed from streams, not just uncompressed disk files (though
that's not necessarily agood idea).

» Fixed error in fitsvar output (PCOUNT header card did not include block alignment
gap).

* Add ahack that allows LDAC FITS tables to be treated sensibly in auto-format-detection
mode.

+ StarTable columns from VOTable FIELDs with unknown (illegal) datatypes are now
interpreted as String rather than String[] types. This is much more sensible and avoids
some serious problems when serializing to FITS.

* Add experimental onceRowpPi pe2 Utility class.

Version 3.0-10 (26 Feb 2015)

 Work round nom.tam.fits read bug that could cause EOFExceptions when reading
VOTables with the inline FITS serialization, and possibly elsewhere. The symptoms
appear to be new since v3.0-9, but could have caused problems el sewhere before that.

* An auxiliary metadata item Tabl es. UBYTE_FLAG | NFO is now available to mark columns
representing unsigned byte values. This is set on input and respected on output by the
VOTableand FITS /O handlers (and on input only for CDF).

Version 3.0-11 (14 April 2015)

* Remove (broken and useless) signatures from jar filesinstil _j ars. zi p distribution file.

» Belessdtrict about recognising colfits files (tolerate implicit TDIMn headers).

* New system command option input table syntax; you can now use “"<syscmd" Or
"syscnd| " to supply input byte streams from Un* X pipelines.

Version 3.0-12 (10 Jul 2015)

* Fix serious bug in time conversion for CDF TIME_TT2000 data types.
* Update JCDF library to v1.1 (minor changes to do with leap seconds).
* Modify the heuristics that determine whether the first row of a CSV fileis aheader.

Version 3.0-13 (17 Aug 2015)

* Fix aserious bug in processing of FITS bit vector (TFORVh='r X') columns. Values read
from these columns are presented as a bool ean[] array. In all previous versions of STIL
the bits have appeared in that array in the wrong sequence (LSB..MSB per byte rather

SUN/252

91

than the other way round). Apologies to anyone who may have got incorrect science
results from this error in the past, and thanks to Paul Price for helping to diagnose it.

Fix aless serious bug with TFORVh="r X' processing; attempting to read a single-element
bit vector column (TFORMh=1X or X) previously resulted in an error making the file
unreadable. Values read from such columns are now presented as Boolean scalars.

Fix a VOTable reading bug relating to similar data (dat at ype="bit") appearing in
BINARY/BINARY 2 serializations. This one was more obvious, it would usually generate
an error when attempting to read the file. Since this bug has been present for ever, |
assume that bit vectorsin binary-encoded VOTables are not widely used.

Version 3.0-14 (22 Oct 2015)

Fix broken assertion; when reading multi-buffer (large) FITS files with assertions
enabled, there was a spurious AssertionError.

Upgrade to JCDF v1.2 - fixes aread failure when reading large (multi-Gb) CDF files.
Adjust GBIN input handler: avoid descending into Class-typed members of gbin list
objects, add logging for object->column tranglations, and improve configurability.
VOTable DOM getParentNode implementation adjusted; | think it's more correct now,
and this may make the VOTable DOM behave better with X Path.

Version 3.1 (27 Nov 2015)

Fix a long-standing crossmatch range-restriction bug in uk.ac.starlink.table.join
classes. This could have caused missed associations (but not false positives) near the edge
of coverage regions when using per-row errors, if the scale of the errors differed
(especially differed significantly) between the matched tables. It affected MatchEngines
ErrorCartesianMatchEngine, ErrorSkyMatchEngine, EllipseCartesianMatchEngine and
EllipseSkyMatchEngine. Thanks to Grant Kennedy (I0A) for reporting this bug.

There is a change in the signature of the mat chEngi ne. get Mat chBounds method. This
change is backwardly incompatible (hence the minor version number update), but | don't
think anybody else is using this API directly, so hopefully the impact on users will be
low.

Try harder to identify epoch columns (suitable for time plot), in particular look for
VOTable xt ype of JD or MJD, and uni t s of year.

