
Astronomical Data Analysis Software and Systems XXIII
ASP Conference Series, Vol. 485
N. Manset and P. Forshay, eds.
c©2014 Astronomical Society of the Pacific

Visualizing Large Datasets in TOPCAT v4

M. B. Taylor

H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol,

Avon BS8 1TL, UK

Abstract. TOPCAT is a widely used desktop application for manipulation of astro-
nomical catalogs and other tables, which has long provided fast interactive visualiza-
tion features including 1, 2 and 3-d plots, multiple datasets, linked views, color coding,
transparency and more. In Version 4 a new plotting library has been written from scratch
to deliver new and enhanced visualization capabilities. This paper describes some of
the considerations in the design and implementation, particularly in regard to providing
comprehensible interactive visualization for multi-million point datasets.

1. Introduction

TOPCAT (Tool for OPerations on Catalogs And Tables) is a desktop application for
manipulating tabular data, typically source catalogs. Its aim is to facilitate all the me-
chanical operations required when working with tables, including data and metadata
browsing, crossmatching, column calculations, row selections, and access to Virtual
Observatory and other external services, so that astronomers can concentrate on actu-
ally extracting science from the data. It is open source, written in pure Java, and can
comfortably deal with millions of rows and hundreds of columns on standard desktop
or laptop machines.

Sophisticated multi-dimensional visualization capabilities have long been part of
its capabilities, but a number of requirements were proving difficult to accomodate into
the existing framework, so version 4, released in March 2013, includes a rewrite from
scratch of the plotting classes to deliver more flexibility, extensibility, and improved
responsiveness and performance for large datasets.

This paper does not list the new features in detail, but discusses some of the design
considerations and solutions that went into the development, especially with a view to
scaling up to larger datasets.

2. Variable-Density Plots

When producing interactive visualization for large point clouds at least two issues
present themselves. The first concerns performance: it is most important to provide fast
and responsive rendering of the graphics so that the user can make many exploratory
changes without having to wait for screen refreshes. The more fluid the interactive ex-
perience, the better it is for data investigation, and hence scientific results. Much work
has gone into producing efficient code to this end, though more remains to be done.

257



258 Taylor

5

1 0

1 5

2 0

(a)

5

1 0

1 5

2 0

(b)

5

1 0

1 5

2 0

(c)

5

1 0

1 5

2 0

(d)

5

1 0

1 5

2 0

(e)

5

1 0

1 5

2 0

(f)

Figure 1. Standard graphical representations of a point cloud in 2 dimensions.

However, a question of at least equal importance is how to present a large dataset
to the user in a comprehensible way. Supposing a collection of ten million points, each
with multiple attributes, how can a user equipped with a million-pixel screen and a
human brain understand the information it embodies, both at the scale of the whole
dataset, and at the scale of individual elements? Since the datasets we are interested in
are typically source catalogs, each item has importance of its own as well as as part of
a larger whole — one of those rows might be your favourite object, and you may want
to examine its characteristics in detail.

Clearly a single view cannot convey information about each individual element
of a multi-million-row collection. The capability for the user to navigate interactively
between the large scale (high density regime) and small scale (low density regime) is
therefore essential. This in turn raises the question of how to represent the data in a way
that makes sense for both high and low point densities. Visualization tools, including
earlier versions of TOPCAT, have typically provided representations suitable for each
regime but lack a single representation that works well for both. This lack inhibits fluid
navigation between large and small scale views, and also makes it difficult to see both
high and low density regions of a single plot at once.

Figure 1 shows some conventional representations for point cloud data in two di-
mensions. In low density regions a conventional scatter plot with medium-sized mark-
ers (a) is most appropriate, but it does not reveal high-density structure. For higher
density regions smaller markers work better, down to a single pixel (b), but even this
fails for point densities greater than one per pixel, and single points are too small to see
easily at lower densities. Plotting markers with configurable transparency (c), provided
in earlier versions of TOPCAT, can work well for relatively small density variations,
but otherwise tends to lose detail at one or both ends of the density scale. Contour
plots (d) are good for high density but poor at low density. 2-d histograms, also known
as density maps, in which each bin is represented as a square block of pixels colored



Visualizing Large Datasets in TOPCAT v4 259

5

1 0

1 5

2 0

Figure 2. Hybrid scatter plot/density map.

according to point count, can offer a reasonable compromise, but choosing the bin size
presents problems: small bins (e) tend to result in noisy images and make single points
hard to see, while large bins (f) lose positional resolution by quantising the space. It is
also impossible in density maps to distinguish species by using different marker shapes.

