
STILTS - Starlink Tables Infrastructure Library Tool Set

Version 3.4-10

Starlink User Note256
Mark Taylor
29 February 2024

Abstract

STILTS is a set of command-line tools for processing tabular data. It has been designed for, but is
not restricted to, use on astronomical data such as source catalogues. It contains both generic
(format-independent) table processing tools and tools for processing VOTable documents. Facilities
offered include crossmatching, format conversion, format validation, column calculation and
rearrangement, row selection, sorting, plotting, statistical calculations and metadata display.
Calculations on cell data can be performed using a powerful and extensible expression language.

The package is written in pure Java and based on STIL, the Starlink Tables Infrastructure Library.
This gives it high portability, support for many data formats (including FITS, VOTable, text-based
formats and SQL databases), extensibility and scalability. Where possible the tools are written to
accept streamed data so the size of tables which can be processed is not limited by available
memory. As well as the tutorial and reference information in this document, detailed on-line help is
available from the tools themselves.

The STILTS application is available under the GNU General Public License (GPL) though most
parts of the library code may alternatively be used under the GNU Lesser General Public License
(LGPL).

Contents
Abstract... 1
1 Introduction.. 9
2 The stilts command... 11

2.1 Stilts flags.. 11
2.2 Task Names... 12
2.3 Task Arguments.. 13
2.4 Getting Help.. 14
3 Invocation.. 17
3.1 Class Path.. 18
3.2 Java Flags.. 18
3.3 System Properties.. 19
3.4 JDBC Configuration.. 21
4 JyStilts - STILTS from Python... 24
4.1 Running JyStilts.. 25
4.2 Table I/O... 26
4.3 Table objects... 27
4.4 Table filter commands (cmd_*)... 29
4.5 Table output modes (mode_*).. 30
4.6 Tasks.. 30
4.7 Calculation Functions.. 31
5 Table I/O.. 32
5.1 Table Formats.. 32
5.1.1 Input Formats... 32
5.1.1.1 fits ... 33
5.1.1.2 colfits ... 34
5.1.1.3 votable ... 34
5.1.1.4 cdf ... 35
5.1.1.5 csv ... 35
5.1.1.6 ecsv ... 37
5.1.1.7 ascii ... 38
5.1.1.8 ipac ... 39
5.1.1.9 pds4 ... 40
5.1.1.10 mrt ... 41
5.1.1.11 parquet ... 42
5.1.1.12 hapi ... 43
5.1.1.13 feather ... 43
5.1.1.14 gbin ... 43
5.1.1.15 tst ... 45
5.1.1.16 wdc ... 45
5.1.2 Output Formats... 46
5.1.2.1 fits ... 46
5.1.2.2 colfits ... 47
5.1.2.3 votable ... 48
5.1.2.4 csv ... 49
5.1.2.5 ecsv ... 49
5.1.2.6 ascii ... 50
5.1.2.7 ipac ... 51
5.1.2.8 parquet ... 52
5.1.2.9 feather ... 53
5.1.2.10 text ... 53
5.1.2.11 html ... 54
5.1.2.12 latex ... 54
5.1.2.13 tst ... 55
5.1.2.14 mirage ... 55
5.2 Input Locations.. 56
5.3 Input Schemes... 57
5.3.1 skysim .. 58
5.3.2 attractor ...58

5.3.3 jdbc .. 59
5.3.4 loop .. 60
5.3.5 test .. 60
5.3.6 class .. 61
5.3.7 hapi .. 61
5.4 Authentication... 62
6 Table Pipelines.. 64
6.1 Processing Filters.. 64
6.1.1 addcol .. 65
6.1.2 addpixsample ...65
6.1.3 addresolve ...66
6.1.4 addskycoords ...66
6.1.5 assert .. 67
6.1.6 badval .. 67
6.1.7 cache .. 67
6.1.8 check .. 68
6.1.9 clearparams ...68
6.1.10 collapsecols ...68
6.1.11 colmeta .. 69
6.1.12 constcol ...69
6.1.13 delcols .. 69
6.1.14 every .. 70
6.1.15 explodeall ...70
6.1.16 explodecols ...70
6.1.17 fixcolnames ...70
6.1.18 group .. 71
6.1.19 head .. 71
6.1.20 healpixmeta ...71
6.1.21 keepcols ...72
6.1.22 meta .. 72
6.1.23 progress ...73
6.1.24 random .. 73
6.1.25 randomview ...73
6.1.26 repeat .. 74
6.1.27 replacecol ...74
6.1.28 replaceval ...74
6.1.29 rowrange ...74
6.1.30 select .. 75
6.1.31 seqview .. 75
6.1.32 setparam ...75
6.1.33 sort .. 75
6.1.34 sorthead ...76
6.1.35 stats .. 76
6.1.36 tablename ...77
6.1.37 tail .. 77
6.1.38 transpose ...77
6.1.39 uniq .. 78
6.2 Specifying a Single Column.. 78
6.3 Specifying a List of Columns.. 79
6.4 Output Modes.. 79
6.4.1 cgi .. 80
6.4.2 checksum ...80
6.4.3 count .. 80
6.4.4 discard .. 80
6.4.5 gui .. 80

6.4.6 meta .. 81
6.4.7 out .. 81
6.4.8 plastic .. 81
6.4.9 samp .. 82
6.4.10 stats .. 82
6.4.11 topcat .. 83
6.4.12 tosql .. 83
7 Crossmatching.. 85
7.1 Match Criteria... 85
7.1.1 sky: Sky Matching... 86
7.1.2 skyerr: Sky Matching with Per-Object Errors.. 87
7.1.3 skyellipse: Sky Matching of Elliptical Regions.. 88
7.1.4 sky3d: Spherical Polar Matching... 88
7.1.5 exact: Exact Matching... 89
7.1.6 1d, 2d, ...: Isotropic Cartesian Matching.. 89
7.1.7 2d_anisotropic, ...: Anisotropic Cartesian Matching... 90
7.1.8 2d_cuboid, ...: Cuboid Cartesian Matching... 90
7.1.9 1d_err, 2d_err, ...: Cartesian Matching with Per-Object Errors... 91
7.1.10 2d_ellipse: Cartesian Matching of Elliptical Regions... 92
7.1.11 Custom Matchers.. 92
7.1.12 Matcher Combinations... 92
7.2 Multi-Object Matches... 93
8 Plotting... 95
8.1 Plot Parameters.. 95
8.1.1 Global Parameters.. 96
8.1.2 Layer Parameters.. 96
8.1.3 Animation... 97
8.2 Surface Types.. 98
8.3 Layer Types... 99
8.3.1 mark .. 99
8.3.2 size .. 102
8.3.3 sizexy .. 105
8.3.4 xyvector ...108
8.3.5 xyerror .. 112
8.3.6 xyellipse ...115
8.3.7 xycorr .. 118
8.3.8 link2 .. 123
8.3.9 mark2 .. 125
8.3.10 poly4 .. 128
8.3.11 mark4 .. 131
8.3.12 polygon .. 134
8.3.13 area .. 137
8.3.14 central .. 141
8.3.15 lines .. 144
8.3.16 marks .. 147
8.3.17 handles .. 149
8.3.18 yerrors .. 153
8.3.19 xyerrors ...155
8.3.20 statline ...159
8.3.21 statmark ...162
8.3.22 arrayquantile ...165
8.3.23 line .. 169
8.3.24 linearfit ...172
8.3.25 label .. 175
8.3.26 arealabel ...178

8.3.27 contour .. 182
8.3.28 grid .. 186
8.3.29 fill .. 189
8.3.30 quantile ...192
8.3.31 histogram ...195
8.3.32 kde .. 200
8.3.33 knn .. 204
8.3.34 densogram ...209
8.3.35 gaussian ...214
8.3.36 function ...217
8.3.37 skyvector ...219
8.3.38 skyellipse ...223
8.3.39 skycorr .. 227
8.3.40 skydensity ...231
8.3.41 healpix .. 234
8.3.42 skygrid .. 237
8.3.43 xyzvector ...238
8.3.44 xyzerror ...242
8.3.45 line3d .. 246
8.3.46 spheregrid ...249
8.3.47 yerror .. 250
8.3.48 spectrogram ...253
8.4 Shading Modes.. 256
8.4.1 auto .. 256
8.4.2 flat .. 257
8.4.3 translucent ...258
8.4.4 transparent ...260
8.4.5 density .. 261
8.4.6 aux .. 264
8.4.7 weighted ...266
8.5 Output Modes.. 267
8.5.1 swing .. 267
8.5.2 out .. 268
8.5.3 cgi .. 268
8.5.4 discard .. 268
8.5.5 auto .. 268
8.6 Export Formats.. 268
8.7 Colour Maps.. 270
9 Old-Style Plotting... 272
9.1 Parameter Suffixes.. 272
10 Algebraic Expression Syntax... 275
10.1 Referencing Column Values... 275
10.2 Referencing Parameter Values.. 276
10.3 Special Tokens.. 277
10.4 Null Values.. 277
10.5 Operators... 278
10.6 Strings and Quoting... 279
10.7 Functions... 280
10.7.1 Arithmetic... 281
10.7.2 Arrays... 285
10.7.3 Bits... 294
10.7.4 Conversions.. 295
10.7.5 CoordsDegrees... 301
10.7.6 CoordsRadians... 303
10.7.7 Coverage... 309

10.7.8 Distances.. 310
10.7.9 Fluxes... 312
10.7.10 Formats... 315
10.7.11 Gaia.. 316
10.7.12 KCorrections.. 325
10.7.13 Lists.. 329
10.7.14 Maths.. 331
10.7.15 Randoms... 335
10.7.16 Shapes... 337
10.7.17 Sky.. 338
10.7.18 Strings... 340
10.7.19 Tilings... 347
10.7.20 Times.. 351
10.7.21 TrigDegrees.. 358
10.7.22 URLs.. 359
10.7.23 VO.. 363
10.8 Examples... 365
10.9 Advanced Topics... 366
10.9.1 Expression evaluation.. 366
10.9.2 Instance Methods.. 367
10.9.3 Adding User-Defined Functions.. 367
11 Server Mode.. 369
11.1 Plot Service... 369
11.1.1 Usage.. 370
11.1.2 RESTful API.. 370
11.1.3 Caching and Performance.. 373
11.2 Task Service.. 373
11.3 Form Service... 374
12 Programmatic Invocation.. 376
Appendix A: Commands By Category.. 378
Appendix B: Command Reference.. 380
B.1 arrayjoin: Adds table-per-row data as array-valued columns.. 380
B.2 calc: Evaluates expressions... 385
B.3 cdsskymatch: Crossmatches table on sky position against VizieR/SIMBAD table......... 386
B.4 cone: Executes a Cone Search-like query... 391
B.5 coneskymatch: Crossmatches table on sky position against remote cone service............ 395
B.6 datalinklint: Validates DataLink documents.. 403
B.7 funcs: Browses functions used by algebraic expression language................................... 405
B.8 pixfoot: Generates Multi-Order Coverage maps... 406
B.9 pixsample: Samples from a HEALPix pixel data file.. 408
B.10 plot2plane: Draws a plane plot... 413
B.11 plot2sky: Draws a sky plot.. 425
B.12 plot2cube: Draws a cube plot.. 437
B.13 plot2sphere: Draws a sphere plot... 448
B.14 plot2corner: Draws a matrix of plane plots.. 458
B.15 plot2time: Draws a time plot... 470
B.16 plot2d: Old-style 2D Scatter Plot.. 484
B.17 plot3d: Old-style 3D Scatter Plot.. 493
B.18 plothist: Old-style Histogram.. 502
B.19 regquery: Queries the VO registry.. 508
B.20 server: Runs an HTTP server to perform STILTS commands..................................... 510
B.21 sqlclient: Executes SQL statements.. 512
B.22 sqlskymatch: Crossmatches table on sky position against SQL table............................ 514
B.23 sqlupdate: Updates values in an SQL table... 520
B.24 taplint: Tests TAP services.. 521

