
Cosmology with Galaxy Clusters

III. Observing Clusters 2 - Scaling Relations and 
Self-Similarity



  

Galaxy clusters consists of
▶ Dark matter (~80%), hot gas (~15%), galaxies (~5%)

Galaxy cluster studies important for
▶ Measuring cluster masses for cosmology
▶ Investigating physical processes in clusters

Study and measure M with different techniques
▶ galaxies – richness, velocity dispersion
▶ lensing – strong and weak lensing
▶ SZ – probes gas properties, z independent
▶ simulations – verify against observations
▶ X-ray – spectrum of gas (ICM) gives kT

Observing Clusters - Summary



  

✱ X-ray observations of galaxy clusters allow us to measure 
these key properties:
▶ X-ray luminosity (from images or spectra)
▶ kT of the ICM (from spectra)
▶ Metal abundances in ICM (from spectra)
▶ Density of ICM (from surface brightness profile)

✱ Combining radial profiles of kT and ρ of ICM we can infer 
total mass assuming hydrostatic equilibrium

Summary of X-ray Properties



  

✱ Self similarity with M and z

✱ Scaling relations

Observing clusters 2



  

When we describe galaxy clusters as “self-similar” we mean 
that clusters are simply scaled up and down versions of each 
other

Can think of clusters being self-similar w.r.t mass or redshift
c.f. fractals

Self Similarity



  

One of these galaxy clusters is 10 times 
more massive than the other
(The images have been scaled to the 

same size)
Q: Which is the most massive?

A697 z=0.28

A2125 z=0.25

Strong Self-Similarity



  

Q: Which is the most massive?
A: A697, but we can't tell that from these 

images

Strong self-similarity means clusters of 
different masses are identical, scaled 
versions of each other A697 z=0.28

A2125 z=0.25

Strong Self-Similarity



  

Galaxy clusters are observed at z>1
At distant redshifts, we are observing a younger Universe 

● Density was higher

Weak self similarity 
means that as long as we 
account for the changing 
density of the Universe, a 
cluster at high-z is identical 
to a cluster of the same 
mass at low-z

ρc

Critical density of 
Universe against z

Self-similar evolution

Weak Self-Similarity



  

Self-similarity means all galaxy clusters essentially identical
Massive clusters are scaled up versions of less massive 

clusters
Distant clusters are identical to local clusters if we include 

factor for increasing density of Universe with redshift

Self-Similarity



  

The self similar model is based on the simplifying 
assumptions that:
Clusters form via a single gravitational collapse at zobs 
The only source of energy input into ICM is gravitational
N.B. Neither of these are true!

With these assumptions we can predict simple power law 
relationships between the different properties of galaxy 
clusters
Scaling relations

Key Assumptions



  

Scaling relations are power law relations between galaxy 
cluster properties (typically X-ray) such as Lx, kT, Mgas, Mtot 
etc.
e.g. The luminosity-mass (LM) relation describes the 

relationship between the X-ray luminosity and cluster mass 

lo
g(

Lx
)

log(M)

Measure L easily for large 
samples of clusters
● estimate M
● do cosmology!

Depends on accuracy and 
precision of scaling relation

Scaling Relations



  

When we talk about cluster properties we need to specify what 
radius we measure them within 

The mass of this sphere is easily defined as 
it has a clear surface/edge

Where is the edge of this 
galaxy cluster?

The Edge of a Cluster



  

When we talk about cluster properties we need to specify what 
radius we measure them within 

The mass of this sphere is easily defined as 
it has a clear surface/edge

Where is the edge of this 
galaxy cluster?

Surface brightness & gas density 
asymptote to zero at infinite radius 
(N.B. log plot)R

The Edge of a Cluster



  

Use overdensity radii to define region in which properties are 
measured 

 A radius within which the mean density is Δ times the critical 
density (ρc) at the cluster's redshift

R

ρ

 Clusters are centrally concentrated 
so larger Δ correspond to smaller 
radii

 Write radii as RΔ 
● e.g. R200 means Δ=200

Overdensity radii allow fair comparison of properties of clusters of 
different sizes, key part of self-similar model

Overdensity Radii

N.B. here ρ is the total mass density 
(not just gas)



  

Simulations show that Δ=200 corresponds to virial radius 
 Radius separating relaxed part of cluster from infalling material
 ≈2 Mpc (massive cluster)
 R500 (~0.5R200) is radius 

measured out to in typical X-
ray observations

R200
R500

Overdensity Radii



  

 If a galaxy cluster is dynamically relaxed (no recent mergers) 
we expect the gas and galaxies to be virialised:

where K is kinetic energy and U is potential energy
 For monatomic gas with temperature T, the average kinetic 

energy per particle is  

 and total KE of gas, K, is N<Ki> where N is number of particles, 
so

2K=−U

〈K i 〉=
3
2
kT

K∝NkT ∝M gas , kT

MT Relation



  

