Cosmology with Galaxy Clusters

IV. Baryon Fraction Tests

Course Overview

Observations of galaxy clusters (primarily in X-rays) for cosmological tests

- * Cosmological primer
 - incomplete overview of parts of cosmology important for cluster studies
- * Galaxy clusters and their observation
 - mass determinations
- ***** Cluster baryon fraction tests
 - constraints on matter density and standard bucket
- Cluster mass function
 - growth of structure and volume tests

Baryon Fraction Tests

- \star Early constraints on $\Omega_{_{\rm M}}$
- * Clusters as a "standard bucket"
- Observational results
- * Caveats

Standard big bang theory accurately predicts abundances of light elements produced in first few minutes via nucleosynthesis

 \star Tight theoretical and observational constraints on $\Omega_{\rm b}$

ratio of baryon density to critical density

$$\Omega_b = \frac{\rho_b}{\rho_c}$$

Present abundances of light element isotopes depends on $\Omega_{\rm b}$

- curves show theoretical dependence
- Ines show measured abundances
- current best estimate Ω_b = 0.044
 (e.g. Kirkman et al, 2003, ApJS, 149

Theory + observations strongly suggest Universe is flat $(\Omega_{tot} = 1)$

 $\star \, \Omega_{_{\rm b}} << 1$ so majority of matter/energy density is non-baryonic

Matter density comprises baryonic and dark matter:

$$\Omega_M = \Omega_b + \Omega_{dark}$$

In early 1990's, flat models with $\Omega_{tot} = \Omega_{M} = 1$ popular

- Galaxy clusters are largest objects for which masses determined
- * large enough to assume enclose representative volume of Universe
- This means ratio of baryonic mass to total mass in cluster (f_b) should match universal ratio:

$$f_b = \frac{M_b}{M_{tot}} = \frac{\Omega_b}{\Omega_M}$$

Thus can attempt to measure $\boldsymbol{f}_{_{b}}$ and use $\boldsymbol{\Omega}_{_{b}}$ to determine $\boldsymbol{\Omega}_{_{M}}$

- White et al (1993, Nature, 366) made one of first attempts to measure $\Omega_{_{\rm M}}$ using $f_{_{\rm b}}$
- * used X-ray surface brightness profile to estimate gas mass

$$M_{gas} = 1.3 \times 10^{14} M_{\odot}$$

 * used total optical luminosity, and mass to light ratio to estimate stellar mass

$$M_{stars} = 1.4 \times 10^{13} M_{\odot}$$

 * used various methods (velocity dispersion, kT) to estimate total mass

$$M_{tot} = 1.6 \times 10^{15} M_{\odot}$$

$$f_b = \frac{M_b}{M_{tot}} = \frac{M_{gas} + M_{stars}}{M_{tot}}$$

- This gave $f_b \sim 0.1$
- \star implied $\Omega_{_M} \sim 0.15$
- \star strong evidence to abandon $\Omega_{_{\rm M}} = 1$

"Either the density of the Universe is less than that required for closure, or there is an error in the standard interpretation of element abundances."

(White et al 1993; Nature, 366, 429)

$$f_b = \frac{M_b}{M_{tot}} = \frac{M_{gas} + M_{stars}}{M_{tot}}$$

- This gave $f_b \sim 0.1$
- \star implied $\Omega_{_M} \sim 0.15$
- * strong evidence to abandon $\Omega_{M} = 1$

"Either the density of the Universe is less than that required for closure, or there is an error in the standard interpretation of element abundances."

(White et al 1993; Nature, 366, 429)

More recently, similar tests give $\Omega_{M} \sim 0.3$ (e.g. Sanderson & Ponman 2003, MNRAS, 345)

In 1930's, galaxy cluster observations showed

- $\star \quad M_b << M_{tot}$
- i.e. dark matter required
- $\star \quad \Omega_b << \Omega_M$
- In 1990's cluster observations showed $\star \quad \Omega_M < 1$
- i.e. open Universe, or cosmological constant

In 2000's clusters used as standard buckets...

Standard Buckets

Assuming that clusters large enough to be representative, expect $f_{\rm h}$ to be same at all z

- * at least until reach z clusters forming
- ★ "standard bucket"
- \star observational determination of $\rm f_{\rm b}$ depends on distance to cluster
 - ► sensitive to E(z)

Standard Buckets

Assuming that clusters large enough to be representative, expect $f_{\rm b}$ to be same at all z

- * at least until reach z clusters forming
- ★ "standard bucket"
- \star observational determination of $f_{_{\rm b}}$ depends on distance to cluster
 - sensitive to E(z)

If we know f_{b} , and measure z, then infer distance to cluster * constrain E(z), hence $\Omega_M, \Omega_\Lambda, w$

For strongest constraints, measure $f_{\mbox{\tiny b}}$ for set of clusters at different z

Standard Buckets

Method first proposed by Sasaki (1996, PASJ, 48)

Artificial evolution in f_{gas} for different cosmologies

Only get constant f_{gas} with z if using correct cosmology

$$f_b = \frac{M_b}{M_{tot}} = \frac{M_{gas} + M_{stars}}{M_{tot}}$$

★ Measure M_{stars} from optical and M_{gas} from X-ray ★ Dominated by M_{gas} – measured value depends on d

$$f_b = \frac{M_b}{M_{tot}} = \frac{M_{gas} + M_{stars}}{M_{tot}}$$

★ Measure M_{stars} from optical and M_{gas} from X-ray ★ Dominated by M_{gas} – measured value depends on d

Consider spherical region of cluster, angular radius θ * Physical (proper) radius of region is

 $R = \theta d_A$

where d_A is angular diameter distance.

