Cosmology with Galaxy Clusters

III. Observing Clusters 2 - Scaling Relations and Self-Similarity

Observing Clusters - Summary

Galaxy clusters consists of

▶ Dark matter (~80%), hot gas (~15%), galaxies (~5%)

Galaxy cluster studies important for

- Measuring cluster masses for cosmology
- Investigating physical processes in clusters

Study and measure M with different techniques

- galaxies richness, velocity dispersion
- ▶ lensing strong and weak lensing
- ► SZ probes gas properties, z independent
- simulations verify against observations
- X-ray spectrum of gas (ICM) gives kT

Summary of X-ray Properties

- * X-ray observations of galaxy clusters allow us to measure these key properties:
 - X-ray luminosity (from images or spectra)
 - ▶ kT of the ICM (from spectra)
 - Metal abundances in ICM (from spectra)
 - Density of ICM (from surface brightness profile)
- * Combining radial profiles of kT and ρ of ICM we can infer total mass assuming hydrostatic equilibrium

Observing clusters 2

- * Self similarity with M and z
- * Scaling relations

Self Similarity

When we describe galaxy clusters as "self-similar" we mean that clusters are simply scaled up and down versions of each other

- **★** Can think of clusters being self-similar w.r.t mass or redshift
- *c.f. fractals

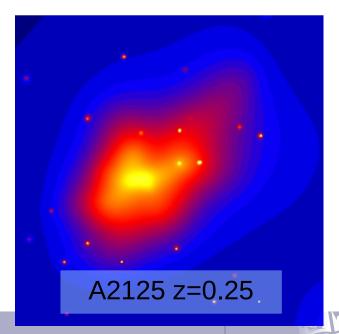
Strong Self-Similarity

One of these galaxy clusters is 10 times more massive than the other

★ (The images have been scaled to the same size)

Q: Which is the most massive?



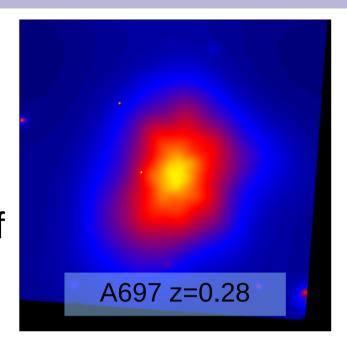


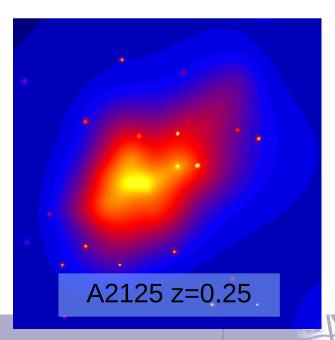
Strong Self-Similarity

Q: Which is the most massive?

A: A697, but we can't tell that from these images

Strong self-similarity means clusters of different masses are identical, scaled versions of each other

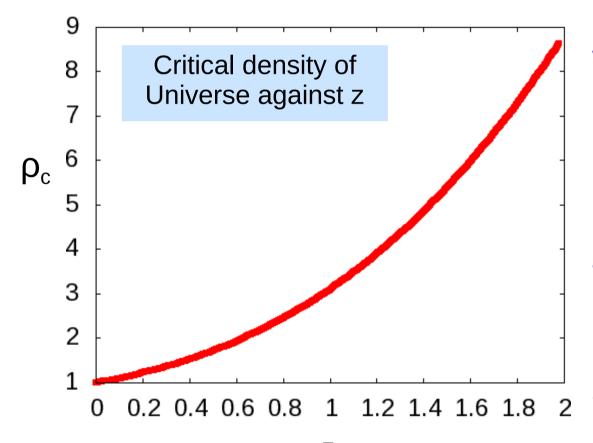




Weak Self-Similarity

Galaxy clusters are observed at z>1

- * At distant redshifts, we are observing a younger Universe
 - Density was higher



Weak self similarity
means that as long as we
account for the changing
density of the Universe, a
cluster at high-z is identical
to a cluster of the same
mass at low-z

1.2 1.4 1.6 1.8 2 * Self-similar evolution

Self-Similarity

Self-similarity means all galaxy clusters essentially identical

- ★ Massive clusters are scaled up versions of less massive clusters
- ★ Distant clusters are identical to local clusters if we include factor for increasing density of Universe with redshift

Key Assumptions

- The self similar model is based on the simplifying assumptions that:
- \star Clusters form via a single gravitational collapse at z_{obs}
- ★ The only source of energy input into ICM is gravitational

N.B. Neither of these are true!