B.25 tapquery: Queries a Table Access Protocol server.. 526
B.26 tapresume: Resumes a previous query to a Table Access Protocol server..................... 531
B.27 tapskymatch: Crossmatches table on sky position against TAP table............................ 534
B.28 tcat: Concatenates multiple similar tables.. 539
B.29 tcatn: Concatenates multiple tables... 544
B.30 tcopy: Converts between table formats.. 547
B.31 tcube: Calculates N-dimensional histograms... 549
B.32 tloop: Generates a single-column table from a loop variable.. 552
B.33 tgridmap: Calculates N-dimensional density maps.. 555
B.34 tgroup: Calculates aggregate functions on groups of rows... 560
B.35 tjoin: Joins multiple tables side-to-side... 565
B.36 tmatch1: Performs a crossmatch internal to a single table... 568
B.37 tmatch2: Crossmatches 2 tables using flexible criteria.. 573
B.38 tmatchn: Crossmatches multiple tables using flexible criteria....................................... 580
B.39 tmulti: Writes multiple tables to a single container file... 585
B.40 tmultin: Writes multiple processed tables to single container file................................. 588
B.41 tpipe: Performs pipeline processing on a table... 589
B.42 tskymap: Calculates sky density maps... 594
B.43 tskymatch2: Crossmatches 2 tables on sky position... 600
B.44 votcopy: Transforms between VOTable encodings... 605
B.45 votlint: Validates VOTable documents.. 608
B.46 xsdvalidate: Validates against XML Schema... 612
Appendix C: Release Notes... 615
C.1 Acknowledgements... 615
C.2 Version History... 615

SUN/256 8

1 Introduction

STILTS provides a number of command-line applications which can be used for manipulating
tabular data. Conceptually it sits between, and uses many of the same classes as, the packages STIL,
which is a set of Java APIs providing table-related functionality, and TOPCAT, which is a graphical
application providing the user with an interactive platform for exploring one or more tables. This
document is mostly self-contained - it covers some of the same ground as the STIL and TOPCAT
user documents (SUN/252 and SUN/253 respectively).

Currently, this package consists of commands in the following categories:

Generic table manipulation
tcopy, tpipe, tmulti, tmultin, tcat, tcatn, tloop, tjoin, arrayjoin, tgridmap, tgroup, and
tcube (see Section 6).

Crossmatching
tmatch1, tmatch2, tmatchn and tskymatch2 (see Section 7).

Plotting
plot2plane, plot2sky, plot2cube, plot2sphere, plot2corner and plot2time (also
deprecated old-style plot commands plot2d, plot3d and plothist) (see Section 8).

Sky Pixel Operations
tskymap, pixfoot and pixsample.

VOTable
votcopy and votlint.

Virtual Observatory access
cdsskymatch, cone, coneskymatch, tapquery, tapresume, tapskymatch, taplint,
datalinklint and regquery.

SQL databases
sqlclient, sqlupdate and sqlskymatch.

Miscellaneous
calc (Appendix B.2), funcs (Appendix B.7), server (Appendix B.20) and xsdvalidate

(Appendix B.46).

See Appendix A for an expanded version of this list.

There are many ways you might want to use these tools; here are a few possibilities:

In conjunction with TOPCAT
you can identify a set of processing steps using TOPCAT's interactive graphical facilities, and
construct a script using the commands provided here which can perform the same steps on
many similar tables without further user intervention.

Format conversion
If you have a separate table processing engine and you want to be able to output the results in a
somewhat different form, for instance converting it from FITS to VOTable or from
TABLEDATA-encoded to BINARY-encoded VOTable, or to perform some more
scientifically substantial operation such as changing units or coordinate systems, substituting
bad values etc, you can pass the results through one of the tools here. Since on the whole
operation is streaming, such conversion can easily and efficiently be done on the fly.

Server-side operations
The tools provided here are suitable for use on servers, either to generate files as part of a web
service (perhaps along the lines of the Format conversion item above) or as configurable
components in a server-based workflow system. The server command may help, but is not
required, for use in these situations.

SUN/256 9

Quick look
You might want to examine the metadata, or a few rows, or a statistical summary of a table
without having to load the whole thing into TOPCAT or some other table viewer application.

SUN/256 10

2 The stilts command

All the functions available in this package can be used from a single command, which is usually
referred to in this document simply as "stilts". Depending on how you have installed the package,
you may just type "stilts", or something like

java -jar some/path/stilts.jar

or

java -classpath topcat-lite.jar uk.ac.starlink.ttools.Stilts

or something else - this is covered in detail in Section 3.

In general, the form of a command is

stilts <stilts-flags> <task-name> <task-args>

The forms of the parts of this command are described in the following subsections, and details of
each of the available tasks along with their arguments are listed in the command reference
(Appendix B) at the end of this document. Some of the commands are highly configurable and have
a variety of parameters to define their operation. In many cases however, it's not complicated to use
them. For instance, to convert the data in a FITS table to VOTable format you might write:

stilts tcopy cat.fits cat.vot

2.1 Stilts flags

Some flags are common to all the tasks in the STILTS package, and these are specified after the
stilts invocation itself and before the task name. They generally have the same effect regardless
of which task is running. These generic flags are as follows:

-help

Prints a usage message for the stilts command itself and exits. The message contains a
listing of all the known tasks.

-version

Prints the STILTS version number and exits.

-verbose

Causes more verbose information to be written during operation. Specifically, what this does is
to boost the logging level by one notch. It may be specified multiple times to increase
verbosity further. The flag +verbose can be used to do the opposite (reduce the logging level
by one notch).

-allowunused

Causes unused parameter settings on the command line to be tolerated. Normally, any unused
parameters on the command line cause a usage message to be output and the command to fail,
on the assumption that if you've supplied a parameter setting that's not doing anything it is
probably a mistake and you should be given a chance to correct it. But if this flag is set, you
just get a warning through the logging system about any unused parameters, and the command
is executed as if they weren't there.

-prompt

Most of the STILTS commands have a number of parameters which will assume sensible
defaults if you do not give them explicit values on the command line. If you use the -prompt

flag, then you will be prompted for every parameter you have not explicitly specified to give
you an opportunity to enter a value other than the default.

SUN/256 11

-bench

Outputs the elapsed time taken by the task to standard error on successful completion.

-debug

Sets up output suitable for debugging. The most visible consequence of this is that if an error
occurs then a full stacktrace is output, rather than just a user-friendly report.

-batch

Some parameters will prompt you for their values, even if they offer legal defaults. If you use
the -batch flag, then you won't be prompted at all.

-memory

Encourages the command to use java heap memory for caching large amounts of data rather
than using temporary disk files. The default is to use memory for small tables, and disk for
large ones. This flag is in most cases equivalent to specifying the system property
-Dstartable.storage=memory.

-disk

Encourages the command to use temporary files on disk for caching table data. The default is
to use memory for small tables, and disk for large ones. Using this flag may help if you are
running out of memory. This flag is in most cases equivalent to specifying the system property
-Dstartable.storage=disk.

-memgui

Displays a graphical window while the command is running which summarises used and
available heap memory. May be useful for profiling or understanding resource constraints.

-checkversion <vers>

Requires that the version is exactly as given by the string <vers>. If it is not, STILTS will exit
with an error. This can be useful when executing in certain controlled environments to ensure
that the correct version of the application is being picked up.

-stdout <file>

Sends all normal output from the run to the given file. By default this goes to the standard
output stream. Supplying an empty string or "-" for <file> will restore this default behaviour.

-stderr <file>

Sends all error output from the run to the given file. By default this goes to the standard error
stream. Supplying an empty string or "-" for <file> will restore this default behaviour.

If you are submitting an error report, please include the result of running stilts -version and the
output of the troublesome command with the -debug flag specified.

2.2 Task Names

The <task-name> part of the command line is the name of one of the tasks listed in Appendix B -
currently the available tasks are:

• arrayjoin

• calc

• cdsskymatch

• cone

• coneskymatch

• datalinklint

• funcs

• pixfoot

• pixsample

• plot2corner

• plot2cube

SUN/256 12

• plot2plane

• plot2sphere

• plot2sky

• plot2time

• plot2d

• plot3d

• plothist

• regquery

• server

• sqlclient

• sqlskymatch

• sqlupdate

• taplint

• tapquery

• tapresume

• tapskymatch

• tcat

• tcatn

• tcopy

• tcube

• tgridmap

• tgroup

• tjoin

• tloop

• tmatch1

• tmatch2

• tmatchn

• tmulti

• tmultin

• tpipe

• tskymap

• tskymatch2

• votcopy

• votlint

• xsdvalidate

2.3 Task Arguments

The <task-args> part of the command line is a list of parameter assignments, each giving the value
of one of the named parameters belonging to the task which is specified in the <task-name> part.

The general form of each parameter assignment is

<param-name>=<param-value>

If you want to set the parameter to the null value, which is legal for some but not all parameters, use
the special string "null", or just leave the value blank ("<param-name>="). In some cases you can
optionally leave out the <param-name> part of the assignment (i.e. the parameter is positionally
determined); this is indicated in the task's usage description if the parameter is described like
[<param-name>=]<param-value> rather than <param-name>=<param-value>. If the <param-value>

contains spaces or other special characters, then in most cases, such as from the Unix shell, you will
have to quote it somehow. How this is done depends on your platform, but usually surrounding the
whole value in single quotes will do the trick.