Version 3.1-1 (10 Jun 2016)

This and subsequent releases target Java SE 6, so can no longer be used to build Java 5
compatible applications or run under the (now very ancient) Java 5 runtime.

Fix bugs that led to timezone-dependent results when reading 1SO-8601 or decimal year
time columns.

Fix numeric field truncation bug in LaTeX table output.

Fix read failure for FITS fileswith non-blank TDIM for zero-length columns.

Version 3.1-2 (13 Sep 2016)

The GBIN input handler can now pick up more metadata from the classpath. For suitable
tables, metadata included in datamodel classes if present can be interrogated to provide
table and column descriptions and UCDs. There are still some deficiencies of this
functionality (no column order, utypes and units missing, large file "temp.xml" written to
current directory) dependent on issuesin the upstream Gaialibraries and ICD.

Fix bug that caused read failures for large (>0.5Gb) FITS files outside of current directory
on 32-bit JVMs. Thiswas aregression bug since v3.0-9.

Fix long-standing bug in Fi t sTabl eBui | der that failed to close streams (hence release
file descriptors) when opening FITS tables. Also implement java.io.C oseabl e in
Bi nt abl eSt ar Tabl e and Col Fi t sSt ar Tabl e to allow explicit release of file descriptors.
Update JCDF library to v1.2-2 (2017-01-01 leap second).

SUN/252 92

Version 3.2 (8 Mar 2017)

Add a new method get ScoreScal e() to the uk. ac. starlink.tabl e.joi n. Mat chEngi ne
interface. This is required to support reasonable behaviour for Best matching of
Conbi nat i onMat chEngi nesS. It is a backwardly-incompatible change, but I'm not aware of
Mat chEngi ne implementations outside of the starjava codebase, so | doubt if it will cause
trouble.

Version 3.2-1 (29 Sep 2017)

A non-standard convention has been introduced which allows all the FITS-based I/O
handlers to use FITS BINTABLE extensions for tables with more than 999 columns. See
Section 3.8.2. In earlier versions, attempting to write such wide tablesto a FITSfile failed
with an error.

FITS headers using the ESO HIERARCH convention are now recognised on inpuit.
Previously they were ignored.

The VOTable input handler now looks for coosys elements referenced from Fi ELD
elements and makes the relevant information available as column auxiliary metadata. The
relevant aux metadata keys are defined in the vost ar Tabl e class as COOSYS_* _I NFO.

The VOTable and FITS-plus output handlers now write and reference coosys elements in
output VOTables corresponding to the requirements of any Vost ar Tabl e.COOSYS_*_| NFO
aux metadata items attached to table columns (FI ELD elements). This means that
COOSYS information associated with table columns can be round-tripped during
read-write cycles that use VOTable-based serialization formats for both input and outpui.
Note though that it doesn't currently work for references from PARAMS.

The default version for output VOTables is now VOTable 1.3. New output formats
vot abl e- bi nary2-i nl i ne and vot abl e- bi nary2- href are now offered alongside the five
previously available VOTable variants.

The FITS-plus output handler now writes VOTables using the default output VOTable
version, as described in Section 7.4.4. Previously VOTable 1.1 was used.

Modified the thread-safe implementation of methods performing random data access
(getRow, getCell) to mapped byte buffers on ColFitsStarTable and
Bi nt abl eSt ar Tabl e. These now use ThreadLocal accessors for reads from the
underlying ByteBuffers rather than synchroni zed blocks. This performs much much
better in the case of heavy contention (random access to table data from multiple
concurrent threads) than before. There may be a small degradation in single-threaded
performance - tests indicate around 1-2%.

Add new method for creating a GBIN-like table from a collection of existing
GaiaRoot-like objects, without having to read them directly from a GBIN file. See
GbinStarTable.createCollectionTable.