With these assumptions we can predict simple **power law** relationships between the different properties of galaxy clusters

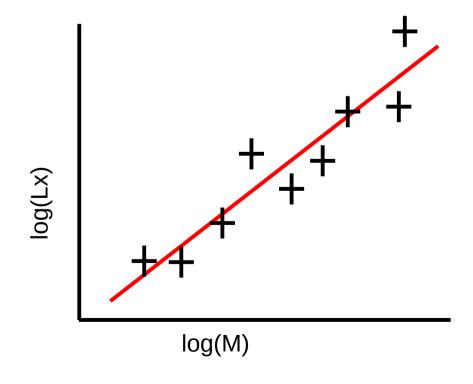
*** Scaling relations**

Scaling Relations

Scaling relations are **power law** relations between galaxy cluster properties (typically X-ray) such as Lx, kT, M_{gas} , M_{tot} etc.

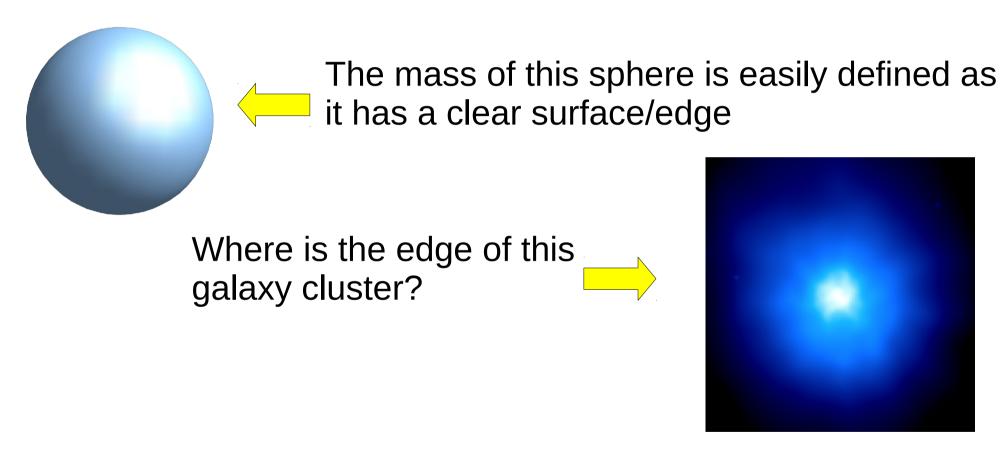
★ e.g. The luminosity-mass (LM) relation describes the relationship between the X-ray luminosity and cluster mass

- ★ Measure L easily for large samples of clusters
 - estimate M
 - do cosmology!
- Depends on accuracy and precision of scaling relation