 For self-similar clusters, Mgas,Δ ∝ MΔ, the total mass within RΔ, 
so

 The potential energy of the system is simply

 So we can rewrite the virial theorem (2K = -U) as

K∝M kT

U ∝
GM

2

R

M kT ∝
M

2

R

(2.1)

MT Relation



  

We can express RΔ in terms of the mean density of the cluster

Substitute into (2.1) and rearrange:

Now, by definition, the mean density of the cluster within RΔ is Δρc 
so

R ∝M
1 /3−1/3

M kT ∝
M

2

R

M ∝kT 3/2−1/2

= c=
3H 2

8G

(2.2)

(2.1)

MT Relation



  

We can describe the redshift-dependence of the Hubble 
parameter as H = E(z)H0

E(z) is an increasing function of z that depends on cosmological 
parameters (e.g. ΩM, Λ)

Then:

Substitute into (2.2) 

N.B. Clusters of same mass are hotter at higher z

= c=
3H 2

8G

∝ E z 2

M ∝kT 3/2−1/2E  z−1 (2.3)

e.g. Maughan et al, 2006, MNRAS, 365, 509-529; Bryan & Norman, 1998, ApJ, 495, 80

MT Relation



  

...and relax



  

From (1.1), X-ray luminosity from bremsstrahlung

ne and ni are proportional to cluster density ρ for self similar 
clusters, so write total Lx within RΔ as: 

Derive expression for Lx in terms of M, Δ and E(z)
Hint: need to use (2.3)

LX∝∫ ne niT
1/2dV

LX∝2kT 1/2R
3

LM Relation



  

Eliminate R in favour of M and ρ:

LX ∝2kT 1/ 2R
3

LX ∝kT 1 /2 M

Example: LM Relation



  

Eliminate R in favour of M and ρ:

Recall ρ=Δρc by definition, so:

LX∝2kT 1/2R
3

LX∝kT 1/2M

LX∝ E z 2kT 1 /2 M

Example: LM Relation



  

Eliminate R in favour of M and ρ:

Recall ρ=Δρc by definition, so:

Finally, substitute for kT in terms of M, Δ and E(z) from (2.3)

Clusters of same M are more luminous at high z

LX∝2kT 1/2R
3

LX∝kT 1/2M

LX∝ E z 2kT 1 /2 M

LX ∝ 7/6 E z4 /3 M 4/3 (2.4)

Example: LM Relation

e.g. Maughan et al, 2006, MNRAS, 365, 509-529; Bryan & Norman, 1998, ApJ, 495, 80



  

Self-similar model predicts scaling relations between easily 
measured properties and cluster mass
 Determining mass of cluster difficult
 Scaling relations allow masses to be estimated from easy to 

measure properties

 Measure masses for large 
samples of distant clusters 
with lower quality data

● Cosmological studies

(LM relation from Reiprich & 
Bohringer 2002, ApJ, 567)

Scaling Relations as Scales



  

Precision of the “scales” depends on the intrinsic scatter
● scatter beyond that expected from errors
● due to real cluster-to-cluster variation
● cannot beat with longer observations

Scaling Relations as Scales

Accuracy of “scales” 
depends on calibration of 
relations

● measure with hydrostatic X-
ray masses or lensing

 Ideally want scaling relation 
with lowest intrinsic scatter



  

Lx is easiest property to measure
 Early work showed large scatter with mass (~60%)
 Recent measures suggest closer to 40% (Maughan 2007)

Reiprich & Bohringer (2002)

Lx as a mass proxy



  

kT has a fairly tight scaling relation with M for relaxed clusters
Merging clusters add scatter and systematic uncertainty

Simulations show ~20% 
scatter in MT relation

N.B. Simulations extremely 
helpful as we know true 
mass of clusters

Systematic offset between 
relaxed     and merging     
clusters

Kravtsov et al. (2006,  ApJ, 650)

kT as a mass proxy



  

Recent work has shown Yx is superior mass indicator
Product of kT and Mgas (both easily measured) within R500 

with central 0.15R500 excluded

Just 8% scatter with mass
 Insensitive to mergers (no 

offset between relaxed     and 
merging     clusters)

Yx (M☉keV)

M
50

0 
(M

☉
)

Kravtsov et al. (2006)

Yx – a super scaler!



  

Self-similar model assumes:
 Clusters form in single collapse at zobs 
 Gravity only source of energy

Self-similar model predicts:
 Clusters of different masses are scaled versions
 Clusters at different z identical if scaled for ρc(z)

Define cluster properties within overdensity radii
 Mean density enclosed is Δ times ρc(z)
 Fair comparison of clusters of different M and z

Summary I



  

Derive self-similar scaling relations
 Simple power laws relating cluster properties
 MT, LM, LT etc

Scaling relations have potential to allow estimation of cluster 
masses from easily measured properties
 Precision depends on intrinsic scatter
 Accuracy depends on calibration (which masses to use)
 Lx – kT – Yx increasingly precise mass proxies

Hydrostatic masses most reliable
 need high quality data for T(r) and ρ(r)
 need relaxed clusters

Summary II
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