
TOPCAT: Working with data &
working with users

Mark Taylor (University of Bristol)

ADASS XXVII

Santiago de Chile

October 2017

$Id: talk2-lite.tex,v 1.2 2017/10/24 15:12:07 mbt Exp $

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 1/24

Outline

Session topic:

Human-Computer Interaction, UI Design Guidelines & Interfaces to Big Data Sets

Talk outline:

• TOPCAT introduction

• Technical Questions (with answers)

. external services, data access,
scalability, implementation platform, ...

• Human Questions (with ideas)

. requirements, user engagement,
user interfaces, marketing, ...

• Summary

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 2/24

Outline

xkcd.com

Session topic:

Human-Computer Interaction, UI Design Guidelines & Interfaces to Big Data Sets

Talk outline:

• TOPCAT introduction

• Technical Questions (with answers)

. external services, data access,
scalability, implementation platform, ...

• Human Questions (with ideas)

. requirements, user engagement,
user interfaces, marketing, ...

• Summary

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 2/24

TOPCAT

TOPCAT: Does what you want with tables

Aims to do all the mechanical things
that astronomers need to work with
source catalogues (and other tables),
so they can concentrate on science

• Under development since 2003

• O(103) active users

• ∼ 400 citations

STILTS provides a command-line
interface to the same functionality.

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 3/24

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 4/24

Technical Questions

W. Heath Robinson

• External service use

• Data access model

• Local I/O

• Scalability

• Platform

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 5/24

External Services

Much of TOPCAT’s power comes from working with other software

• Virtual Observatory

. Table access: TAP, Cone Search, Simple lmage Access, Simple Spectral Access, ...

. Data discovery: Registry

. Desktop interoperability: SAMP

. Standardisation means effort is manageable

◦ Developer benefit: Implement once for many services
◦ User benefit: Consistent user interface for many services

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 6/24

External Services

Much of TOPCAT’s power comes from working with other software

• Virtual Observatory

. Table access: TAP, Cone Search, Simple lmage Access, Simple Spectral Access, ...

. Data discovery: Registry

. Desktop interoperability: SAMP

. Standardisation means effort is manageable

◦ Developer benefit: Implement once for many services
◦ User benefit: Consistent user interface for many services

• A few non-standard data access services:

. VizieR, GloTS, CDS X-Match — too useful to be without

. BaSTI, Millennium simulations — historical relics

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 6/24

Data Access Model

There are smart ways to work with big data:

• Bring the computation to the data

• Progressive downloads (HiPS)

• ...

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 7/24

Data Access Model

There are smart ways to work with big data:

• Bring the computation to the data

• Progressive downloads (HiPS)

• ...

TOPCAT does it the dumb way:

• Download a static table to the client, and then use it

. Disadvantage: user needs to pre-select data if input dataset is very large

◦ In practice, usually works fine; many tables are small(ish) anyway,
and pre-selection down to a few million rows is usually acceptable

. Advantage: low-tech approach, not much to go wrong

◦ No server-side component required
◦ Robust against network issues

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 7/24

Local I/O

Traditional data access model needs good I/O to local files

• Users can store large datasets locally

• Application may download large datasets from VO services

(for immediate use or save and later reload)

Requirements:

• Fast load, efficient access

• Random access

• Preserve metadata

Solution:

• FITS BINTABLE: Compact, preserves data, data laid out predictably

• Memory mapping: Instant load, fast read, random access, caching delegated to OS,

does not use Java’s limited heap space

• Some customisation of FITS format:

. Store rich metadata in VOTable format in unused primary HDU (“FITS-plus”)

. Column-oriented storage option for large/wide tables (“colfits”)

. Private convention for >999 columns

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 8/24

Local I/O

Predictable layout + memory mapping
−→ Fast random access to large files

gaia source table (Gaia DR1)
109 rows × 33 columns
180 Gbyte colfits file

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 9/24

Scalability

Gaia DR1 source density: 1.1 Grow, 128 Mb RAM, 1 CPU, 25 mins.
STILTS plot from single colfits file

Most basic functions work with unlimited row count
• Interfaces not arrays

. Can be backed by mapped file, stream from URL, array, ...