Update PixTools to 2017-09-06 version (https://github.com/kuropat/eag-HEALPIX,
447a7be073876dba32). This fixes a bug in vect 2pi x_ri ng that gave the wrong value for
HEALPix tile index in one half of each tile straddling the longitude=0 line in the
equatorial region. It seems possible that this might have led to very infrequent missed
associations when crossmatching in these regions, but tests appear to indicate that no such
errors would actually have resulted.

Long fields (>10240 characters) in output CSV files are no longer truncated.

Version 3.2-2 (7 Nov 2017)

Add twesak to VOTable reader that discards any INFO elements with names starting
"uk. ac. starlink.topcat. pl ot 2. Topcat Layer ". This is a nasty workaround for a nasty
bug in TOPCAT v4.5, which added such metadata items in large numbers to tables that
were plotted and then saved.

Version 3.2-3 (13 Nov 2017)

SUN/252 93

e STIL classes should now build and run with recent versions (1.15.2, and probably |ater)
of the nom.tam.fitslibrary. It is still bundled with a custom nom.tam.fits (based on v0.96),
but replacing that with a recent version ought to work. Behaviour in that case is expected,
but not guaranteed, to be similar to using the bundled version.

Version 3.3 (24 Apr 2018)

* Update JCDF to v1.2-3; fixes some CDF reading bugs.

* ThelPAC table reader now matches data type specifications case-insensitively.

* Modify VOTable (Ml ti)Tabl eBui | der implementation; it now picks up more of the
DOM (everything up to the start of the next TABLE element, rather than just everything up
to the end of the current TABLE) when a table is read. This is important for picking up
Datal ink-style Service Descriptors.

* The VOTable I/O handlers can now de/serialise Datalink-style Service Descriptors.
These show up as Ser vi ceDescr i pt or -typed table parameters.

* |If you use a Columninfo as one of the parameters of a StarTable and seridise it to
VOTable, its AuxData will now be honoured, for instance to write VOTable-specific
PARAM attributes liker ef and 1 D.

* Multiple-table VOTable documents are now written with each table in its own
RESOURCE element, rather than al TABLES as siblings within the same RESOURCE
element. This is to enable grouping of Service Descriptor RESOURCE elements with
their associated TABLE. The output is unchanged for single-table VOTable output
documents. Hopefully this slight change of output format will not cause compatibility
problems with other software.

Version 3.3-1 (18 May 2018)

* VOTable seriaizer will now write attribute values in single quotes if they contain alot of
double quote characters.

Version 3.3-2 (2 Nov 2018)

« Slight improvements to the JDBC Configuration section of this manual.
* GBIN reading fix to work around changed behaviour in recent GaiaTools versions
(>=21.1.0 and >=20.3.0) that caused GBIN table reading to fail.

Version 3.3-3 (9 May 2019)

* Experimental support for VOTable 1.4 and its new TIMESYS element. This support
corresponds to WD-V OTable-1.4-20190403. The functionality may be modified in future
releases depending on how the VOTable 1.4 specification evolves.

» For VOTable columns that reference TIMESY S elements, the relevant information is
now accessble as column auxiliary metadata keyed by the
Vost ar Tabl e. TI MESYS_* | NFO Static members.

* Any columns referencing TIMESY S elements read from VOTable-based formats
(VOTable or FITS-plus) can now be written out to VOTable-based formats with
equivalent TIMESY S references included, so TIMESY S round-tripping for columns
works; however this will only be done if the VOTable output version is set to 1.4
(vorabl eVer si on =v14). By default (at least aslong as 1.4 is not finalised) the output
version is 1.3; it can be set either explicitly on output methods or globally as
documented in that class. Currently this TIMESYS output works only for table
columns (FIELDs) not parameters (PARAMS).

* New Ti nesysEl enent VOEl enent subclass and some associated methods.

* Columns referencing TIMESY S elements now provide a suitable Ti neMapper from
their get Domai nMapper s method.

* FIELD @ef attributes are no longer imported as REF_I NFO column aux metadata items,
since they often interfere with TIMESY S references. Doing this was probably always a

SUN/252 94

bad idea since the referencing is not kept track of within the application, so withdrawing
this functionality makes sense, but beware that it might change or break some existing
behaviour.