Tasks may have many parameters, and you don't have to set all of them explicitly on the comand

SUN/256 13

line. For a parameter which you don't set, two things can happen. In many cases, it will default to
some sensible value. Sometimes however, you may be prompted for the value to use. In the latter
case, a line like this will be written to the terminal:

matcher - Name of matching algorithm [sky]:

This is prompting you for the value of the parameter named matcher. "Name of matching
algorithm" is a short description of what that parameter does. "sky" is the default value (if there is
no default, no value will appear in square brackets). At this point you can do one of four things:

• Hit return - this will select the default value if there is one. If there is no default, this is
equivalent to entering "null".

• Enter a value for the parameter explicitly. The special value "null" means the null value,
which is legal for some, but not all parameters. If the value you enter is not legal, you will see
an error message and you will be invited to try again.

• Enter "help" or a question mark "?". This will output a message giving a detailed description
of the parameter and prompt you again.

• Bail out by hitting ctrl-C or whatever is usual on your platform.

Under normal circumstances, most parameters which have a legal default value will default to it if
they are not set on the command line, and you will only be prompted for those where there is no
default or the program thinks there's a good chance you might not want to use it. You can influence
this however using flags to the stilts command itself (see Section 2.1). If you supply the -prompt

flag, then you will be prompted for every parameter you have not explicitly set. If you supply
-batch on the other hand, you won't be prompted for any parameters (and if you fail to set any
without legal default values, the task will fail).

If you want to see the actual values of the parameters for a task as it runs, including prompted
values and defaulted ones which you haven't specified explicitly, you can use the -verbose flag
after the stilts command:

% stilts -verbose tcopy cat.fits cat.vot ifmt=fits
INFO: tcopy in=cat.fits out=cat.vot ifmt=fits ofmt=(auto)

If you make a parameter assignment on the command line for a parameter which is not used by the
task in question, STILTS will issue an error message and the task will fail. Note some parameters
are only used dependent on the presence or values of other parameters, so even supplying a
parameter which is documented in the task's usage can have this effect. This is done on the
assumption that if you have supplied a spurious parameter it's probably a mistake and you should be
given the opportunity to correct it. But if you want to be free to make these mistakes without the
task failing, you can supply the -allowunused flag as described in Section 2.1, in which case they
will just result in a warning.

Note that when running STILTS from the shell, it may be necessary to quote some parameter
values, in case they contain spaces or other characters which the shell may try to interpret. This can
typically be done by writing assignments of the form

<param-name>='<param-value>'

but things can get more hairy; see Section 10.6 for more detail.

Extensive help is available from stilts itself about task and its parameters, as described in the next
section.

2.4 Getting Help

As well as the command descriptions in this document (especially the reference section Appendix

SUN/256 14

B) you can get help for STILTS usage from the command itself. Typing

stilts -help

results in this output:

Usage:
stilts [-help] [-version] [-verbose] [-allowunused] [-prompt] [-bench]

[-debug] [-batch] [-memory] [-disk] [-memgui]
[-checkversion <vers>] [-stdout <file>] [-stderr <file>]
<task-name> <task-args>

stilts <task-name> help[=<param-name>|*]

Known tasks:
arrayjoin
calc
cdsskymatch
cone
coneskymatch
datalinklint
funcs
pixfoot
pixsample
plot2d
plot3d
plothist
regquery
server
sqlclient
sqlskymatch
sqlupdate
taplint
tapquery
tapresume
tapskymatch
tcat
tcatn
tcopy
tcube
tgridmap
tgroup
tjoin
tloop
tmatch1
tmatch2
tmatchn
tmulti
tmultin
tpipe
tskymap
tskymatch2
votcopy
votlint
xsdvalidate
plot2plane
plot2sky
plot2cube
plot2sphere
plot2corner
plot2time

For help on the individual tasks, including their parameter lists, you can supply the word help after
the task name, so for instance

stilts tcopy help

results in

Usage: tcopy ifmt=<in-format> ofmt=<out-format>
[in=]<table> [out=]<out-table>

SUN/256 15

Finally, you can get help on any of the parameters of a task by writing help=<param-name>, like
this:

stilts tcopy help=in

gives

Help for parameter IN in task TCOPY

Name:
in

Usage:
[in=]<table>

Summary:
Location of input table

Description:
The location of the input table. This may take one of the following
forms:

* A filename.
* A URL.
* The special value "-", meaning standard input. In this case the

input format must be given explicitly using the ifmt parameter.
Note that not all formats can be streamed in this way.

* A scheme specification of the form :<scheme-name>:<scheme-args>.
* A system command line with either a "<" character at the start, or

a "|" character at the end ("<syscmd" or "syscmd|"). This
executes the given pipeline and reads from its standard output.
This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression
formats (gzip, Unix compress or bzip2) will be decompressed
transparently.

Type:
uk.ac.starlink.table.StarTable

If you use "*" instead of a parameter name in this usage, help for all the parameters will be printed.
Note that in most shells you will probably need to quote the asterisk, so you should write

stilts tcopy help='*'

In some cases, as described in Section 2.3, you will be prompted for the value of a parameter with a
line something like this:

matcher - Name of matching algorithm [sky]:

In this case, if you enter "help" or a question mark, then the parameter help entry will be printed to
the screen, and the prompt will be repeated.

For more detailed descriptions of the tasks, which includes explanatory comments and examples as
well as the information above, see the full task descriptions in the Command Reference (Appendix
B).

SUN/256 16

3 Invocation

There are a number of ways of invoking commands in the stilts application, depending on how
you have installed the package. This section describes how to invoke it from the command line.
Other options are using it from Jython (the Java implementation of the Python language) as
described in Section 4, invoking it over HTTP as described in Section 11, and invoking it from
within a Java application as described in Section 12.

If you're using a Unix-like operating system, the easiest way is to use the stilts script. It is a
simple shell script which just invokes java with the right classpath and the supplied arguments.

If you have a full starjava installation the stilts script is in the starjava/bin directory. Otherwise
you can download it separately from wherever you got your STILTS installation in the first place,
or find it at the top of the stilts.jar or topcat-*.jar file that contains your STILTS installation,
so do something like

unzip stilts.jar stilts
chmod +x stilts

to extract it (if you don't have unzip, try jar xvf stilts.jar stilts). If you have mounted the
topcat-all.dmg file on MacOS (hdiutil attach topcat-all.dmg) it will probably be present at a
location like /Volumes/topcat/TOPCAT.app/Contents/Resources/app/stilts.

To run using the stilts script, first make sure that both the java executable and the stilts script
itself are on your path, and that the stilts.jar or topcat-*.jar jar file is in the same directory as
stilts. Then the form of invocation is:

stilts <java-flags> <stilts-flags> <task-name> <task-args>

A simple example would be:

stilts votcopy format=binary t1.xml t2.xml

in this case, as often, there are no <java-flags> or <stilts-flags>. If you use the -classpath

argument or have a CLASSPATH environment variable set, then classpath elements thus specified
will be added to the classpath required to run the command. The examples in the command
descriptions below use this form for convenience.

If you don't have a Unix-like shell available however, you will need to invoke Java directly with the
appropriate classes on your classpath. If you have the file stilts.jar, in most cases you can just
write:

java <java-flags> -jar stilts.jar <stilts-flags> <task-name> <task-args>

which in practice would look something like

java -jar /some/where/stilts.jar votcopy format=binary t1.xml t2.xml

In the most general case, Java's -jar flag might be no good, for one of the following reasons:

1. You have the classes in some form other than the stilts.jar file (such as topcat-full.jar)
2. You need to specify some extra classes on the classpath, which is required e.g. for use with

JDBC (Section 3.4) or if you are extending the commands (Section 10.9.3) using your own
classes at runtime

In this case, you will need an invocation of this form:

java <java-flags> -classpath <class-path>
uk.ac.starlink.ttools.Stilts <stilts-flags> <task-name> <task-args>

SUN/256 17

The example above in this case would look something like:

java -classpath /some/where/topcat-full.jar uk.ac.starlink.ttools.Stilts
votcopy format=binary t1.xml t2.xml

Finally, as a convenience, it is possible to run STILTS from a TOPCAT installation by using its
-stilts flag, like this:

topcat <java-flags> -stilts <stilts-flags> <task-name> <task-args>

This is possible because TOPCAT is built on top of STILTS, so contains a superset of its code.

The <stilts-flags>, <task-name> and <task-args> parts of these invocations are explained in
Section 2, and the <class-path> and <java-flags> parts are explained in the following
subsections.

3.1 Class Path

The classpath is the list of places that Java looks to find the bits of compiled code that it uses to run
an application. Depending on how you have done your installation the core STILTS classes could
be in various places, but they are probably in a file with one of the names stilts.jar,
topcat-lite.jar or topcat-full.jar. The full pathname of one of these files can therefore be
used as your classpath. In some cases these files are self-contained and in some cases they reference
other jar files in the filesystem - this means that they may or may not continue to work if you move
them from their original location.

Under certain circumstances the tools might need additional classes, for instance:

• JDBC drivers (see Section 3.4)
• Providing extended algebraic functions (see Section 10.9.3)
• Installing I/O handlers for new table formats (see SUN/252)

In this case the classpath must contain a list of all the jar files in which the required classes can be
found, separated by colons (unix) or semicolons (MS Windows). Note that even if all your jar files
are in a single directory you can't use the name of that directory as a class path - you must name
each jar file, separated by colons/semicolons.

3.2 Java Flags

In most cases it is not necessary to specify any additional arguments to the Java runtime, but it can
be useful in certain circumstances. The two main kinds of options you might want to specify
directly to Java are these:

System properties
System properties are a way of getting information into the Java runtime from the outside,
rather like environment variables. There is a list of the ones which have significance to
STILTS in Section 3.3. You can set them from the command line using a flag of the form
-Dname=value. So for instance to ensure that temporary files are written to the /home/scratch

directory, you could use the flag

-Djava.io.tmpdir=/home/scratch

Memory size
Java runs with a fixed amount of 'heap' memory; this is typically 64Mb by default. If one of
the tools fails with a message that says it's out of memory then this has proved too small for the
job in hand. You can increase the heap memory with the -Xmx flag. To set the heap memory

SUN/256 18

size to 256 megabytes, use the flag

-Xmx256M

(don't forget the 'M' for megabyte). You will probably find performance is dreadful if you
specify a heap size larger than the physical memory of the machine you're running on.

You can specify other options to Java such as tuning and profiling flags etc, but if you want to do
that sort of thing you probably don't need me to tell you about it.