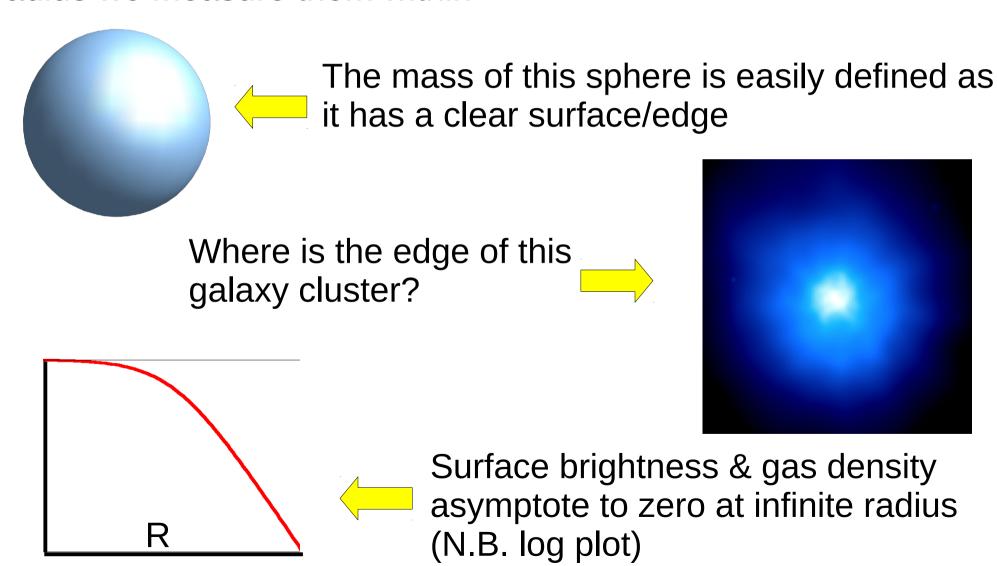
The Edge of a Cluster

When we talk about cluster properties we need to specify what radius we measure them within



The Edge of a Cluster

When we talk about cluster properties we need to specify what radius we measure them within

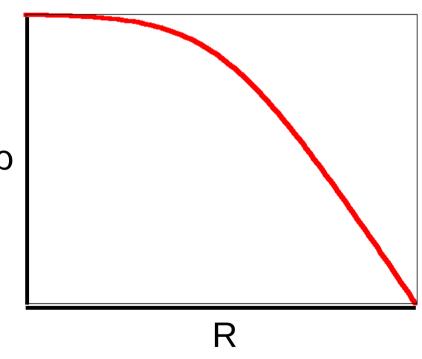


Overdensity Radii

Use **overdensity radii** to define region in which properties are measured

- * A radius within which the mean density is Δ times the critical density (ρ_c) at the cluster's redshift
- ★ Clusters are centrally concentrated so larger Δ correspond to smaller radii
- ★ Write radii as R_△
 - e.g. R_{200} means Δ =200

N.B. here ρ is the total mass density (not just gas)

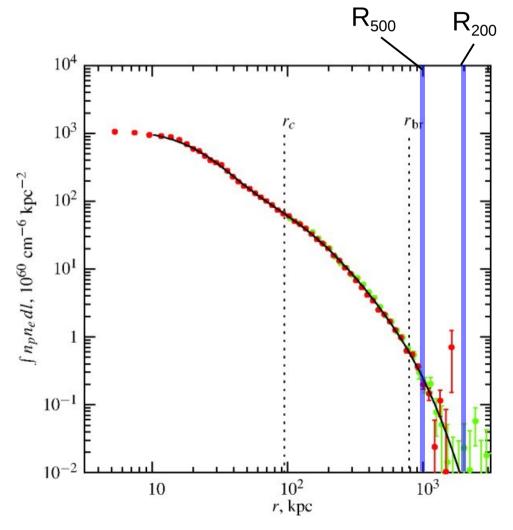


Overdensity radii allow fair comparison of properties of clusters of different sizes, key part of self-similar model

Overdensity Radii

Simulations show that Δ =200 corresponds to **virial radius**

- * Radius separating relaxed part of cluster from infalling material
- * ≈2 Mpc (massive cluster)
- * R_{500} (~0.5 R_{200}) is radius measured out to in typical X-ray observations



