Cosmology with Galaxy Clusters

V. The Cluster Mass Function

Assuming clusters large enough to be representative, mass composition should match Universe

$$f_b = \frac{M_b}{M_{tot}} = \frac{\Omega_b}{\Omega_M}$$

 \star observe $f_{_{\rm b}}$ and constrain $\Omega_{_{\rm M}}$

Assuming f_{b} redshift independent, any observed variation with z due to assumed cosmology

$$f_{gas} = \propto d_L d_A^{1/2}$$

 \star constrain E(z) and from observed f_b(z)

combined with CMB and SNIa and including possible sytematics:

 $\Omega_M = 0.253 \pm 0.021 \qquad w = -0.98 \pm 0.07$

Recall that initially overdense regions overcome expansion to collapse to form structures

Structure in Universe depends on * expansion history: E(z)* initial density distribution: σ_8

Number density of clusters sensitive to growth of structure * also sensitive to volume sampled

 \star additional E(z) constraints

$$dV_{\chi}(z) = \frac{c}{a_0 H_0} \frac{(1+z)^2 d_A^2}{E(z)} d\Omega dz$$

Mass function describes number of clusters of mass M per unit comoving volume

- can be derived analytically, but most commonly measured from large volume simulations
- * simulate volume of Universe and detect and count structures of different mass at different
- repeat for different cosmologies

Jenkins et al. (2001; MNRAS, 321)

Mass function describes number of clusters of mass M per unit comoving volume

- * decreasing function of M
 * steepens at high M
 - very high mass clusters extremely rare

Jenkins et al. (2001; MNRAS, 321)

Mass function describes number of clusters of mass M per unit comoving volume

 changing cosmological parameters affects:

shape of MF at z=0

Fedeli et al, (2008, A&A, 486)

Mass function describes number of clusters of mass M per unit comoving volume

- changing cosmological parameters affects:
 - ► shape of MF at z=0
 - evolution of MF with redshift

Obtain cosmological constraints by counting n(M) for clusters at different z

Fedeli et al, (2008, A&A, 486)

Measuring the Mass Function

To measure the MF observationally, need three stages

- detect and count clusters
 - cluster surveys
- * determine volume surveyed> survey selection function
- * estimate cluster masses
 > scaling relations

Cluster Surveys

- As we saw, clusters first detected in optical
- * prone to projection effects
- * red sequence surveys promising
 - select clusters based on galaxies of same colour

Cluster Surveys

- As we saw, clusters first detected in optical
- * prone to projection effects
- * red sequence surveys promising
 - select clusters based on galaxies of same colour
- Weak lensing surveys being developed
- SZ surveys promising due to z independence * Vanderlinde et al (2010; ApJ 722) for early results

X-ray Surveys

Serendipitous X-ray surveys currently most successful
* look at archive of X-ray images of compact targets
* detect clusters as extended sources in X-ray images

follow up optical images to confirm galaxies
 optical spectra to measure redshift – confirmed cluster

Vikhlinin et al (1998; ApJ 502)

X-ray Surveys

Detection of a cluster depends on X-ray surface brightness

- * flux / solid angle
- high SB compact source high contrast against background – easy to detect
- * low SB diffuse source low contrast hard to detect

X-ray Surveys

Detection of a cluster depends on X-ray surface brightness

- * flux / solid angle
- high SB compact source high contrast against background – easy to detect
- ★ low SB diffuse source low contrast hard to detect

SB depends on:

- \star flux depends on L and z (or M and z) dominates
- * angular size depends on physical size and z we'll neglect this

Typically define flux-limited sample

 \star i.e. detected all clusters brighter than F_{lim} in survey area

Cluster Masses

X-ray survey lets us count clusters and measure F and z
 * mass function needs number **density** of clusters in each **mass** bin (M +/- ΔM)

Cluster Masses

X-ray survey lets us count clusters and measure F and z
 * mass function needs number **density** of clusters in each **mass** bin (M +/- ΔM)

To get masses: * use F, z to give L * use LM relation for M

Cluster Masses

X-ray survey lets us count clusters and measure F and z
 * mass function needs number **density** of clusters in each **mass** bin (M +/- ΔM)

To get masses: * use F, z to give L * use LM relation for M

^ use ∟ or

 follow up X-ray observations to measure kT, Yx

★ use MT or MY relations

To compute number density, need survey volume
* suppose we survey solid angle Ω on sky
* detect n clusters in some mass bin (M +/- ΔM)

Q: what volume do we use to get density?

$$dV_{\chi}(z) = \frac{c}{a_0 H_0} \frac{(1+z)^2 d_A^2}{E(z)} d\Omega dz$$

Integrate dV over Ω from z=0 to z_{max} \star how decide what z_{max} ?

- $\boldsymbol{z}_{\text{max}}$ is max redshift to which we could have detected a cluster
- * depends on L and hence M of cluster
- * at some z, model a cluster of mass M
- calculate L for that M (LM relation)
- * calculate flux for that L, z (cosmology dependent)
- $\star\,z_{_{max}}$ is when flux drops below flux limit

- $\boldsymbol{z}_{\text{max}}$ is max redshift to which we could have detected a cluster
- * depends on L and hence M of cluster
- * at some z, model a cluster of mass M
- calculate L for that M (LM relation)
- * calculate flux for that L, z (cosmology dependent)
- $\star\,z_{_{max}}$ is when flux drops below flux limit
- z_{max} depends on mass of cluster considered $\star z_{max}(M)$

- Ω is survey area also depends on cluster mass
- * survey area made up of many X-ray fields
- sensitivity of fields not uniform
 - different exposure times
 - highest sensitivity in centre
- bright sources could be detected near edge of field
- * faint sources only detected near centre or longer exposures
 - smaller survey area