If you are using the stilts command-line script, any flags to it starting -D or -X are passed directly
to the java executable. You can pass other flags to Java with the stilts script's -J flag; for
instance:

stilts -Xmx4M -J-verbose:gc calc 'mjdToIso(0)'

is equivalent to

java -Xmx4M -verbose:gc -jar stilts.jar calc 'mjdToIso(0)'

3.3 System Properties

System properties are a way of getting information into the Java runtime - they are a bit like
environment variables. There are two ways to set them when using STILTS: either on the command
line using arguments of the form -Dname=value (see Section 3.2) or in a file in your home directory
named .starjava.properties, in the form of a name=value line. Thus submitting the flag

-Dvotable.strict=false

on the command line is equivalent to having the following in your .starjava.properties file:

Force strict interpretation of the VOTable standard.
votable.strict=false

The following system properties have special significance to STILTS:

http.proxyHost

Can be used to force HTTP access to go via a named proxy; may be required if you are
attempting access to remote data or services from behind a firewall configured to block direct
HTTP connections. See java documentation for this property for more details.

java.awt.headless

May need to be set to "true" if running the plotting tasks on a headless server. You only need
to worry about this if you see error messages complaining about headlessness.

java.io.tmpdir

The directory in which STILTS will write any temporary files it needs. This defaults to the
system temporary directory (e.g. /tmp on Unix), so if working with large unmapped (e.g. CSV)
tables on a machine with limited space on the default disk, it may be necessary to change it.

java.util.concurrent.ForkJoinPool.common.parallelism

Controls the level of parallelisation done by certain processing, currently mainly visualisation.
By default it is typically set to one less than the number of processing cores on the current
machine. To inhibit parallelisation (e.g. if you suspect that the parallel output is giving
different results to sequential processing) you can set this to 1.

jdbc.drivers

Can be set to a (colon-separated) list of JDBC driver classes using which SQL databases can

SUN/256 19

be accessed (see Section 3.4).

jel.classes

Can be set to a (colon-separated) list of classes containing static methods which define
user-provided functions for synthetic columns or subsets. (see Section 10.9.3).

mark.workaround

If set to "true", this will work around a bug in the mark()/reset() methods of some java
InputStream classes. These are rather common, including in Sun's J2SE system libraries. Use
this if you are seeing errors that say something like "Resetting to invalid mark". Currently
defaults to "false".

service.maxparallel

Raises the maximum number of concurrent queries that may be made during a multi-cone
operation. You should only increase this value with great care since you risk overloading
servers and becoming unpopular with data centres. As a rule, you should only increase this
value if you have obtained permission from the data centres whose services on which you will
be using the increased parallelism.

auth.username

auth.password

If these are both set, they will provide username and password for accessing authenticated
resources. Any time the application is refused access to an HTTP connection and knows how
to try to authenticate, it will try again using these credentials. In each case the values may be
either the username/password itself, or of the form "@<filename>", in which case the value is
read from the first line of the named file. This replaces the normal behaviour of asking for a
username and password on the console; see the section on Authentication (Section 5.4) for
more details. Since this setting will pass the username and password information to any
protected resource without checking it is the intended destination, this can potentially leak
secret information to third parties, so these properties should be set with care.

auth.schemes

Configures the list of authentication schemes that will be considered when connecting to
services issuing a WWW-Authenticate challenge. A comma-separated list of scheme names or
AuthScheme implementation classnames may be provided.

startable.readers

Can be set to a (colon-separated) list of custom table format input handler classes (see
SUN/252). Each class must implement the uk.ac.starlink.table.TableBuilder interface,
and must have a no-arg constructor. The readers thus named will be available alongside the
standard ones listed in Section 5.1.1.

startable.schemes

Can be set to a (colon-separated) list of custom table scheme handler classes. Each class must
implement the uk.ac.starlink.table.TableScheme interface, and must have a no-arg
constructor. The schemes thus named will be available alongside the standard ones listed in
Section 5.3.

startable.storage

Can be set to determine the default storage policy. Setting it to "disk" has basically the same
effect as supplying the "-disk" argument on the command line (see Section 2.1). Other
possible values are "adaptive", "memory", "sideways" and "discard"; see SUN/252. The
default is "adaptive", which means storing smaller tables in memory, and larger ones on disk.

startable.unmap

Determines whether and how unmapping of memory mapped buffers is done. Possible values
are "sun" (the default), "cleaner", "unsafe" or "none". In most cases you are advised to leave
this alone, but in the event of unmapping-related JVM crashes (not expected!), setting it to
none may help.

startable.writers

SUN/256 20

Can be set to a (colon-separated) list of custom table format output handler classes (see
SUN/252). Each class must implement the uk.ac.starlink.table.StarTableWriter

interface, and must have a no-arg constructor. The writers thus named will be available
alongside the standard ones listed in Section 5.1.2.

votable.namespacing

Determines how namespacing is handled in input VOTable documents. Known values are
"none" (no namespacing, xmlns declarations in VOTable document will probably confuse
parser), "lax" (anything that looks like it is probably a VOTable element will be treated as a
VOTable element) and "strict" (VOTable elements must be properly declared in one of the
correct VOTable namespaces). May also be set to the classname of a
uk.ac.starlink.votable.Namespacing implementation. The default is "lax".

votable.strict

Controls the behaviour when encountering a VOTable FIELD or PARAM element with a
datatype attribute of char/unicodeChar, and no arraysize attribute. The VOTable standard
says this indicates a single character, but some VOTables omit arraysize specification by
accident when they intend arraysize="*". If votable.strict is set true, a missing arraysize
will be interpreted as meaning a single character, and if false, it will be interpreted as a
variable-length array of characters (a string). The default is true.

votable.version

Selects the version of the VOTable standard which output VOTables will conform to by
default. May take the values "1.0", "1.1", "1.2", "1.3" or "1.4". By default, version 1.4
VOTables are written.

3.4 JDBC Configuration

This section describes additional configuration which must be done to allow the commands to
access SQL-compatible relational databases for reading or writing tables. If you don't need to talk to
SQL-type databases, you can ignore the rest of this section. The steps described here are the
standard ones for configuring JDBC (which sort-of stands for Java Database Connectivity); you can
find more information on that on the web. The best place to look may be within the documentation
of the RDBMS you are using.

To use STILTS with SQL-compatible databases you must:

• Have access to an SQL-compatible database locally or over the network
• Have a JDBC driver appropriate for that database
• Install that driver for use with STILTS
• Know the format the driver uses for URLs to access database tables
• Have appropriate privileges on the database to perform the desired operations

Installing the driver consists of two steps:

1. Ensure that the classpath you are using includes this driver class as described in Section 3.1
2. Set the jdbc.drivers system property to the name of the driver class as described in Section

3.3

Here is an example of using tpipe to write the results of an SQL query on a table in a MySQL
database as a VOTable:

stilts -classpath /usr/local/jars/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
tpipe \
in="jdbc:mysql://localhost/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
ofmt=votable gsc.vot

or invoking Java directly:

SUN/256 21

java -classpath stilts.jar:/usr/local/jars/mysql-connect-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
uk.ac.starlink.ttools.Stilts tpipe \
in="jdbc:mysql://localhost/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
ofmt=votable out=gsc.vot

You have to exercise some care to get the arguments in the right order here - see Section 3.

Alternatively, you can set some of this up beforehand to make the invocation easier. If you set your
CLASSPATH environment variable to include the driver jar file (and the STILTS classes if you're
invoking Java directly rather than using the scripts), and if you put the line

jdbc.drivers=com.mysql.jdbc.Driver

in the .starjava.properties file in your home directory, then you could avoid having to give the
-classpath and -Djdbc.drivers flags respectively.

Below are presented the results of some experiments with JDBC drivers. Note however that this
information may be be incomplete and out of date. If you have updates, feel free to pass them on
and they may be incorporated here.

To the author's knowledge, STILTS has successfully been used with the following RDBMSs and
corresponding JDBC drivers:

MySQL
MySQL has been tested on Linux with the Connector/J driver and seems to work; tested
versions are server 3.23.55 with driver 3.0.8 and server 4.1.20 with driver 5.0.4. Sometimes
tables with very many (hundreds of) columns cannot be written owing to SQL statement length
restrictions. Note there is known to be a column metadata bug in version 3.0.6 of the driver
which can cause a ClassCastException error when tables are written. Check the driver's
documentation for additional parameters, for instance
"useUnicode=true&characterEncoding=UTF8" may be required to handle some non-ASCII
characters.

PostgreSQL
PostgreSQL 7.4.1 apparently works with its own driver. Note the performance of this driver
appears to be rather poor, at least for writing tables.

Oracle
You can use Oracle with the JDBC driver that comes as part of its Basic Instant Client
Package.

SQL Server
There is more than one JDBC driver known to work with SQL Server, including jTDS and its
own JDBC driver. Some evidence suggests that jTDS may be the better choice, but your
mileage may vary.

Sybase ASE
There has been a successful use of Sybase 12.5.2 and jConnect (jconn3.jar) using a JDBC
URL like "jdbc:sybase:Tds:hostname:port/dbname?user=XXX&password=XXX#SELECT...".
An earlier attempt using Sybase ASE 11.9.2 failed.

It is probably possible to use other RDBMSs and drivers, but you may have to do some homework.

Here are some example command lines that at least have at some point got STILTS running with
databases:

PostgreSQL

stilts -classpath pg73jdbc3.jar \
-Djdbc.drivers=org.postgresql.Driver ...

SUN/256 22

MySQL

stilts -classpath mysql-connector-java-3.0.8-bin.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver ...

Oracle

stilts -classpath ojdbc14.jar \
-Djdbc.drivers=oracle.jdbc.driver.OracleDriver ...

SQL Server with jTDS

stilts -classpath jtds-1.1.jar \
-Djdbc.drivers=net.sourceforge.jtds.jdbc.Driver ...

SUN/256 23

4 JyStilts - STILTS from Python

Most of the discussions and examples in this document describe using STILTS as a standalone java
application from the command line; in this case, scripting can be achieved by executing one
STILTS command, followed by another, followed by another, perhaps controlled from a shell
script, with intermediate results stored in files.

However, it is also possible to invoke STILTS commands from within the Jython environment.
Jython is a pure-java implementation of the widely-used Python scripting language. Using Jython is
almost exactly the same as using the more usual C-based Python, except that it is not possible to use
extensions which use C code. This means that if you are familiar with Python programming, it is
very easy to string STILTS commands together in Jython.

This approach has several advantages over the conventional command-line usage:

• You can make use of python programming constructions like loops, functions and variables
• Python syntax can be used to put together parameter values (especially referencing quoted

strings or values containing embedded spaces) in a way which is often less painful than doing
it from the shell

• Intermediate processing stages can be kept in memory (in a python variable) rather than having
to write them out to a file and read them in for the next command; this can be much more
efficient

• Because of the previous point, there are separate read, filter, processing and write commands,
which means command lines can be shorter and less confusing

• The java startup overhead (typically a couple of seconds) happens only once when entering
jython, not once for every STILTS command

Note however that you will not be able to introduce JyStilts commands into your larger existing
Python programs if those rely on C-based extensions, such as NumPy and SciPy, since JyStilts will
only run in JPython, while C-based extensions will only run in CPython. (See however JNumeric
for some of the Numpy functionality from Jython.)