Various changes to support the semi-standard HEALPix-FITS serialization convention. A
new class Heal pi xTabl el nf o iS added to define metadata relating to a table containing
HEALPix pixel data. The FITS input and output handlers attempt to honour this
information on a best-efforts basis, and a new fit s- heal pi x output handler is provided
that tries harder to write HEALPix data tables conforming to the convention.

The signatures of some metadata access methods in the core classes have been redefined
to use generics. The altered methods, which previously used raw types, are
get Parameters(), getColumAuxDatalnfos() 1IN StarTable, and getAuxData(),
set AuxDat a(Li st <Descri bedVal ue>) in Col umml nf 0. These changes enforce behaviour
that was previously required by contracts stated in the javadocs. Because of the backward
compatibility features of generics this should not cause new errors at compilation or run
time as long as the methods were being used in accordance with the existing
documentation, but compilation warnings may change.

Artifacts comprising a Maven package for STIL-10 (the classes excluding the matching
capabilities) are now assembled as part of the build process.

Fix bug/misfeature in CDF table parameter construction: CDF global attributes were
ignored (with a "WARNING: Omitting complicated global attribute” message) if they
contained any null entries. Now such entries are just ignored and the table parameter is
constructed from the global attribute using the non-null entries.

Be abit more careful when writing FITS headers Tcowwn, TUCDn and TUTYPn if their value
may overflow the 80-character mark, including refusing to write them even if
nom-tam-fits long header support is switched on.

Adjust Pi peReader Thr ead implementation to work round occasional Debian-Astro build
failures.

Version 3.4 (18 November 2019)

Provide String-based support for offset (e.g. unsigned) 64-bit integersin FITSfiles. 64-bit
integer columns (TFORVh=' K') with non-zero integer offsets (TSCALn=1, TZEROn<>0) are
now read from FITS as Strings (see Section 3.6.1), and such Strings can be written to
FITS as long integers (see Section 3.7.1). In previous versions an attempt was made to
represent in-range values as Javalongs, using a null value for out-of-range values.

Avoid sometimes losing precision when reading ASCII/CSV vaues in the range
+/-(1e-38..1e-45).

Permit FITS and VOTable files with zero-length string columns. Previously all-null or
zero-length string columns were sometimes forced to single-character values.

Update mapped file unmapping implementation to work for javad+.

Version 3.4-1 (5 June 2020)

The ECSV (Enhanced Character Separated Values) storage format is now supported for
input and output.

The Feather storage format is now supported for input and outpui.

Replace Pi xt ool sHeal pi xSkyPi xel | ator Wwith CdsHeal pi xSkyPi xel l ator in the
uk. ac. starlink.tabl e.join package, based on the cds-healpix-java library from F-X
Pineau (CDS). The new implementation is generally faster.

FITS ASCII table extensions with TFORM values of | n are now treated as 64-bit integers
for n>=10 rather than n>10.

Improve performance when reading long String values from FITSfiles.

Version 4.0 (11 January 2021)
This major release provides support for paralel processing of table data, enhances table 1/0
specification options, addresses some long-standing issues that require backwardly

SUN/252

95

incompatible API changes, and breaks out crossmatching classes into a separate package. The
documentation has been extended accordingly. Library users using existing STIL functionality
for table 1/0 should not need to make too many code changes when upgrading from STIL v3,
but those providing star Tabl e or 1/O handler implementations may need to modify their
implementations in accordance with the API changes; see below for details.

Notable new functionality

Support for parallel table data processing added, see Section 2.3.3.

Improved patterns for threadsafe random access using St ar Tabl e. get RowAccess
method, see Section 2.3.2.

I/O handler configuration options may be configured by user-supplied string, see
Section 3.5. Config options are provided for several handler implementations; more
may be forthcoming in future rel eases.

Table Schemes introduced, which can be used to load tables not serialized as byte
streams, see Section 3.9.

