V. The Cluster Mass Function
Baryon Fraction Summary

Assuming clusters large enough to be representative, mass composition should match Universe

$$f_b = \frac{M_b}{M_{tot}} = \frac{\Omega_b}{\Omega_M}$$

★ observe f_b and constrain Ω_M

Assuming f_b redshift independent, any observed variation with z due to assumed cosmology

$$f_{gas} = \propto d_L d_A^{1/2}$$

★ constrain $E(z)$ and from observed $f_b(z)$
★ combined with CMB and SNIa and including possible sytematics:

$$\Omega_M = 0.253 \pm 0.021 \quad w = -0.98 \pm 0.07$$
Recall that initially overdense regions overcome expansion to collapse to form structures

Structure in Universe depends on
★ expansion history: \(E(z) \)
★ initial density distribution: \(\sigma_8 \)

Number density of clusters sensitive to growth of structure
★ also sensitive to volume sampled
★ additional \(E(z) \) constraints

\[
dV_{\chi}(z) = \frac{c}{a_0 H_0} \frac{(1 + z)^2 d_A^2}{E(z)} d\Omega d\ell
\]
Mass Function

Mass function describes number of clusters of mass M per unit comoving volume

- can be derived analytically, but most commonly measured from large volume simulations
- simulate volume of Universe and detect and count structures of different mass at different z
- repeat for different cosmologies

Jenkins et al. (2001; MNRAS, 321)
Mass function describes number of clusters of mass M per unit comoving volume

- decreasing function of M
- steepens at high M
 - very high mass clusters extremely rare

Jenkins et al. (2001; MNRAS, 321)
Mass Function

Mass function describes number of clusters of mass M per unit comoving volume

- changing cosmological parameters affects:
 - shape of MF at $z=0$

Mass Function

Mass function describes number of clusters of mass M per unit comoving volume.

- changing cosmological parameters affects:
 - shape of MF at $z=0$
 - evolution of MF with redshift

Obtain cosmological constraints by counting $n(M)$ for clusters at different z

Measuring the Mass Function

To measure the MF observationally, need three stages

★ detect and count clusters
 ▶ cluster surveys

★ determine volume surveyed
 ▶ survey selection function

★ estimate cluster masses
 ▶ scaling relations
Cluster Surveys

As we saw, clusters first detected in optical
★ prone to projection effects
★ red sequence surveys promising
 ▶ select clusters based on galaxies of same colour

As we saw, clusters first detected in optical
prone to projection effects
red sequence surveys promising
 ▶ select clusters based on galaxies of same colour

Weak lensing surveys being developed

SZ surveys promising due to z independence
Vanderlinde et al (2010; ApJ 722) for early results
Serendipitous X-ray surveys currently most successful
☆ look at archive of X-ray images of compact targets
☆ detect clusters as extended sources in X-ray images

☆ follow up optical images to confirm galaxies
☆ optical spectra to measure redshift – confirmed cluster

Detection of a cluster depends on X-ray surface brightness
★ flux / solid angle
★ high SB – compact source – high contrast against background – easy to detect
★ low SB – diffuse source – low contrast – hard to detect
Detection of a cluster depends on X-ray surface brightness
★ flux / solid angle
★ high SB – compact source – high contrast against background – easy to detect
★ low SB – diffuse source – low contrast – hard to detect

SB depends on:
★ flux – depends on L and z (or M and z) – dominates
★ angular size – depends on physical size and z – we'll neglect this

Typically define flux-limited sample
★ i.e. detected all clusters brighter than F_{lim} in survey area
Cluster Masses

X-ray survey lets us count clusters and measure F and z

★ mass function needs number **density** of clusters in each **mass** bin ($M +/\Delta M$)
Cluster Masses

X-ray survey lets us count clusters and measure F and z
* mass function needs number **density** of clusters in each **mass** bin \((M \pm \Delta M)\)

To get masses:
* use F, z to give L
* use LM relation for M
Cluster Masses

X-ray survey lets us count clusters and measure F and z

★ mass function needs number **density** of clusters in each **mass** bin ($M \pm \Delta M$)

To get masses:

★ use F, z to give L
★ use LM relation for M

or

★ follow up X-ray observations to measure kT, Y_x
★ use MT or MY relations
Survey Volume

To compute number density, need survey volume
★ suppose we survey solid angle Ω on sky
★ detect n clusters in some mass bin $(M +/- \Delta M)$

Q: what volume do we use to get density?

$$dV_x(z) = \frac{c}{a_0 H_0} \frac{(1 + z)^2 d^2 A}{E(z)} d\Omega dz$$

Integrate dV over Ω from $z=0$ to z_{max}
★ how decide what z_{max}?
z_{max} is max redshift to which we could have detected a cluster
★ depends on L and hence M of cluster
★ at some z, model a cluster of mass M
★ calculate L for that M (LM relation)
★ calculate flux for that L, z (cosmology dependent)
★ z_{max} is when flux drops below flux limit
z_{max} is max redshift to which we could have detected a cluster

★ depends on L and hence M of cluster
★ at some z, model a cluster of mass M
★ calculate L for that M (LM relation)
★ calculate flux for that L, z (cosmology dependent)
★ z_{max} is when flux drops below flux limit

z_{max} depends on mass of cluster considered
★ $z_{\text{max}}(M)$
Survey Volume

Ω is survey area – also depends on cluster mass
★ survey area made up of many X-ray fields
★ sensitivity of fields not uniform
 ▶ different exposure times
 ▶ highest sensitivity in centre
★ bright sources could be detected near edge of field
★ faint sources only detected near centre or longer exposures
 ▶ smaller survey area