* If a galaxy cluster is **dynamically relaxed** (no recent mergers) we expect the gas and galaxies to be **virialised**:

$$2K = -U$$

where K is kinetic energy and U is potential energy

★ For monatomic gas with temperature T, the average kinetic energy per particle is

$$\langle K_i \rangle = \frac{3}{2} kT$$

★ and total KE of gas, K, is N<K_i> where N is number of particles, so

$$K \propto NkT \propto M_{gas,\Delta} kT$$

* For self-similar clusters, $M_{gas,\Delta} \propto M_{\Delta}$, the total mass within R_{Δ} , so

$$K \propto M_{\Delta} kT$$

★ The potential energy of the system is simply

$$U\!\propto\!rac{G\!M_\Delta^2}{R_\Delta}$$

* So we can rewrite the virial theorem (2K = -U) as

$$M_{\Delta}kT \propto \frac{M_{\Delta}^2}{R_{\Delta}}$$
 (2.1)

$$M_{\Delta}kT \propto \frac{M_{\Delta}^2}{R_{\Delta}}$$
 (2.1)

We can express R_{Λ} in terms of the mean density of the cluster

$$R_{\Delta} \propto M_{\Delta}^{1/3} \, \rho^{-1/3}$$

Substitute into (2.1) and rearrange:

$$M_{\Delta} \propto (kT)^{3/2} \rho^{-1/2}$$
 (2.2)

Now, by definition, the mean density of the cluster within R_{\Delta} is $\Delta \rho_c$ so $\rho = \Delta \ \rho_c = \Delta \frac{3 \, H^2}{8 \, \pi \, G}$

$$\rho = \Delta \rho_c = \Delta \frac{3H^2}{8\pi G}$$

We can describe the redshift-dependence of the Hubble parameter as $H = E(z)H_0$

E(z) is an increasing function of z that depends on cosmological

parameters (e.g. Ω_M , Λ)

Then:

$$\rho \propto \Delta E(z)^2$$

Substitute into (2.2)

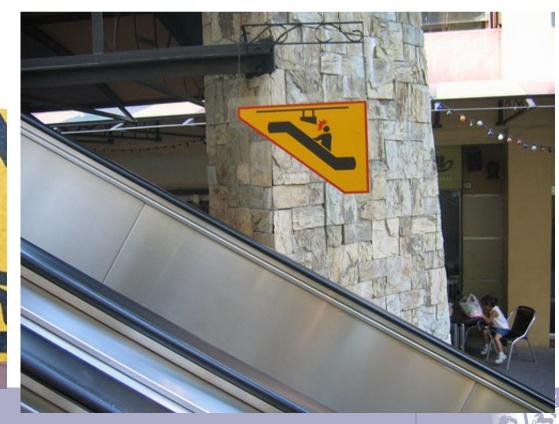
$$M_{\Delta} \propto (kT)^{3/2} \Delta^{-1/2} E(z)^{-1}$$

2.8 2.6 2.4 2.2 1.8 1.6 1.4 1.2 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(2.3)

N.B. Clusters of same mass are hotter at higher z

...and relax



From (1.1), X-ray luminosity from bremsstrahlung

$$L_X \propto \int n_e n_i T^{1/2} dV$$

 n_e and n_i are proportional to cluster density ρ for self similar clusters, so write total Lx within R_{\wedge} as:

$$L_X \propto \rho^2 (kT)^{1/2} R_\Delta^3$$

Derive expression for Lx in terms of M, Δ and E(z) Hint: need to use (2.3)

Example: LM Relation

$$L_X \propto
ho^2 (kT)^{1/2} R_\Delta^3$$

Eliminate R in favour of M and ρ :

$$L_X \propto \rho (kT)^{1/2} M$$

Example: LM Relation

$$L_X \propto \rho^2 (kT)^{1/2} R_\Delta^3$$

Eliminate R in favour of M and ρ :

$$L_X \propto \rho (kT)^{1/2} M$$

Recall $\rho = \Delta \rho_c$ by definition, so:

$$L_X \propto \Delta E(z)^2 (kT)^{1/2} M$$

Example: LM Relation

$$L_X \propto \rho^2 (kT)^{1/2} R_\Delta^3$$

Eliminate R in favour of M and ρ :

$$L_X \propto \rho (kT)^{1/2} M$$

Recall $\rho = \Delta \rho_c$ by definition, so:

$$L_X \propto \Delta E(z)^2 (kT)^{1/2} M$$

Finally, substitute for kT in terms of M, Δ and E(z) from (2.3)

$$L_X \propto \Delta^{7/6} E(z)^{4/3} M^{4/3}$$
 (2.4)