Usage from jython has syntax which is similar to command-line STILTS, but with a few changes.
The following functions are defined by JyStilts:

• A function tread, which reads a table from a file or URL and turns it into a table object in
jython

• A table method write which takes a table object and writes it to file
• A table method for each STILTS filter (e.g. cmd_head, cmd_select, cmd_addcol)
• A table method for each STILTS output mode (e.g. mode_out, mode_meta, mode_samp),
• A function for each STILTS task (e.g. tmatch2, tcat, plot2sky)
• A number of table methods which make table objects integrate nicely into the python

environment

Reasonably detailed documentation for these is provided in the usual Python way ("doc strings"),
and can be accessed using the Python "help" command, however for full documentation and
examples you should refer to this document.

In JyStilts the input, processing, filtering and output are done in separate steps, unlike in
command-line STILTS where they all have to be combined into a single line. This can make the
flow of execution easier to follow. A typical sequence will involve:

1. Reading one or more tables from file using the tread function
2. Perhaps filtering the input table(s) using one or more of the cmd_* filter methods
3. Performing core processing such as crossmatching
4. Perhaps filtering the result using one or more of the cmd_* filter methods
5. If running interactively, perhaps examining the intermediate results using one of the mode_*

SUN/256 24

output modes
6. Writing the final result to a file using the write method

Here is an example command line invocation for crossmatching two tables:

stilts tskymatch2 in1=survey.fits \
icmd1='addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \
in2=mycat.csv ifmt2=csv \
icmd2='select VMAG>18' \
ra1=ALPHA dec1=DELTA ra2=RA2000 dec2=DEC2000 \
error=10 join=2not1 \
out=matched.fits

and here is what it might look like in JyStilts:

>>> import stilts
>>> t1 = stilts.tread('survey.fits')
>>> t1 = t1.cmd_addskycoords(t1, 'fk4', 'fk5', 'RA1950', 'DEC1950', 'RA2000', 'DEC2000')
>>> t2 = stilts.tread('mycat.csv', 'csv')
>>> t2 = t2.cmd_select('VMAG>18')
>>> tm = stilts.tskymatch2(in1=t1, in2=t2, ra1='ALPHA', dec1='DELTA',
... error=10, join='2not1')
>>> tm.write('matched.fits')

When running interactively, it can be convenient to examine the intermediate results before
processing or writing as well, for instance:

>>> tm.mode_count()
columns: 19 rows: 2102
>>> tm.cmd_keepcols('ID ALPHA DELTA').cmd_head(4).write()
+--------+---------------+-----------+
| ID | ALPHA | DELTA |
+--------+---------------+-----------+
| 262 | 149.82439 | -0.11249 |
| 263 | 150.14438 | -0.11785 |
| 265 | 149.92944 | -0.11667 |
| 273 | 149.93185 | -0.12566 |
+--------+---------------+-----------+

More detail about how to run JyStilts and its usage is given in the following subsections.

4.1 Running JyStilts

The easiest way to run JyStilts is to download the standalone jystilts.jar file from the STILTS
web page, and simply run

java -jar jystilts.jar

This file includes jython itself and all the STILTS and JyStilts classes. To use the JyStilts
commands, you will need to import the stilts module using a line like "import stilts" from Jython
in the usual Python way.

Alternatively, you can run JyStilts from an existing Jython installation using just the stilts.jar

file. First, make sure that Jython is installed; it is available from http://www.jython.org/, and comes
as a self-installing jar file. JyStilts has been tested, and appears to work, with jython version 2.7.2. It
also works with jython 2.5.* under Java 8 and Java 11, but jystilts with jython 2.5.* and Java 17 can
fail with security problems. Some earlier versions of JyStilts worked with jython 2.2.1, but that no
longer seems to be the case; it might be possible to reinstate this if there is some pressing need.

To use JyStilts, you then just need to start jython with the stilts.jar file on your classpath, for
instance like this:

SUN/256 25

jython -J-classpath /some/where/stilts.jar

or (C-shell):

setenv CLASSPATH /some/where/stilts.jar
jython

Optionally, you can extract the stilts.py module from the stilts.jar file (using a command like
"unzip stilts.jar stilts.py") and put it in a directory on your jython sys.path (e.g.
jythondir/Lib); this may cause jython to compile it to bytecode (stilts$py.class) and thus
improve startup time. Note that in this case you will still need the stilts.jar file on your classpath
as above.

4.2 Table I/O

The tread function reads tables from an external location into JyStilts. Its arguments are as follows:

tread(location, fmt='(auto)', random=False)

and its return value is a table object, which can be interrogated directly, or used in other JyStilts
commands. Usually, the location argument should be a string which gives the filename or URL at
which a table can be found. You can alternatively use a readable python file (or file-like) object for
the location, but be aware that this may be less efficient on memory. As with command-line
STILTS, the fmt argument is one of the options in Section 5.1.1, but may be left as the default if the
format auto-detectable, which currently means if the file is in VOTable, FITS, CDF, ECSV, PDS4,
Parquet, Feather or GBIN format. The random argument can be used to ensure that the returned file
has random (i.e. not sequential-only) access; for some table formats the default way of reading them
in means that their rows can only be accessed in sequence. Depending on what processing you are
doing, that may or may not be satisfactory.

Examples of reading a table are:

>>> import stilts
>>> t1 = stilts.tread('cat.fits')
>>> t2 = stilts.tread(open('cat.fits', 'rb')) # less efficient
>>> t3 = stilts.tread('data.csv', fmt='csv', random=True)

The most straightforward way to write a table (presumably the result of one or a sequence of
JyStilts commands) is using the write table method:

write(self, location=None, fmt='(auto)')

The location gives either a string which is a filename, or a writable python file (or file-like) object.
Again, use of a filename is preferred as it may(?) be more efficient. If no location is supplied, the
table will be written to standard output (useful for inspection, but a bad idea for binary formats or
very large tables). The fmt argument is one of the output formats in Section 5.1.2, but may be left as
the default if the format can be guessed from the filename.

Examples of writing a table are:

>>> table.write('out.fits')
>>> table.write(open('out.fits', 'wb')) # less efficient?
>>> table.write('catalogue.dat', fmt='csv')
>>> table.write() # display to stdout

Often it's convenient to combine examining the table with filtering steps, for instance:

>>> table.every(100).write()

SUN/256 26

would write only every hundredth row, and

>>> (table.cmd_sorthead(10, 'BMAG')
... .cmd_select('!NULL_VMAG')
... .cmd_keepcols('BMAG VMAG')
... .write())

would write only the BMAG and VMAG columns for the ten rows in which VMAG is non-null
with the lowest BMAG values.

You can also read and write multiple tables, if you use a table format for which that is appropriate.
This generally means FITS (which can store tables in multiple extensions) or VOTable (which can
store multiple TABLE elements in one document). This is done using the treads and twrites

functions. The functions look like this:

treads(location, fmt='(auto)', random=False)
twrites(tables, location=None, fmt='(auto)')

These are similar to the tread and twrite functions, except that treads returns a list of tables
rather than a single table, and twrites's tables argument is an iterable over tables rather than a
single table. Here is an example of reading multiple tables from a multi-extension FITS file,
counting the rows in each, and then writing them out to a multi-TABLE VOTable file:

import stilts
tables = stilts.treads('multi.fits')
print([t.getRowCount() for t in tables])
stilts.twrites(tables, 'multi.vot', fmt='votable')

4.3 Table objects

The tables read by the tread function and produced by operating on them within JyStilts have a
number of methods defined on them. These are explained below.

First, a number of special methods are defined which allow a table to behave in python like a
sequence of rows:

__iter__

This special method means that the table can be treated as an iterable, so that for instance "for
row in table:" will iterate over all rows.

__len__ (random-access tables only)
This special method means that you can use the expression "len(table)" to count the number
of rows. This method is not available for tables with sequential access only.

__getitem__ (random-access tables only)
Returns a row at a given index in the table. This special method means that you can use
indexing expressions like "table[3]" or table[0:10] to obtain the row or rows corresponding
to a given row index or slice. This method is not available for tables with sequential access
only.

__add__, __mul__, __rmul__
These special methods allow the addition and multiplication operators "+" and and "*" to be
used with the sense of concatenation. Thus "table1+table2" will produce a new table with the
rows of table1 followed by the rows of table2. Note this will only work if both tables have
compatible columns. Similarly "table*3" would produce a table like table but with all its
rows repeated three times.

In all of these cases, each row object that is accessed is a tuple of the column values for that row of
the table. The tuple items (table cells) may be accessed using a key which is a numeric index or

SUN/256 27

slice in the usual way, or with a key which is a column name, or one of the ColumnInfo objects
returned by columns().

Sometimes, the result of a table operation will be a table which does not have random access. For
such tables you can iterate over the rows, but not get their row values by indexing.
Non-random-access tables are also peculiar in that getRowCount returns a negative value. To take a
table which may not have random access and make it capable of random access, use the random

filter: "table=table.cmd_random()".

To a large extent it is possible to duplicate the functions of the various STILTS commands by
writing your own python code based on these python-friendly table access methods. Note however
that such python-based processing is likely to be much slower than the STILTS equivalents. If
performance is important to you, you should try in most cases to use the various cmd_* commands
etc for table processing.

Second, some additional utility methods are defined:

count_rows()

Returns the number of rows in the table in the most efficient way possible. If the table is
random-access or otherwise knows its row count without further calculation, that value is
returned. Otherwise, the rows are iterated over without reading, which may take some time but
should be much more efficient than iterating over the table as an iterable, since the row cell
data itself is not retrieved.

columns()

Returns a tuple of the column descriptors for the table. Each item in the tuple is an instance of
the ColumnInfo class; useful methods include getName(), getUnitString(), getUCD().
str(column) will return its name.

coldata(key)

Returns a sequence of the values for the given column. The sequence will have the same
number of elements as the number of rows in the table. The key argument may be either an
integer column index (if negative, counts backwards from the end), or the column name or info
object. The returned value will always be iterable (has __iter__), but will only be indexable
(has __len__ and __getitem__) if the table is random access.

parameters()

Returns a name to value mapping of the table parameters (per-table metadata). This does not
include all the available information about those parameters, for instance unit and UCD
information is not included. For more detailed information, use the StarTable methods. Note
that as currently implemented, changing the values in the returned mapping will not change the
actual table parameter values.

write(location=None, fmt=None)

Outputs the table. The optional location argument gives a filename or writable file object,
and the optional fmt argument gives a format, one of the options listed in Section 5.1.1. If
location is not supplied, output is to standard output, so in an interactive session it will be
printed to the terminal. If fmt is not supplied, an attempt will be made to guess a suitable
format based on the location.