• longs (64-bit) not ints (32-bit)

. 231 ∼ 2 billion; Gaia DR2 source list ∼ 2 billion

• Implement using iterated not indexed access where possible

. Random access required for some algorithms but not most

• Avoid memory usage that scales with row count

. E.g. store pixel grids not point lists when plotting

In practice:

• TOPCAT

. 1M rows no problem

. 10M rows not bad

. 100s Mrows possible

• STILTS

. No limits for most things

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 10/24

Platform: Desktop Java

Build/deploy benefits:
• Easy deployment: single jar file to download + run, user just needs Java Runtime

+ a few other optional possibilities: Un*x script, WebStart, DMG file, Debian package

• No user build/library issues

• No OS/platform-dependent issues (well, almost none)

. Stick rigidly to pure Java (no native/C-based libraries)

. Avoid libraries relying on system-dependent behaviour

• No platform version issues

. Java SE backward compatibility is excellent (so far)

. Currently target Java SE 1.6 (very old) so any java runtime will work

Other nice features:
• Static typing/picky compiler, good libraries, concurrency support, javadocs, ...

Disadvantages:
• Some system-dependent features unavailable (GPUs, multi-touch, ...)

• C-based libraries unavailable (HDF5)

• OS/Desktop integration not always perfect, Swing is a bit ugly

• Some people hate Java

. Too bad!

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 11/24

Human Questions

• Take-up

• Gathering requirements

• User engagement

• Prioritising implementation

• GUI design

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 12/24

Take-Up

ADS

• Getting people to use software is hard

• Writing good software is not enough!

• I’m lazy and hate learning new ways to do things; probably other people are the same

• Human-Computer Interaction doesn’t start when the user runs an application,

it starts when she thinks about how or whether to run it (installation, go to a web page, ...)

• What helps?

• Low barrier to initial use (installation and startup as easy as possible)

• First impressions (beginning use as easy & rewarding as possible)

• Documentation? (tutorial and reference documents, FAQs, examples, videos?)

• Tutorials, conferences

• Word of mouth

• There are usually external factors

• politics, geography, ...

• I don’t have a magic bullet

• It’s a long job ...
Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 13/24

Gathering Requirements

Ask the users?

“If I had asked my customers what they wanted, they would have said faster horses.”

— (mis?)attributed to Henry Ford

• Users don’t know what they want.

• It’s not really their job to know, and often they don’t like being asked.

Top-down visionary design?

• Nice idea, but I’m not smart enough.

• I don’t know what users want either, though it is my job to know.

• Defining requirements is hard. It’s especially hard when the landscape of what’s possible

(available data, available services) keeps changing.

Incremental development, informed by user engagement

• Short development cycle (agile?)

• Provide some basic functionality, let users play with it, see how it works,

see how or whether to improve it

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 14/24

User Engagement

• Encourage how-to queries and bug reports
• They can give you a good idea what people are doing or trying to do,

which sometimes suggests missing functionality or opportunities for improvement

• Have a public mailing list.
• Sometimes users answer each others questions.

• It’s a good encouragement to write good replies when it’s in public.

• (but sometimes users prefer to discuss things in private)

• Social media?

• Preparing and delivering demos and tutorials is a good discipline.
• It can give a user’s-eye view of missing functionality

• It’s a strong motivation to fix what’s embarrassingly bad.

• Have contact with multiple projects
• Get funded by a succession of different projects?

• VO community has been good for communication

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 15/24

Prioritising Implementation

How to prioritise/select from the to-do list?

• Do the easy things first!

• Do things that several people have asked for

• Features must be discoverable

. New features must have a comprehensible UI

. Avoid degrading existing UIs (but sometimes you have to)

. Avoid demoware (expert-only controls, undiscoverable functions, data-specific
functionality)

• Beware feature creep

. TOPCAT is for tables; adding spectrum/time-series functions is tempting but may
complicate the UI

“Every program attempts to expand until it can read mail.
Those programs which cannot so expand are replaced by ones which can.”

— Zawinski’s Law of Software Development

. SAMP helps (delegate to Aladin, DS9, SPLAT, ...)