Auto file format detection now examines filenames to help guess input file format.
Star Tabl e. cl ose() can now be called to release global resources such as file
descriptors and (where unmapping is supported) mapped files.

API changes

* New data access methods added to st ar Tabl e interface to support multithreaded
processing: get RowAccess, get RowSpl i tt abl e.

* New default methods added to StarTable interface for convenience in parameter
handling: get Par anet er ByNane and set Par anet er .

* StarTable has a new close method that should relinquish any non-heap-based
resources (file descriptors, mapped files). In most cases this can be implemented as a
no-op.

* RowSequence and Star Tabl e how implement j ava. i o. O oseabl e SO they can be
used in try-with-resources statements.

* New method |ooksLikeFile added to TableBuilder interface, to enable
filename-based (file extension-based) input format guessing.

* Aux data access methods get AuxDat a, get AuxDat unmByNane, set AuxDat um are NOw
on the val uel nf o interface, rather than on (Val uel nf o's subtype) the Col urml nf o
class. This means that table parameters, as well as table columns, can now sport
auxiliary metadata. That should really always have been the case.

e Add val uel nf 0. get Xt ype method.

» Clarified requirements of class Randonst ar Tabl e; implemented data access methods
must be thread-safe.

* RowDat a introduced as super-interface of RowSequence.

* Class RandomW apper Star Tabl e has been withdrawn; the implementation was
complicated and hard to upgrade, and it was probably(?) never used.

* Some other minor API changes.

Package contents

The classes in the namespace uk.ac.starlink.table.join (table joins and
crossmatches) are no longer part of the STIL library. Those classes are still available
elsewhere, but the functionality is distinct from the I/O that STIL mostly provides,
there was never corresponding tutorial text in the user document, they required
external dependencies that sometimes complicated STIL deployment, and they are
not needed by most STIL users. The dependencies cdsheal pix.jar and
ht m ndex. j ar are no longer required.

Documentation

Descriptions of input handlers (Section 3.6) and output handlers (Section 3.7)

SUN/252 96

updated.

 Add new documentation section Section 3.8.1 describing the the FITS-plus
convention.

* Add Docunent ed interface to improve auto-documentation of 1/0O handlers. Handler
documentation now resides in the code itself, and is extracted programmatically to
generate entriesin user documentation.

Miscellaneous enhancements and bugfixes

+ COOSYS and TIMESY S attributes are now preserved during VOTable /O for table
PARAMSs (aswell asfor FIELDs, which was aready the case).

* Add miscellaneous utility methods in Tabl es class etc.

* Fix ECSV output bug: encoding was incorrect for metadata scalars with certain
non-alphanumeric first characters, leading to invalid YAML.

* Remove some unhelpful per-column metadata items from ECSV output.

* Prevented Heal pi xSkyPi xel | at or. cal cul at eDef aul t K from returning -1 for large
angles.

* Improve exception handling in Streanfabl eSi nk/OnceRowPi pe implementations,
make interruption work better.

* Fix bug that could give unhelpful table load error message for very short non-FITS
files in auto-detection mode.

Version 4.0-1 (16 April 2021)

Variable-length array-valued columns in FITS tables (P/Q descriptors) can now be read
even in compressed or streamed input.

Add configuration option header for CSV input handler, to indicate whether header line
IS present.

Add configuration option maxSanpl e for CSV and ASCII input handlers to reduce 2-pass
read time.

The fits-var output handler now avoids use of the THEAP keyword (no pre-heap gap is
written). Heap padding is legal FITS, but bugs in other FITS software mean that some
third party components (including f veri f y) have problems with such files.

Fix bugs that meant writing long (>2GDb) fits-var files could output illegal/corrupted FITS.
Fixed long-standing bug in Fi | eByt eSt ore. copy() ; this potentially serious issue could
have caused broken file caching of any/all streams, but mostly seemed to affect large
(>2GDb) streamsiin practice.

JDBC output no longer attempts to create VARCHAR(0) columns.

Version 4.0-2 (10 June 2021)

New functionality:

* Apache Parquet format is now supported for input and output (note not all
distributions include Parquet-MR support libraries).