Third, a set of cmd_* methods corresponding to the STILTS filters are available; these are described
in Section 4.4.

Fourth, a set of mode_* methods corresponding to the STILTS output modes are available; these are
described in Section 4.5.

Finally, tables are also instances of the StarTable interface defined by STIL, which is the table I/O

SUN/256 28

layer underlying STILTS. The full documentation can be found in the user manual and javadocs on
the STIL page, and all the java methods can be used from JyStilts, but in most cases there are more
pythonic equivalents provided, as described above.

Here are some examples of these methods in use:

>>> import stilts
>>> xsc = stilts.tread('/data/table/2mass_xsc.xml') # read table
>>> xsc.mode_count() # show rows/column count
columns: 6 rows: 1646844
>>> print xsc.columns() # full info on columns
(id(String), ra(Double)/degrees, dec(Double)/degrees, jmag(Double)/mag, hmag(Double)/mag, kmag(Double)/mag)
>>> print [str(col) for col in xsc.columns()] # column names only
['id', 'ra', 'dec', 'jmag', 'hmag', 'kmag']
>>> row = xsc[1000000] # examine millionth row
>>> print row
(u'19433000+4003190', 295.875, 40.055286, 14.449, 13.906, 13.374)
>>> print row[0] # cell by index
19433000+4003190
>>> print row['ra'], row['dec'] # cells by col name
295.875 40.055286
>>> print len(xsc) # count rows, maybe slow
1646844
>>> print xsc.count_rows() # count rows efficiently
1646844L
>>> print (xsc+xsc).count_rows() # concatenate
3293688L
>>> print (xsc*10000).count_rows()
16468440000L
>>> for row in xsc: # select rows using python commands
... if row[4] - row[3] > 3.0:
... print row[0]
...
11165243+2925509
20491597+5119089
04330238+0858101
01182715-1013248
11244075+5218078
>>> # same thing using stilts (50x faster)
>>> (xsc.cmd_select('hmag - jmag > 3.0')
... .cmd_keepcols('id')
... .write())
+------------------+
| id |
+------------------+
| 11165243+2925509 |
| 20491597+5119089 |
| 04330238+0858101 |
| 01182715-1013248 |
| 11244075+5218078 |
+------------------+

The following are all ways to obtain the value of a given cell in the table from the previous
example.

xsc.getCell(99, 0)
xsc[99][0]
xsc[99]['id']
xsc.coldata(0)[99]
xsc.coldata('id')[99]

Some of these methods may be more efficient than others. Note that none of these methods will
work if the table has sequential-only access.

4.4 Table filter commands (cmd_*)

The STILTS table filters documented in Section 6.1 are available in JyStilts as table methods which
start with the "cmd_" prefix. The return value when calling the method on a table object is another

SUN/256 29

table object. The arguments, which are the same as those required for the command-line version, are
supplied as a list of unnamed arguments of the cmd_* function. In general the arguments are strings,
but numbers are accepted where appropriate. Use the python help command to see the usage of
each method.

So, to use the tail filter to select only the last ten lines of a table, you can write:

table.cmd_tail(10)

To set units of "Hz" for some columns using the colmeta filter write:

table.cmd_colmeta('-units', 'Hz', 'AFREQ BFREQ CFREQ')

Note that where a filter argument is a space-separated list it must appear as a single argument in the
filter invocation, just as in command-line STILTS.

The filter commands are also available as module functions. This means that

stilts.cmd_head(table, 10)

and

table.cmd_head(10)

have exactly the same meaning. It's a matter of taste which you prefer.

4.5 Table output modes (mode_*)

The STILTS table output modes documented in Section 6.4 are available in JyStilts as table
methods which start with the "mode_" prefix. These methods have no return value, but cause
something to happen, in some cases output to be written to standard output. Some of these methods
have named arguments, others have no arguments. Use the python help command to see the usage
of each method.

These methods are straightforward to use. The following example calculates statistics for a table
and writes the results to standard output:

>>> table.mode_stats()

and this one attempts to send the table via the SAMP communications protocol to a running
instance of TOPCAT:

>>> table.mode_samp(client='topcat')

The output modes are also available as module functions. This means that

stilts.mode_samp(table, client='topcat')

and

table.mode_samp(client='topcat)

have exactly the same meaning. It's a matter of taste which you prefer.

4.6 Tasks

The STILTS tasks documented in Appendix B can be used under their usual names if they are
imported from the stilts module. STILTS parameters as are supplied as named arguments of the
python functions. In general they are either table objects for table input parameters or strings, but in

SUN/256 30

some cases python arrays are accepted, and numbers may be used where appropriate. The STILTS
input format (ifmt, istream), filter (cmd/icmd/ocmd) and output mode (omode) parameters are not
used however; instead perform filtering directly on the table inputs and outputs using the python
cmd_* and mode_* table methods or functions.

Here is an example of concatenating two similar tables together and writing the result:

>>> from stilts import tread, tcat
>>> t1 = tread('data1.csv', fmt='csv')
>>> t2 = tread('data2.csv', fmt='csv')
>>> t12 = tcat([t1,t2], seqcol='seq')
>>> t12.write('t12.csv', fmt='csv')

Note that for those tasks which have a parameter named "in" in command-line STILTS, it has been
renamed as "in_" for the python version, to avoid a name clash with the python reserved word. In
most cases, the in parameter is the first, mandatory parameter in any case, and so can be referenced
by position as in the previous example (we could have written "tcat(in_=[t1,t2])" instead).

4.7 Calculation Functions

The various functions from the expression language listed in Section 10.7 are available directly
from JyStilts. Each of the subsections in that section is a class in the stilts module namespace,
with unbound functions representing the functions.

This means you can use them like this:

>>> import stilts
>>> print stilts.Times.mjdToIso(54292)
2007-07-11T00:00:00

or like this:

>>> from stilts import CoordsDegrees
>>> dist = CoordsDegrees.skyDistanceDegrees(ra1, dec1, ra2, dec2)

SUN/256 31

5 Table I/O

Most of the tools in this package either read one or more tables as input, or write one or more tables
as output, or both. This section explains what kind of tables the tools can read and write, and how
you tell them where to find the tables to operate on.

In most cases input and output table specifications are given by parameters with the following
names (or similar ones):

in

Location of the input table; usually a filename or URL, but maybe some other source of data
(see Section 5.2) or a scheme specification (see Section 5.3)

ifmt

Format of the input table, as listed in Section 5.1.1, or blank for automatic format detection
based on input content or name (but ignored for scheme specifications)

out

Destination of the output table; usually a filename or "-"/blank for standard output

ofmt

Format of the output table as listed in Section 5.1.2, or blank for automatic format detection
based on output filename

5.1 Table Formats

The generic table commands in STILTS (currently tpipe, tcopy, tmulti, tmultin, tcat, tcatn,
tloop, tjoin, tgridmap, tgroup, tcube, tmatch1, tmatch2, tmatchn, tskymap, tskymatch2,
pixfoot, pixsample, plot2corner, plot2cube, plot2plane, plot2sky, plot2sphere, plot2time,
plot2d, plot3d, plothist, cdsskymatch, cone, coneskymatch, sqlskymatch, tapquery,
tapresume, tapskymatch and regquery) have no native format for table storage, they can process
data in a number of formats equally well. STIL has its own model of what a table consists of, which
is basically:

• Some per-table metadata (parameters)
• A number of columns
• Some per-column metadata
• A number of rows, each containing one entry per column

Some table formats have better facilities for storing this sort of thing than others, and when
performing conversions STILTS does its best to translate between them, but it can't perform the
impossible: for instance there is nowhere in a Comma-Separated Values file to store descriptions of
column units, so these will be lost when converting from VOTable to CSV formats.

The formats the package knows about are dependent on the input and output handlers currently
installed. The ones installed by default are listed in the following subsections. More may be added
in the future, and it is possible to install new ones at runtime - see the STIL documentation for
details.

Some formats can be used to hold multiple tables in a single file, and others can only hold a single
table per file.

5.1.1 Input Formats

Some of the tools in this package ask you to specify the format of input tables using the ifmt (or a
similarly named) parameter. For some file formats (e.g. FITS, VOTable, CDF), the format can be

SUN/256 32

automatically determined by looking at the file content, regardless of filename; for others (e.g. CSV
files with a ".csv" extension), STILTS may be able to use the filename as a hint to guess the format
(the details of these rules are given in the format-specific subsections below). Otherwise, you have
to supply the format using the ifmt parameter. It is always safe to specify the format explicitly; this
will be slightly more efficient than auto-determination, and may lead to more helpful error
messages in the case that the table can't be read correctly.

The available input formats are described in the following subsections. It is also possible to add new
formats at runtime using the startable.readers system property, or by setting the format to the
classname of a uk.ac.starlink.table.TableBuilder class.

5.1.1.1 fits

FITS is a very well-established format for storage of astronomical table or image data (see
https://fits.gsfc.nasa.gov/). This reader can read tables stored in binary (XTENSION='BINTABLE') and
ASCII (XTENSION='TABLE') table extensions; any image data is ignored. Currently, binary table
extensions are read much more efficiently than ASCII ones.

When a table is stored in a BINTABLE extension in an uncompressed FITS file on disk, the table is
'mapped' into memory; this generally means very fast loading and low memory usage. FITS tables
are thus usually efficient to use.

Limited support is provided for the semi-standard HEALPix-FITS convention; such information
about HEALPix level and coordinate system is read and made available for application usage and
user examination.

A private convention is used to support encoding of tables with more than 999 columns (not
possible in standard FITS); this was discussed on the FITSBITS mailing list in July 2017 in the
thread BINTABLE convention for >999 columns.

Header cards in the table's HDU header will be made available as table parameters. Only header
cards which are not used to specify the table format itself are visible as parameters (e.g. NAXIS,
TTYPE* etc cards are not). HISTORY and COMMENT cards are run together as one multi-line
value.

Any 64-bit integer column with a non-zero integer offset (TFORMn='K', TSCALn=1, TZEROn<>0) is
represented in the read table as Strings giving the decimal integer value, since no numeric type in
Java is capable of representing the whole range of possible inputs. Such columns are most
commonly seen representing unsigned long values.

Where a multi-extension FITS file contains more than one table, a single table may be specified
using the position indicator, which may take one of the following forms:

• The numeric index of the HDU. The first extension (first HDU after the primary HDU) is
numbered 1. Thus in a compressed FITS table named "spec23.fits.gz" with one primary
HDU and two BINTABLE extensions, you would view the first one using the name
"spec23.fits.gz" or "spec23.fits.gz#1" and the second one using the name
"spec23.fits.gz#2". The suffix "#0" is never used for a legal FITS file, since the primary
HDU cannot contain a table.