In TOPCAT v4 we introduce a hybrid scatter plot/density map (Figure 2). This is
a convolution of a density map with a shaped marker. A pixel-scale grid is used as for a
single-pixel density map, but for each data point, instead of incrementing the count in a
single bin, the count is incremented in all bins covered by the shaped marker assigned
to the data species. Pixels are then colored by count according to a configurable color
map. Another way to consider this is as a scatter plot with non-standard compositing.

The great benefit of this representation is that it transitions smoothly between a
scatter plot at low densities and a (smoothed) density map at high densities. Not only
can this simultaneously reveal high-density structure and outlier positions, but it also
works well for low and high magnification of the same data. This latter is particu-
larly useful as it means the user can zoom in and out interactively between large scale
structure and single objects without having to change between plot types.

While this works well for single-species plots in two or three dimensions, it should
be noted that it lends itself less well to multiple overplotted datasets, since if color codes
for density, it cannot be used so easily to identify different species. Various options are
provided to address this, including use of different shaped markers and per-species color
maps that code density by the Value component of the color HSV triple.

3. 3-Dimensional Navigation

Interactive navigation in two dimensions is straightforward, since a mouse can be used
to “grab” and drag the plot around, and zooming can be centered around the mouse
position. An intuitive user interface for three dimensional navigation is harder to define
however, in particular because the 2-d mouse position corresponds to a line of sight
rather than a point, so does not define an unambiguous center for zooming operations.

This degeneracy is broken by taking the mouse position to indicate for zooming
purposes the “center of mass” of the data points visible along the line of sight it denotes.



260 Taylor

For typical point clouds this line of sight center of mass rule works well; pointing at a
high-density cluster usually yields the center of the cluster, and pointing at an isolated
object along a low-density line of sight yields that object’s position. It is not possible
to navigate in this way to the center of a void, however, this is often not required.

4. Configuration Architecture

Since target datasets vary widely, it is essential to provide many configuration options
for visualization; a few examples are marker color, size and shape, axis ranges and
annotations, color maps and scaling, contour levels and smoothing, legend appearance
and placement. A typical plot is controlled by several tens of options alongside the ac-
tual data coordinate values. This complexity presents challenges in both user interface
design and plotting implementation.

For specifying many options a large user interface is unavoidable, presenting a
potentially serious usability issue. This is mitigated by ensuring that all options have
default values that together give a reasonable plot. In particular, when a plotting win-
dow is first opened it always tries to display some plausible plot rather than a blank
view. The user interface then provides a range of configuration controls grouped by
function that can be adjusted to produce the plot that the user wants to see.

From the implementation point of view, each configuration option is represented
by a “ConfigKey” object. Each key can supply user metadata (name, description), value
type, a sensible default value, a GUI component for specifying values, and methods for
mapping between typed values and string representations. Each plot type (e.g. 2D, 3D,
Sky) and each data layer type (e.g. scatter plot, error bars, contours, analytic function)
can report the keys that together specify its configuration. Different components of
the plotting system then make use of these to build the user interface and gather con-
figuration information without hard-coded knowledge of each plot and layer type. In
TOPCAT, the plot window establishes which plot type and layers are in use, interro-
gates them for their ConfigKeys, and builds the user interface by stacking the relevant
GUI components. When the user interacts with any of these, the plotting system es-
tablishes the value for each one, bundles the values together, and passes them to the
plotting classes to generate a drawing on the screen. Since values can be mapped to
strings, the configuration may be represented as a map of string-string key-value pairs,
making it possible to drive the plotting externally, for instance from a command-line
interface or via inter-process communication. Finally, the user documentation for each
plot type can be generated programmatically at documentation build time by interro-
gating each key for its user metadata. The result is that new configuration options can
be introduced easily by making only localised changes to plot type or layer type code.

5. Current and Future Status

TOPCAT v4.0 provides flexible, extensible, and high performance visualization. In
its existing form as a general rule it performs well for datasets up to around a million
rows and tolerably for those in the ten million range, though users have reported plots
with up to 300 million rows. It is hoped to push these numbers up by around an order
of magnitude by multithreading and other optimisations within the next year or two.
More plot types and data layer types will also be introduced.