Clusters of same M are more luminous at high z

Scaling Relations as Scales

Self-similar model predicts scaling relations between easily measured properties and cluster mass

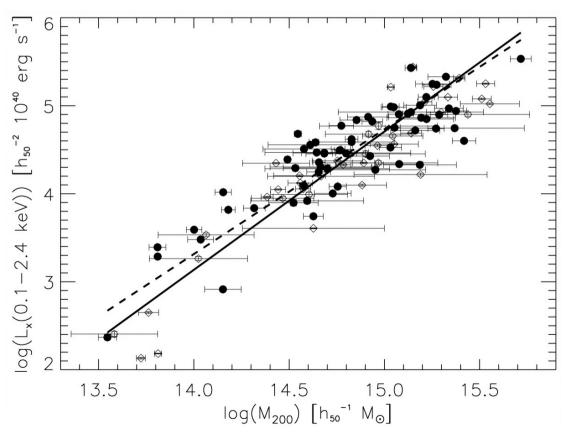
★ Determining mass of cluster difficult

* Scaling relations allow masses to be estimated from easy to

measure properties

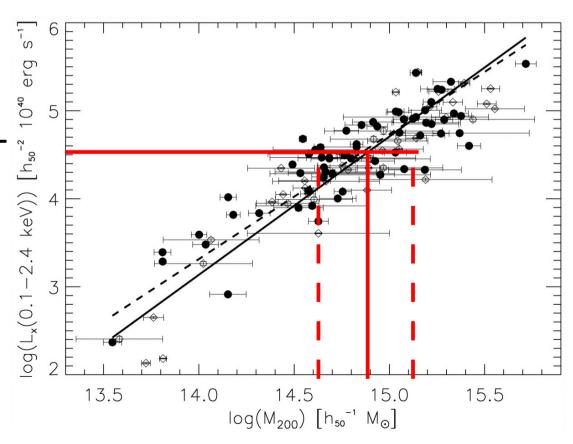
- ★ Measure masses for large samples of distant clusters with **lower quality** data
 - Cosmological studies

(LM relation from Reiprich & Bohringer 2002, ApJ, 567)



Scaling Relations as Scales

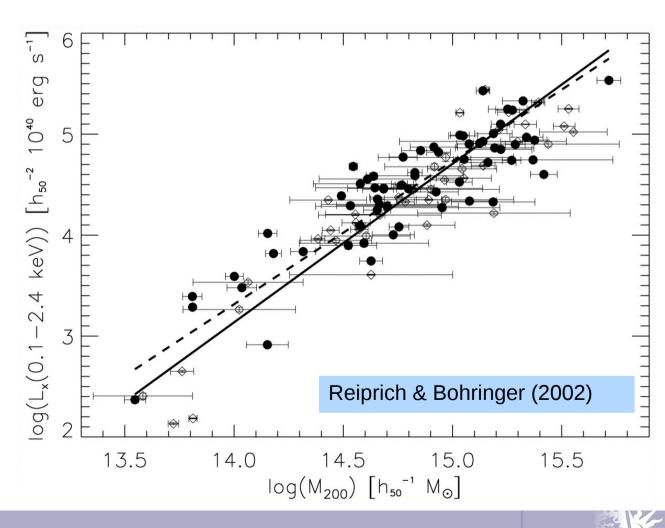
- * Precision of the "scales" depends on the intrinsic scatter
 - scatter beyond that expected from errors
 - due to real cluster-to-cluster variation
 - cannot beat with longer observations
- * Accuracy of "scales" depends on calibration of relations
 - measure with hydrostatic Xray masses or lensing
- ★ Ideally want scaling relation with lowest intrinsic scatter