• The name of the extension. This is the value of the EXTNAME header in the HDU, or
alternatively the value of EXTNAME followed by "-" followed by the value of EXTVER. This
follows the recommendation in the FITS standard that EXTNAME and EXTVER headers can be
used to identify an HDU. So in a multi-extension FITS file "cat.fits" where a table extension
has EXTNAME='UV_DATA' and EXTVER=3, it could be referenced as "cat.fits#UV_DATA" or
"cat.fits#UV_DATA-3". Matching of these names is case-insensitive.

SUN/256 33

Files in this format may contain multiple tables; depending on the context, either one or all tables
will be read. Where only one table is required, either the first one in the file is used, or the required
one can be specified after the "#" character at the end of the filename.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading FITS tables, regardless of the filename.

There are actually two FITS input handlers, fits-basic and fits-plus. The fits-basic handler
extracts standard column metadata from FITS headers of the HDU in which the table is found,
while the fits-plus handler reads column and table metadata from VOTable content stored in the
primary HDU of the multi-extension FITS file. FITS-plus is a private convention effectively
defined by the corresponding output handler; it allows de/serialization of much richer metadata than
can be stored in standard FITS headers when the FITS file is read by fits-plus-aware readers, though
other readers can understand the unenhanced FITS file perfectly well. It is normally not necessary
to worry about this distinction; STILTS will determine whether a FITS file is FITS-plus or not
based on its content and use the appropriate handler, but if you want to force the reader to use or
ignore the enriched header, you can explicitly specify an input format of "fits-plus" or
"fits-basic".

5.1.1.2 colfits

As well as normal binary and ASCII FITS tables, STIL supports FITS files which contain tabular
data stored in column-oriented format. This means that the table is stored in a BINTABLE
extension HDU, but that BINTABLE has a single row, with each cell of that row holding a whole
column's worth of data. The final (slowest-varying) dimension of each of these cells (declared via
the TDIMn headers) is the same for every column, namely, the number of rows in the table that is
represented. The point of this is that all the cells for each column are stored contiguously, which for
very large, and especially very wide tables means that certain access patterns (basically, ones which
access only a small proportion of the columns in a table) can be much more efficient since they
require less I/O overhead in reading data blocks.

Such tables are perfectly legal FITS files, but general-purpose FITS software may not recognise
them as multi-row tables in the usual way. This format is mostly intended for the case where you
have a large table in some other format (possibly the result of an SQL query) and you wish to cache
it in a way which can be read efficiently by a STIL-based application.

For performance reasons, it is advisable to access colfits files uncompressed on disk. Reading them
from a remote URL, or in gzipped form, may be rather slow (in earlier versions it was not supported
at all).

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading colfits-basic tables, regardless of the filename.

Like the normal (row-oriented) FITS handler, two variants are supported: with (colfits-plus) or
without (colfits-basic) metadata stored as a VOTable byte array in the primary HDU.

5.1.1.3 votable

VOTable is an XML-based format for tabular data endorsed by the International Virtual
Observatory Alliance; while the tabular data which can be encoded is by design close to what FITS
allows, it provides for much richer encoding of structure and metadata. Most of the table data
exchanged by VO services is in VOTable format, and it can be used for local table storage as well.

Any table which conforms to the VOTable 1.0, 1.1, 1.2, 1.3 or 1.4 specifications can be read. This
includes all the defined cell data serializations; cell data may be included in-line as XML elements

SUN/256 34

(TABLEDATA serialization), included/referenced as a FITS table (FITS serialization), or
included/referenced as a raw binary stream (BINARY or BINARY2 serialization). The handler does
not attempt to be fussy about input VOTable documents, and it will have a good go at reading
VOTables which violate the standards in various ways.

Much, but not all, of the metadata contained in a VOTable document is retained when the table is
read in. The attributes unit, ucd, xtype and utype, and the elements COOSYS, TIMESYS and
DESCRIPTION attached to table columns or parameters, are read and may be used by the application
as appropriate or examined by the user. However, information encoded in the hierarchical structure
of the VOTable document, including GROUP structure, is not currently retained when a VOTable is
read.

VOTable documents may contain more than one actual table (TABLE element). To specify a specific
single table, the table position indicator is given by the zero-based index of the TABLE element in a
breadth-first search. Here is an example VOTable document:

<VOTABLE>
<RESOURCE>

<TABLE name="Star Catalogue"> ... </TABLE>
<TABLE name="Galaxy Catalogue"> ... </TABLE>

</RESOURCE>
</VOTABLE>

If this is available in a file named "cats.xml" then the two tables could be named as "cats.xml#0"
and "cats.xml#1" respectively.

Files in this format may contain multiple tables; depending on the context, either one or all tables
will be read. Where only one table is required, either the first one in the file is used, or the required
one can be specified after the "#" character at the end of the filename.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading VOTable tables, regardless of the filename.

5.1.1.4 cdf

NASA's Common Data Format, described at https://cdf.gsfc.nasa.gov/, is a binary format for storing
self-described data. It is typically used to store tabular data for subject areas like space and solar
physics.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading CDF tables, regardless of the filename.

5.1.1.5 csv

Comma-separated value ("CSV") format is a common semi-standard text-based format in which
fields are delimited by commas. Spreadsheets and databases are often able to export data in some
variant of it. The intention is to read tables in the version of the format spoken by MS Excel
amongst other applications, though the documentation on which it was based was not obtained
directly from Microsoft.

The rules for data which it understands are as follows:

• Each row must have the same number of comma-separated fields.
• Whitespace (space or tab) adjacent to a comma is ignored.
• Adjacent commas, or a comma at the start or end of a line (whitespace apart) indicates a null

field.
• Lines are terminated by any sequence of carriage-return or newline characters ('\r' or '\n') (a

SUN/256 35

corollary of this is that blank lines are ignored).
• Cells may be enclosed in double quotes; quoted values may contain linebreaks (or any other

character); a double quote character within a quoted value is represented by two adjacent
double quotes.

• The first line may be a header line containing column names rather than a row of data. Exactly
the same syntactic rules are followed for such a row as for data rows.

Note that you can not use a "#" character (or anything else) to introduce "comment" lines.

Because the CSV format contains no metadata beyond column names, the handler is forced to guess
the datatype of the values in each column. It does this by reading the whole file through once and
guessing on the basis of what it has seen (though see the maxSample configuration option). This has
the disadvantages:

• Sometimes it guesses a different type than what you want (e.g. 32-bit integer rather than 64-bit
integer)

• It's slow to read.

This means that CSV is not generally recommended if you can use another format instead. If you're
stuck with a large CSV file that's misbehaving or slow to use, one possibility is to turn it into an
ECSV file file by adding some header lines by hand.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"csv(header=true,maxSample=100000)". The following options are available:

header = true|false|null

Indicates whether the input CSV file contains the optional one-line header giving column
names. Options are:

• true: the first line is a header line containing column names
• false: all lines are data lines, and column names will be assigned automatically
• null: a guess will be made about whether the first line is a header or not depending on

what it looks like

The default value is null (auto-determination). This usually works OK, but can get into
trouble if all the columns look like string values.

maxSample = <int>

Controls how many rows of the input file are sampled to determine column datatypes. When
reading CSV files, since no type information is present in the input file, the handler has to look
at the column data to see what type of value appears to be present in each column, before even
starting to read the data in. By default it goes through the whole table when doing this, which
can be time-consuming for large tables. If this value is set, it limits the number of rows that are
sampled in this data characterisation pass, which can reduce read time substantially. However,
if values near the end of the table differ in apparent type from those near the start, it can also
result in getting the datatypes wrong.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that a table is in CSV format when reading it. However, if the input file has the extension ".csv"
(case insensitive) an attempt will be made to read it using this format.

An example looks like this:

RECNO,SPECIES,NAME,LEGS,HEIGHT,MAMMAL
1,pig,Pigling Bland,4,0.8,true
2,cow,Daisy,4,2.0,true
3,goldfish,Dobbin,,0.05,false
4,ant,,6,0.001,false
5,ant,,6,0.001,false

SUN/256 36

6,queen ant,Ma'am,6,0.002,false
7,human,Mark,2,1.8,true

See also ECSV as a format which is similar and capable of storing more metadata.

5.1.1.6 ecsv

The Enhanced Character Separated Values format was developed within the Astropy project and is
described in Astropy APE6 (DOI). It is composed of a YAML header followed by a CSV-like
body, and is intended to be a human-readable and maybe even human-writable format with rich
metadata. Most of the useful per-column and per-table metadata is preserved when de/serializing to
this format. The version supported by this reader is currently ECSV 1.0.

There are various ways to format the YAML header, but a simple example of an ECSV file looks
like this:

%ECSV 1.0

delimiter: ','
datatype: [
{ name: index, datatype: int32 },
{ name: Species, datatype: string },
{ name: Name, datatype: string },
{ name: Legs, datatype: int32 },
{ name: Height, datatype: float64, unit: m },
{ name: Mammal, datatype: bool },
]
index,Species,Name,Legs,Height,Mammal
1,pig,Bland,4,,True
2,cow,Daisy,4,2,True
3,goldfish,Dobbin,,0.05,False
4,ant,,6,0.001,False
5,ant,,6,0.001,False
6,human,Mark,2,1.9,True

If you follow this pattern, it's possible to write your own ECSV files by taking an existing CSV file
and decorating it with a header that gives column datatypes, and possibly other metadata such as
units. This allows you to force the datatype of given columns (the CSV reader guesses datatype
based on content, but can get it wrong) and it can also be read much more efficiently than a CSV
file and its format can be detected automatically.

The header information can be provided either in the ECSV file itself, or alongside a plain CSV file
from a separate source referenced using the header configuration option. In Gaia EDR3 for
instance, the ECSV headers are supplied alongside the CSV files available for raw download of all
tables in the Gaia source catalogue, so e.g. STILTS can read one of the gaia_source CSV files with
full metadata as follows:

stilts tpipe
ifmt='ecsv(header=http://cdn.gea.esac.esa.int/Gaia/gedr3/ECSV_headers/gaia_source.header)'
in=http://cdn.gea.esac.esa.int/Gaia/gedr3/gaia_source/GaiaSource_000000-003111.csv.gz

The ECSV datatypes that work well with this reader are bool, int8, int16, int32, int64, float32,
float64 and string. Array-valued columns are also supported with some restrictions. Following
the ECSV 1.0 specification, columns representing arrays of the supported datatypes can be read, as
columns with datatype: string and a suitable subtype, e.g. "int32[<dims>]" or
"float64[<dims>]". Fixed-length arrays (e.g. subtype: int32[3,10]) and 1-dimensional
variable-length arrays (e.g. subtype: float64[null]) are supported; however variable-length
arrays with more than one dimension (e.g. subtype: int32[4,null]) cannot be represented, and
are read in as string values. Null elements of array-valued cells are not supported; they are read as
NaNs for floating point data, and as zero/false for integer/boolean data. ECSV 1.0, required to work
with array-valued columns, is supported by Astropy v4.3 and later.