 AAS Machine-Readable Table (MRT) format is now supported for inpuit.

 ECSV format input and output handlers are upgraded to version 1.0 of the ECSV
format, meaning they can now read and write array-valued columns.

* AbstractFitsTablewiter and subclasses now have configuration methods
set Al | owSi gnedByt e, set Al | owZer oLengt hStri ng, set Wde and set PadChar act er .
These should be used in preference to the various custom constructors, which have
now been deprecated.

* Add new table scheme test (Test Tabl eSchene).

Minor enhancements and behaviour changes:

o Space-delimited ECSV files now write empty fields quoted.

SUN/252 97

» Unknown or unsupported column datatype values in ECSV files are now treated like
st ri ng rather than causing table read failure.

« Empty strings in FITS 1-character columns are now returned as blank values rather
than ASCII NUL (\ 0").

* Undersized, including zero-length, strings written to FITS columns are now by
default terminated with an ASCII NUL rather than in some cases padded with
Spaces.

Bugfixes:

* Fix regression bug since v4.0 that meant table drag'n'drop wasn't working.

» Fix regression bug since v4.0 that meant j doc: URLsdidn't work.

* Fix long-standing logic error in ASCII/CSV input handler that could misidentify
column types and cause read failures.

* HTS TZERO headers are now written correctly with numeric values rather than
string values.

Version 4.0-3 (2 July 2021)

e STIL is now avalable a the Maven Centra Repository under the groupld
uk. ac. star | i nk. Packaging details may change in future releases.

* Bzip2 decoding is now done by internal classes (uk. ac. starlink.util.bzip2) rather
than external apache library; this reduces the dependency requirement in the POM.

* Guess meaning for some non-standard COORDSY S values in HEALPix-FITS files, e.g.
allow "GALACTIC" instead of "G".

Version 4.0-4 (15 Oct 2021)

* Columns that are al blank in ASCII-like tables (CSV, ASCII, TST) are now interpreted
astype String not boolean.

» Fix serious threading bug that could return nonsense values from fixed-length string fields
during parallel processing of large cached/randomised tables.

* Files compressed using multi-stream bzip2 compression (e.g. pbzi p2 output) are now
supported alongside single-stream bzip2.

Version 4.0-5 (31 January 2022)

* The PDHA (NASA's Planetary Data System v4) file format is now supported for input
tables.

* Improve identification of TIME_TT2000 columns as time values in certain CDF files.

* Budfix update of JCDF to v1.2-4.

» Fix faillure when attempting to read unsigned 32-bit integer values from parquet files.

Version 4.1 (6 April 2022)

* Dependency on the nom.tam.fits library is removed All FITS I/O is now implemented
internally.

* New classes areintroduced in the uk. ac. st ar | i nk. fi t s package, to replace nom.tam.fits
usage. see Cardl nage, CardType, CardFactory, ParsedCard, FitsHeader, FitsUil,
Asci i Tabl eSt ar Tabl e.

e Other API changes. java.io. DataQut put parameter is replaced by
java.io.QutputStream in some FITS and VOTable 1/O methods (eg.
wr i t eHr ef Dat aEl ement).

* HITS header 1/0 now supports reading FITS 4.0 long-string headers (CONTINUE
records).

* HITS header values of the form "(a,b,c,...)" used as BINTABLE table parameters are now
interpreted where possible as numeric arrays; this works for long-string values

SUN/252 98

(CONTINUE records) as well.

* New classes introduced in package UTIL for fast buffered 1/O:
Dat aBuf f er edl nput St r eam Dat aBuf f er edQut put St ream

» Substantial 1/0 performance improvements, mainly for FITS and VOTable, e.g.: writing
to FITS 2x, reading FITS from a stream 2x, reading VOTable with inline
BINARY/BINARY 2 4x, writing VOTable with inline BINARY/BINARY 2 2x, writing
VOTable with TABLEDATA 1.5x.