Lx as a mass proxy

Lx is **easiest** property to measure

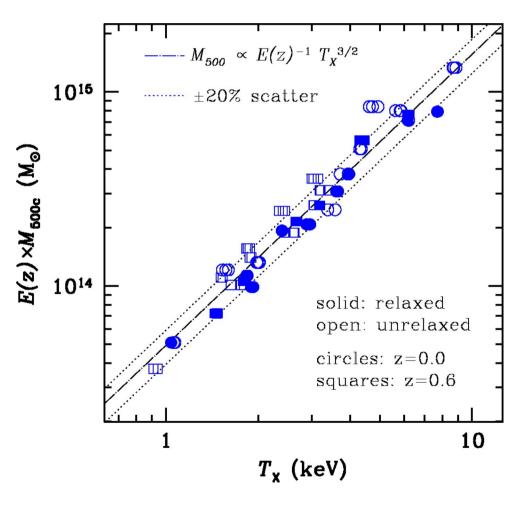
- ★ Early work showed large scatter with mass (~60%)
- * Recent measures suggest closer to 40% (Maughan 2007)



kT as a mass proxy

kT has a fairly tight scaling relation with M for relaxed clusters

* Merging clusters add scatter and systematic uncertainty



- ★ Simulations show ~20% scatter in MT relation
- ★ N.B. Simulations extremely helpful as we know true mass of clusters
- ★ Systematic offset between relaxed and merging clusters

Kravtsov et al. (2006, ApJ, 650)

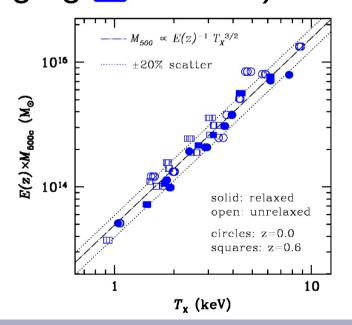
Yx – a super scaler!

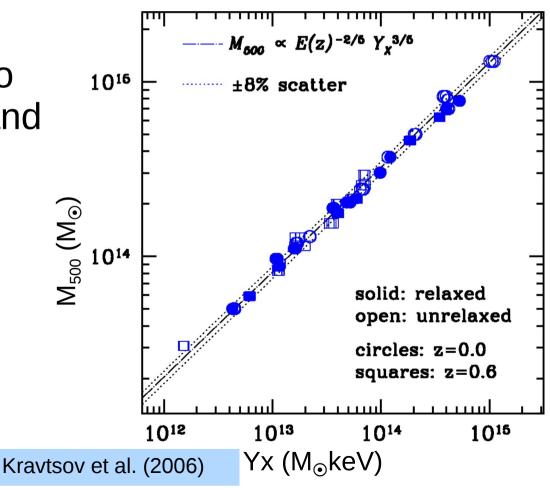
Recent work has shown Yx is superior mass indicator

* Product of kT and M_{gas} (both easily measured) within R500 with central $0.15R_{500}$ excluded

★ Just 8% scatter with mass

★ Insensitive to mergers (no offset between relaxed and merging clusters)





Summary I

Self-similar model assumes:

- \star Clusters form in single collapse at z_{obs}
- **★** Gravity only source of energy

Self-similar model predicts:

- * Clusters of different masses are scaled versions
- * Clusters at different z identical if scaled for $\rho_c(z)$

Define cluster properties within overdensity radii

- * Mean density enclosed is Δ times $\rho_c(z)$
- * Fair comparison of clusters of different M and z

Summary II

Derive self-similar scaling relations

- ★ Simple power laws relating cluster properties
- * MT, LM, LT etc

Scaling relations have potential to allow estimation of cluster masses from easily measured properties

- * Precision depends on intrinsic scatter
- * Accuracy depends on calibration (which masses to use)
- ★ Lx kT Yx increasingly precise mass proxies

Hydrostatic masses most reliable

- * need high quality data for T(r) and $\rho(r)$
- * need relaxed clusters