***** The proper volume of the region is just

$$V = \frac{4}{3}\pi(\theta d_A)^3$$

Now ${\rm M_{gas}}$ is given by $M_{gas}=\rho_{gas}V$ So $M_{gas}\propto\rho_{gas}(\theta d_A)^3$

Now
$${\rm M_{gas}}$$
 is given by
$$M_{gas}=\rho_{gas}V$$
 so
$$M_{gas}\propto\rho_{gas}(\theta d_A)^3$$

and recall that gas density is related to the X-ray luminosity $L\propto \int n_p n_e dV \propto \rho_{gas}^2 V$

and we can relate L to the observed flux F:

$$L = F \times 4\pi d_L^2$$

where $d_{\rm L}$ is the luminosity distance to the cluster

$$L \propto \int n_p n_e dV \propto \rho_{gas}^2 V \qquad \qquad L = F \times 4\pi d_L^2$$

Rearrange for ρ in terms of observables F and θ

$$\rho_{gas} \propto \left(L/V\right)^{1/2}$$

$$\rho_{gas} \propto \left(\frac{Fd_L^2}{\theta^3 d_A^3}\right)^{1/2}$$

and finally

$$M_{gas} \propto \rho_{gas} (\theta d_A)^3 \propto (F\theta^3)^{1/2} d_L d_A^{3/2}$$

$$M_{gas} \propto (F\theta^3)^{1/2} d_L d_A^{3/2}$$

For a cluster with observed F within angular radius θ $M_{gas} \propto d_L d_A^{3/2}$

$$M_{gas} \propto (F\theta^3)^{1/2} d_L d_A^{3/2}$$

For a cluster with observed F within angular radius θ $M_{gas} \propto d_L d_A^{3/2}$

Can also show that if total mass is determined from X-ray hydrostatic analysis

 $M_{tot} \propto d_A$

so the **estimated** value of the baryon fraction depends on distance as M

$$f_{gas} = \frac{M_{gas}}{M_{tot}} \propto d_L d_A^{1/2}$$

$$f_{gas} = \frac{M_{gas}}{M_{tot}} \propto d_L d_A^{1/2}$$

So to determine f_{gas} (or f_b) from X-ray observation of cluster at redshift z * need to know d_A , d_L to z

Instead, if we know $f_{_{D}}$ from theory, can determine $d_{_{A}}$, $d_{_{L}}$ to z \star constrain E(z)

xkcd break

Allen et al. (2002) used 6 clusters for first study of $f_{gas}(z)$

Data favour $\Omega_M = 0.3, \Omega_\Lambda = 0.7$

Solve for cosmological parameters that give constant $f_{gas}(z)$

 $\Omega_M = 0.30 \pm 0.04, \Omega_\Lambda = 0.95^{+0.48}_{-0.72}$

More recently Allen et al (2008) used 42 clusters at 0.05 < z < 1.1

More recently Allen et al (2008) used 42 clusters at 0.05 < z < 1.1

- \star N.B. $\Omega_{_M}$ also constrained by overall fgas
 - improves constraints from fgas(z)
- * best constraints if combine with SNIa and CMB data

Method relies on determination of M_{tot}
* hydrostatic masses – are clusters really relaxed?

Maughan et al. (2007) ApJ, 659

Method relies on determination of M_{tot}
* hydrostatic masses – are clusters really relaxed?

- * Hard to tell for distant clusters
 - bright relaxed clusters biased towards line of sight mergers?

- Method relies on determination of M_{tot} * are X-ray masses accurate?
- Nagai et al (2007) analysed mock Xray observations of simulated clusters \star for relaxed clusters M_{gas} fine
- $\star~\text{M}_{_{tot}}$ underestimated by ~10%

- Method relies on determination of M_{tot} * are X-ray masses accurate?
- Nagai et al (2007) analysed mock Xray observations of simulated clusters ***** for relaxed clusters M_{gas} fine
- $\star~\text{M}_{_{tot}}$ underestimated by ~10%

 $M(r) = \frac{-r^2}{G \,\rho(r)} \frac{dP}{dr}$

Due to non-thermal pressure support

thermal pressure observed in X-ray
 extra pressure from bulk motions allows for larger M

Is f_{gas} the same for all clusters? \star radial profiles of f_{gas}

- * some variation at small radius, but consistent with same value at R2500
 - statistical variation at R2500 gives 5% distance uncertainty
 - ► c.f. 7% intrinsic distance uncertainty from SNIa

* variation <6% for **relaxed** clusters

***** lower still for more massive clusters

- Allen et al. derived f_{b} in R2500
- * is this large enough to be a standard bucket?
- Assumed clusters large enough that ratio of mass components is universal \star but f_{gas} increases with R
- * still increasing at R2500

- Allen et al. derived f_{b} in R2500
- \star is this large enough to be a standard bucket?
- Simulations used to estimate bias factor b
- ★ ratio of enclosed f_b to universal value
- relaxed clusters in sims agree with observed f_{gas}
- Use sims to correct f_{b} at
- R2500 by bias factor b~0.8
- \star does b vary with z?
- * sims suggest not, but could be important

Summary

Assuming clusters large enough to be representative, mass composition should match Universe

$$f_b = \frac{M_b}{M_{tot}} = \frac{\Omega_b}{\Omega_M}$$

 \star observe $f_{_{\rm b}}$ and constrain $\Omega_{_{\rm M}}$

Assuming f_{b} redshift independent, any observed variation with z due to assumed cosmology

$$f_{gas} = \propto d_L d_A^{1/2}$$

 \star constrain E(z) and from observed f_b(z)

combined with CMB and SNIa and including possible sytematics:

 $\Omega_M = 0.253 \pm 0.021 \qquad w = -0.98 \pm 0.07$