* Add configuration options conpact and encodi ng to VOTable output handler. By default
thin (<=4 column) TABLEDATA VQOTables are now written in "compact" mode, using
reduced whitespace.

o ECSV format now preserves table name.

* FITSBINTABLE reader now copes with (illegal?) embedded spacesin TDIMn headers.

* Adjust MRT null handling; "-" in asingle-character field is no longer interpreted as null.

Version 4.1-1 (10 June 2022)

* Fix FITS parsing issue that could result in StackOverflowError for long array-valued
headers.

» Fix bug in multi-threaded read of string columns from colfitsfiles.

* Reduce number of file mapping calls by FITS readers.

Version 4.1-2 (8 July 2022)

* The cardFactory.Confi g class now has a pluggable option to control handling of FITS
header string/comment values that contain illegal FITS header characters. Previously such
characters would case FITS output to fail; now by default such characters are replaced
with a'?' character.

Version 4.1-3 (5 October 2022)

* Fix PD$4 reader to accept columns of type ASCI | _Nuneric_Basel6 without the read
operation failing.
 Fix VOTablereader so BINARY/2 VOTables with no columns don't read forever.

Version 4.1-4 (20 April 2023)

* Modify behaviour when writing URL-valued aux metadata itemsin VOTable FI ELDs: null
nare for Val uel nf o now resultsintit1 e-lessLI NK instead of no LI NK.

 The JDBC input handler should now cope with columns that are array-valued in the
database, viewing their contents as String[] or primitive array values where possible.
Previously they showed up asj ava. sql . Array objects, which are generally not easy to
deal within STIL.

* Add some configuration options to the GBIN input handler.

* Fall with an error rather than silently reading a broken table when encountering
GaiaTools/zStd-jni bug during GBIN input.

« Empty/invalid fields encountered by the PDS4 reader no longer cause the table read to
fail.

« MakeFITS and VOTable output handlers robust against input tables that declare incorrect
row counts.

* Modify column width determination in text-like output formats (t ext, ascii, i pac) to
avoid occasional unwanted truncation of formatted values. Tables are now read in two
passes, the first to establish column widths and the second to write the data. By default all
rows are sampled, but the sanpl edRows option can be configured so that only some rows
are sampled, which is more like the old behaviour.

 PD$4 reader now reads Asci i _Nuneri c_Base16/ 8/ 2 fields as numeric not string (updated
pds4-jparser library code).

o Slight change to RESOURCE structure of Primary HDU metadata in multi-table
FITSplus output. This fixes a problem in which saved Service Descriptors could end up

SUN/252 99

associated with the wrong tabl es.

Write empty string not semi-standard "nan" token for NaN in ECSV writer.

Improve ECSV reader performance, especially for Gaia DR3 bulk download files (which
use semi-standard "nul 1 " token).

The ServiceDescriptor class now has access to content Type and exanpl eURL
parametersintroduced in Datalink 1.1. These are preserved by VOTable 1/0.

Version 4.2 (1 November 2023)
From this version the access to HTTP(S) URLs is by default done using the AUTH package,
which provides transparent authenticated access to resources protected by authentication
declared according to the (currently draft) VO authentication standards. This ought not to
affect STIL behaviour unless steps are taken to initialise authentication, but unforseen changes
are possible. See Section 3.11.

Version 4.2-1 (29 February 2024)

Implement HAPI input handler and scheme support.

VOTable coosys/ @ ef posi ti on attribute is now available from column aux metadata as
VOSt ar Tabl e. COOSYS_REFPCSI Tl ON_I NFO. STIL now fully(?) supports
WD-VOTable-1.5-20231120.

Improve error reporting for corrupted/truncated FITS files.

Use authentication and HTTP-level compression for external (href-referenced) VOTable
STREAM data.

Upgrade snakeyaml library (used for ECSV headers) from 1.25 to 2.2. No change in
behaviour (or security) expected, but prevents vulnerability warnings in some
circumstances.

Fix bug that could generate spurious EOFExceptions when reading multi-table basic FITS
files.