• Have good communication between design, implementation and user support teams

. That’s easy for me to say :-)

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 16/24

GUI Design Principles

Aims:
• Simplicity

• Flexibility

• Responsiveness

• Visibility of status

• Recognition not recall

• Error reporting/error prevention

• Documentation

Obstacles:
• Screen real estate

• Simplicity vs. flexibility

• Representing many-element status

• Recognition for unfamiliar functions

• Responsiveness for large datasets

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 17/24

GUI Design Principles

The problem:
• It’s hard to control many options from a comprehensible UI

... and gets harder the more capable the software is

• If you get it wrong, the implementation is pointless

. People probably won’t use a feature that’s hard to understand

. People definitely won’t use a feature they don’t know is there

Aims:
• Simplicity

• Flexibility

• Responsiveness

• Visibility of status

• Recognition not recall

• Error reporting/error prevention

• Documentation

Obstacles:
• Screen real estate

• Simplicity vs. flexibility

• Representing many-element status

• Recognition for unfamiliar functions

• Responsiveness for large datasets

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 17/24

GUI Design in Practice

Users are lazy when operating software
• They don’t read manuals

• They don’t like having to think about the user interface

• They don’t like making difficult decisions

This is because they are thinking about astronomy

Require minimal user effort:
User action required Acceptability

None Good

Something obvious OK

Multiple choice Not bad

Fill in a blank field Avoid

Explorable interface (for the visualisation GUI):
• Initially display something, not nothing

• Put common controls somewhere obvious

• Put other controls somewhere discoverable

• Fiddling with any control should do something visible, immediately

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 18/24

GUI Examples

Show something
not nothing

• Plot window opens with

a plot visible

Defaults give
something reasonable

• Axis auto-range determination

• Representation makes sense for

dense or sparse data

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 19/24

GUI Examples

Obvious how to do
basic things

• Plotted quantity controls

are prominent

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 20/24

GUI Examples

Clues visible for
how do to less
obvious things

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 21/24

GUI Examples

Many more sophisticated
options available if you
go looking

• Controls should give an idea

what they will do

• A comprehensible amount

of options should be visible

at any one time

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 22/24

GUI Examples

Instant feedback when
adjusting controls

• Easy to find out what controls do

by trying them out

• No “replot” button

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 23/24

Final Comments

TOPCAT’s Top Tips for application development:∗

It is possible to write client-side software for quite large datasets

. Build scalability in from the bottom up; understand bottlenecks

. Use memory-mapped files

Steal judiciously

. Use other people’s libraries/services if they do what you want

. Have complete control over core functions; that may mean reinventing wheels

Persuading people to use (even good) software is hard

. Make installation and beginning use really easy

. Accommodate user laziness

Defining detailed requirements is hard

. Short development cycles informed by user input/support

. Try to think like a user

. Don’t do anything clever! Leave the astronomy to the astronomers.

GUI design is really hard

. Provide working defaults wherever possible

. Explorable interfaces — obvious things easy, other things discoverable

Project management is easy for a 1-person project
∗: YMMV

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 24/24

Extra Slides

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 25/24

Exploratory/Reproducible Modes

TOPCAT: GUI tool

• Suitable for exploring data

STILTS: command-line suite

• Scriptable

• Can work with streams (arbitrarily large tables)

• Various flavours: Un*x shell, Jython front-end, CGI-BIN interface, API, ...

• Steeper learning curve; citations suggest STILTS usage much lower than TOPCAT

GUI/CLI integration

• From v4.5 (Sept 2017) TOPCAT can export STILTS plot commands

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 26/24

GUI Examples

Provide scripted equivalents

• New in TOPCAT 4.5:

STILTS plot command export

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 27/24

Platform: Why not a web application?

Web app benefits:

• Very easy for users to start up

Client-server issues:

• scalability (requires centralised resources, scaling with users)

• availability (only works online, when services are running)

• implementation complexity (client-server coordination complicates things)

Implementation issues:

• Browser (+version) dependency

GUI issues:

• lots of windows - doesn’t fit well into a browser

Sandboxing issues:

• local data access

• (no mmap)

Mark Taylor, TOPCAT, ADASS XXVII, Santiago de Chile, October 2017 28/24