Chandra exposure map

- Ω is survey area also depends on cluster mass
- * survey area made up of many X-ray fields
- sensitivity of fields not uniform
 - different exposure times
 - highest sensitivity in centre
- bright sources could be detected near edge of field
- ★ faint sources only detected near centre or longer exposures
 ▶ smaller survey area
- Survey area depends on source flux * i.e. depends on mass and redshift * Ω(M,z)

Chandra exposure map

Integrate volume element to get survey volume

$$V(M) \sim \int_0^{z_{max}(M)} \Omega(M, z) dz$$

 \star area and z_{max} both depend on M

- volume surveyed depends on M
- Iarger survey volume for more massive clusters
- brighter and so easier to detect
- * calculated V depends on LM relation and cosmology
 - often written as V(L)
 - referred to as selection function

xkcd break

"The other two are still lost on the infinite plane of uniform density" - xkcd.com

Henry & Arnaud (1991) used temperature function of 25 clusters at z<0.1

* Temp function related to mass function by MT relation $\sigma_8 = 0.59 \pm 0.02$

Reiprich & Bohringer (2002) used 63 clusters at z<0.1 to measure mass function

 $\Omega_M = 0.12 \pm 0.05, \sigma_8 = 0.96 \pm 0.14$

***** N.B. Ω_M and σ_8 are anti-corellated

More recently, Vikhlinin et al (2009; ApJ 692) used 37 clusters at $\langle z \rangle = 0.55$ and 49 clusters at $\langle z \rangle = 0.05$

- * Taken from 400SD X-ray cluster survey
- * Clusters reobserved with Chandra for high quality data
- Used Yx scaling relation to estimate cluster masses

More recently, Vikhlinin et al (2009; ApJ 692) used 37 clusters at $\langle z \rangle = 0.55$ and 49 clusters at $\langle z \rangle = 0.05$

 Note how predicted function and measured values are both sensitive to cosmology for high-z clusters

Vikhlinin's constraints on Ω_M and σ_8

- * different techniques give range in $\sigma_8 \Omega_M$ plane * this work: $\sigma_8 = 0.813 \pm 0.012$
- ***** simulations depend on σ_8 like higher values as get more clusters!

Vikhlinin's constraints on $\ \Omega_{\Lambda}$ and w

combined constraints: $w = -0.991 \pm 0.045$ $\Omega_{\Lambda} = 0.740 \pm 0.012$

* assumed flat Universe here

- * note improvement of adding clusters
- * from cluster mass function alone: w = -1.14 +/- 0.21
 - ► recall cluster f_{gas}(z): w = -1.14 +/- 0.31

Caution: Mass Accuracy

Dominant source of error is mass scaling relations
* LM relation for volume calculations
* YM relation (or MT etc) for mass estimates

- Vikhlinin et al (2009; ApJ, 692) tested X-ray YM relation against weak lensing masses
- good agreement, but more precision required
- tests of evolution of mass scaling relations needed

Caution: Mass Accuracy

- Recall ~10% underestimate of X-ray masses c.f. simulations
- ***** black contour shows effect on σ_8, Ω_M

Caution: Selection Function

How well are selection functions known?

- Santos et al (2010; A&A) compared surface brightness concentration c_{SB} for different high-z X-ray samples
- Found significant difference in distributions
- * 400SD (Vikhlinin) survey missing concentrated clusters at high-z
- * clusters misclassified as point sources?
- * errors in selection function?

- High mass clusters are
 * brighter & rarer than low mass
 * z_{max} larger for high mass clusters
 - survey volume much larger

High mass clusters are* brighter & rarer than low mass

- $\star z_{max}$ larger for high mass clusters
 - survey volume much larger
- Few low mass clusters detected at high-z as too faint
- Few high mass clusters detected at low-z as too rare (small volume)
- Mean z of massive clusters higher than low-mass clusters
- Malmquist bias accounted for by selection function

Consider flux limited sample at some z

- * flux limit corresponds to some mass from LM relation
- * Scatter in L(M) means some clusters with masses too low will be in sample and vice-versa

Consider flux limited sample at some z

- * flux limit corresponds to some mass from LM relation
- Scatter in L(M) means some clusters with masses too low will be in sample and vice-versa

Slope of mass func means **more** clusters scattered **into** sample

 Biases sample to clusters with Lx high for their M

Consider flux limited sample at some z

- * flux limit corresponds to some mass from LM relation
- Scatter in L(M) means some clusters with masses too low will be in sample and vice-versa
- Slope of mass func means **more** clusters scattered **into** sample
- Biases sample to clusters with Lx high for their M
- Amount of bias depends on slope at limit & scatter

Known as **Eddington Bias**

• overestimate cluster masses and number densities

Can correct if scatter in LM is known

- \star does scatter vary with z?
- hard to measure, but may decrease with z (Maughan 2007; ApJ, 668)

Summary 1

Cluster mass function sensitive to cosmology through

- ★ growth of structure N(M)
- * geometry d(z), V(z)

Large, well-calibrated X-ray samples measure shape and evolution of MF

- selection function gives V(M,L)
- * best constraints from reobserving clusters to get T, Yx

Mass uncertainties dominant source of error * affect M and V calculations

Selection function essential to control biases

Summary 2

Clusters powerful cosmological probes, with different sensitivities, assumptions to other methods

combined constraints: $w = -0.991 \pm 0.045$ $\Omega_{\Lambda} = 0.740 \pm 0.012$

Current best bet:

- ★ flat Universe, 70% dark energy
- * DE is in form of cosmological constant (w=-1)