Chandra exposure map
Survey Volume

Ω is survey area – also depends on cluster mass
★ survey area made up of many X-ray fields
★ sensitivity of fields not uniform
 ▶ different exposure times
 ▶ highest sensitivity in centre
★ bright sources could be detected near edge of field
★ faint sources only detected near centre or longer exposures
 ▶ smaller survey area

Survey area depends on source flux
★ i.e. depends on mass and redshift
★ $\Omega(M, z)$
Survey Volume

Integrate volume element to get survey volume

\[V(M) \sim \int_0^{z_{\text{max}}(M)} \Omega(M, z) \, dz \]

- area and \(z_{\text{max}} \) both depend on \(M \)
 - volume surveyed depends on \(M \)
 - larger survey volume for more massive clusters
 - brighter and so easier to detect

- calculated \(V \) depends on LM relation and cosmology
 - often written as \(V(L) \)
 - referred to as selection function
“The other two are still lost on the infinite plane of uniform density”
- xkcd.com
Henry & Arnaud (1991) used temperature function of 25 clusters at $z<0.1$

\[
\sigma_8 = 0.59 \pm 0.02
\]
Reiprich & Bohringer (2002) used 63 clusters at $z<0.1$ to measure mass function:

$$\Omega_M = 0.12 \pm 0.05, \sigma_8 = 0.96 \pm 0.14$$

★ N.B. Ω_M and σ_8 are anti-corellated
More recently, Vikhlinin et al (2009; ApJ 692) used 37 clusters at $<z>=0.55$ and 49 clusters at $<z>=0.05$

- Taken from 400SD X-ray cluster survey
- Clusters reobserved with Chandra for high quality data
- Used Yx scaling relation to estimate cluster masses
More recently, Vikhlinin et al (2009; ApJ 692) used 37 clusters at $<z>=0.55$ and 49 clusters at $<z>=0.05$

Note how predicted function and measured values are both sensitive to cosmology for high-z clusters
Experimental Results

Vikhlinin's constraints on Ω_M and σ_8

- different techniques give range in $\sigma_8 - \Omega_M$ plane
- this work: $\sigma_8 = 0.813 \pm 0.012$
- simulations depend on σ_8 - like higher values as get more clusters!

Reiprich+ 2002

WMAP 3yr & 5yr
Experimental Results

Vikhlinin's constraints on Ω_Λ and w

- assumed flat Universe here
- note improvement of adding clusters
- from cluster mass function alone: $w = -1.14 \pm 0.21$
 - recall cluster $f_{\text{gas}}(z)$: $w = -1.14 \pm 0.31$

combined constraints:

$$w = -0.991 \pm 0.045$$

$$\Omega_\Lambda = 0.740 \pm 0.012$$
Caution: Mass Accuracy

Dominant source of error is mass scaling relations
★ LM relation for volume calculations
★ YM relation (or MT etc) for mass estimates

★ good agreement, but more precision required
★ tests of evolution of mass scaling relations needed
Caution: Mass Accuracy

Recall ~10% underestimate of X-ray masses c.f. simulations

* black contour shows effect on σ_8, Ω_M

How well are selection functions known?

★ Santos et al (2010; A&A) compared surface brightness concentration c_{SB} for different high-z X-ray samples.

Found significant difference in distributions

★ 400SD (Vikhlinin) survey missing concentrated clusters at high-z

★ clusters misclassified as point sources?

★ errors in selection function?
High mass clusters are
★ brighter & rarer than low mass
★ z_{max} larger for high mass clusters
 ▶ survey volume much larger
Caution: Selection Biases

High mass clusters are
★ brighter & rarer than low mass
★ z_{max} larger for high mass clusters
 ▶ survey volume much larger

Few low mass clusters detected at high-z as too faint
Few high mass clusters detected at low-z as too rare (small volume)
★ Mean z of massive clusters higher than low-mass clusters
★ **Malmquist bias** – accounted for by selection function
Caution: Selection Biases

Consider flux limited sample at some z

- flux limit corresponds to some mass from LM relation
- Scatter in $L(M)$ means some clusters with masses too low will be in sample and vice-versa
Caution: Selection Biases

Consider flux limited sample at some z

- flux limit corresponds to some mass from LM relation
- Scatter in $L(M)$ means some clusters with masses too low will be in sample and vice-versa

Slope of mass func means more clusters scattered into sample

- Biases sample to clusters with L_x high for their M
Caution: Selection Biases

Consider flux limited sample at some z
- flux limit corresponds to some mass from LM relation
- Scatter in $L(M)$ means some clusters with masses too low will be in sample and vice-versa

Slope of mass func means more clusters scattered into sample
- Biases sample to clusters with L_x high for their M
- Amount of bias depends on slope at limit & scatter
Caution: Selection Biases

Known as **Eddington Bias**
★ overestimate cluster masses and number densities

Can correct if scatter in LM is known
★ does scatter vary with z?
★ hard to measure, but may decrease with z
Cluster mass function sensitive to cosmology through
★ growth of structure – N(M)
★ geometry – d(z), V(z)

Large, well-calibrated X-ray samples measure shape and evolution of MF
★ selection function gives V(M,L)
★ best constraints from reobserving clusters to get T, Yx

Mass uncertainties dominant source of error
★ affect M and V calculations

Selection function essential to control biases
Clusters powerful cosmological probes, with different sensitivities, assumptions to other methods

Current best bet:
★ flat Universe, 70% dark energy
★ DE is in form of cosmological constant (w=-1)

combined constraints:
\[w = -0.991 \pm 0.045 \]
\[\Omega_\Lambda = 0.740 \pm 0.012 \]