SUN/256 37

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"ecsv(header=http://cdn.gea.esac.esa.int/Gaia/gedr3/ECSV_headers/gaia_source.header,colcheck=FAIL)".
The following options are available:

header = <filename-or-url>

Location of a file containing a header to be applied to the start of the input file. By using this
you can apply your own ECSV-format metadata to plain CSV files.

colcheck = IGNORE|WARN|FAIL

Determines the action taken if the columns named in the YAML header differ from the
columns named in the first line of the CSV part of the file.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading ECSV tables, regardless of the filename.

5.1.1.7 ascii

In many cases tables are stored in some sort of unstructured plain text format, with cells separated
by spaces or some other delimiters. There is a wide variety of such formats depending on what
delimiters are used, how columns are identified, whether blank values are permitted and so on. It is
impossible to cope with them all, but the ASCII handler attempts to make a good guess about how
to interpret a given ASCII file as a table, which in many cases is successful. In particular, if you just
have columns of numbers separated by something that looks like spaces, you should be just fine.

Here are the detailed rules for how the ASCII-format tables are interpreted:

• Bytes in the file are interpreted as ASCII characters
• Each table row is represented by a single line of text
• Lines are terminated by one or more contiguous line termination characters: line feed (0x0A)

or carriage return (0x0D)
• Within a line, fields are separated by one or more whitespace characters: space (" ") or tab

(0x09)
• A field is either an unquoted sequence of non-whitespace characters, or a sequence of

non-newline characters between matching single (') or double (") quote characters - spaces are
therefore allowed in quoted fields

• Within a quoted field, whitespace characters are permitted and are treated literally
• Within a quoted field, any character preceded by a backslash character ("\") is treated literally.

This allows quote characters to appear within a quoted string.
• An empty quoted string (two adjacent quotes) or the string "null" (unquoted) represents the

null value
• All data lines must contain the same number of fields (this is the number of columns in the

table)
• The data type of a column is guessed according to the fields that appear in the table. If all the

fields in one column can be parsed as integers (or null values), then that column will turn into
an integer-type column. The types that are tried, in order of preference, are: Boolean, Short
Integer, Long, Float, Double, String

• Some special values are permitted for floating point columns: NaN for not-a-number, which is
treated the same as a null value for most purposes, and Infinity or inf for infinity (with or
without a preceding +/- sign). These values are matched case-insensitively.

• Empty lines are ignored
• Anything after a hash character "#" (except one in a quoted string) on a line is ignored as far as

table data goes; any line which starts with a "!" is also ignored. However, lines which start
with a "#" or "!" at the start of the table (before any data lines) will be interpreted as metadata
as follows:

SUN/256 38

• The last "#"/"!"-starting line before the first data line may contain the column names. If it
has the same number of fields as there are columns in the table, each field will be taken to
be the title of the corresponding column. Otherwise, it will be taken as a normal comment
line.

• Any comment lines before the first data line not covered by the above will be
concatenated to form the "description" parameter of the table.

If the list of rules above looks frightening, don't worry, in many cases it ought to make sense of a
table without you having to read the small print. Here is an example of a suitable ASCII-format
table:

#
Here is a list of some animals.
#
RECNO SPECIES NAME LEGS HEIGHT/m
1 pig "Pigling Bland" 4 0.8
2 cow Daisy 4 2
3 goldfish Dobbin "" 0.05
4 ant "" 6 0.001
5 ant "" 6 0.001
6 ant '' 6 0.001
7 "queen ant" 'Ma\'am' 6 2e-3
8 human "Mark" 2 1.8

In this case it will identify the following columns:

Name Type
---- ----
RECNO Short
SPECIES String
NAME String
LEGS Short
HEIGHT/m Float

It will also use the text "Here is a list of some animals" as the Description parameter of the
table. Without any of the comment lines, it would still interpret the table, but the columns would be
given the names col1..col5.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "ascii(maxSample=5000)". The
following options are available:

maxSample = <int>

Controls how many rows of the input file are sampled to determine column datatypes. When
reading ASCII files, since no type information is present in the input file, the handler has to
look at the column data to see what type of value appears to be present in each column, before
even starting to read the data in. By default it goes through the whole table when doing this,
which can be time-consuming for large tables. If this value is set, it limits the number of rows
that are sampled in this data characterisation pass, which can reduce read time substantially.
However, if values near the end of the table differ in apparent type from those near the start, it
can also result in getting the datatypes wrong.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that a table is in ASCII format when reading it. However, if the input file has the extension ".txt"
(case insensitive) an attempt will be made to read it using this format.

5.1.1.8 ipac

CalTech's Infrared Processing and Analysis Center use a text-based format for storage of tabular
data, defined at http://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html. Tables can

SUN/256 39

store column name, type, units and null values, as well as table parameters.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that a table is in IPAC format when reading it. However, if the input file has the extension ".tbl" or
".ipac" (case insensitive) an attempt will be made to read it using this format.

An example looks like this:

\Table name = "animals.vot"
\Description = "Some animals"
\Author = "Mark Taylor"
RECNO	SPECIES	NAME	LEGS	HEIGHT	MAMMAL
int	char	char	int	double	char
				m	
null	null	null	null	null	null
1 pig Pigling Bland 4 0.8 true
2 cow Daisy 4 2.0 true
3 goldfish Dobbin null 0.05 false
4 ant null 6 0.001 false
5 ant null 6 0.001 false
6 queen ant Ma'am 6 0.002 false
7 human Mark 2 1.8 true

5.1.1.9 pds4

NASA's Planetary Data System version 4 format is described at https://pds.nasa.gov/datastandards/.
This implementation is based on v1.16.0 of PDS4.

PDS4 files consist of an XML Label file which provides detailed metadata, and which may also
contain references to external data files stored alongside it. This input handler looks for (binary,
character or delimited) tables in the Label; depending on the configuration it may restrict them to
those in the File_Area_Observational area. The Label is the file which has to be presented to this
input handler to read the table data. Because of the relationship between the label and the data files,
it is usually necessary to move them around together.

If there are multiple tables in the label, you can refer to an individual one using the "#" specifier
after the label file name by table name, local_identifier, or 1-based index (e.g. "label.xml#1"
refers to the first table).

If there are Special_Constants defined in the label, they are in most cases interpreted as blank
values in the output table data. At present, the following special values are interpreted as blanks:
saturated_constant, missing_constant, error_constant, invalid_constant,
unknown_constant, not_applicable_constant, high_instrument_saturation,
high_representation_saturation, low_instrument_saturation,
low_representation_saturation .

Fields within top-level Groups are interpreted as array values. Any fields in nested groups are
ignored. For these array values only limited null-value substitution can be done (since array
elements are primitives and so cannot take null values).

This input handler is somewhat experimental, and the author is not a PDS expert. If it behaves
strangely or you have suggestions for how it could work better, please contact the author.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"pds4(checkmagic=false,observational=true)". The following options are available:

checkmagic = true|false

Determines whether an initial test is made to see whether the file looks like PDS4 before

SUN/256 40

attempting to read it as one. The tests are ad-hoc and look for certain elements and namespaces
that are expected to appear near the start of a table-containing PDS4 file, but it's not
bulletproof. Setting this true is generally a good idea to avoid attempting to parse non-PDS4
files, but you can set it false to attempt to read an PDS4 file that starts with the wrong
sequence.

observational = true|false

Determines whether only tables within a <File_Area_Observational> element of the PDS4
label should be included. If true, only observational tables are found, if false, other tables will
be found as well.

Files in this format may contain multiple tables; depending on the context, either one or all tables
will be read. Where only one table is required, either the first one in the file is used, or the required
one can be specified after the "#" character at the end of the filename.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading PDS4 tables, regardless of the filename.

5.1.1.10 mrt

The so-called "Machine-Readable Table" format is used by AAS journals, and based on the format
of readMe files used by the CDS. There is some documentation at
https://journals.aas.org/mrt-standards/, which mostly builds on documentation at
http://vizier.u-strasbg.fr/doc/catstd.htx, but the format is in fact quite poorly specified, so this input
handler was largely developed on a best-efforts basis by looking at MRT tables actually in use by
AAS, and with assistance from AAS staff. As such, it's not guaranteed to succeed in reading all
MRT files out there, but it will try its best.

It only attempts to read MRT files themselves, there is currently no capability to read VizieR data
tables which provide the header and formatted data in separate files; however, if a table is present in
VizieR, there will be options to download it in more widely used formats that can be used instead.

An example looks like this:

Title: A search for multi-planet systems with TESS using a Bayesian
N-body retrieval and machine learning

Author: Pearson K.A.
Table: Stellar Parameters
==
Byte-by-byte Description of file: ajab4e1ct2_mrt.txt
--

Bytes Format Units Label Explanations
--

1- 9 I9 --- ID TESS Input Catalog identifier
11- 15 F5.2 mag Tmag Apparent TESS band magnitude
17- 21 F5.3 solRad R* Stellar radius
23- 26 I4 K Teff Effective temperature
28- 32 F5.3 [cm/s2] log(g) log surface gravity
34- 38 F5.2 [Sun] [Fe/H] Metallicity
40- 44 F5.3 --- u1 Linear Limb Darkening
46- 50 F5.3 --- u2 Quadratic Limb Darkening

--
231663901 12.35 0.860 5600 4.489 0.00 0.439 0.138
149603524 9.72 1.280 6280 4.321 0.24 0.409 0.140
336732616 11.46 1.400 6351 4.229 0.00 0.398 0.140
231670397 9.85 2.070 6036 3.934 0.00 0.438 0.117
...

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"mrt(checkmagic=false,errmode=FAIL)". The following options are available:

SUN/256 41

checkmagic = true|false

Determines whether an initial test is made to see whether the file looks like MRT before
attempting to read it as one; the test is that it starts with the string "Title: ". Setting this true
is generally a good idea to avoid attempting to parse non-MRT files, but you can set it false to
attempt to read an MRT file that starts with the wrong sequence.

errmode = IGNORE|WARN|FAIL

Indicates what action should be taken if formatting errors are detected in the file at read time.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading MRT tables, regardless of the filename.

5.1.1.11 parquet

Parquet is a columnar format developed within the Apache project. Data is compressed on disk and
read into memory before use.

This input handler will read columns representing scalars, strings and one-dimensional arrays of the
same. It is not capable of reading multi-dimensional arrays, more complex nested data structures, or
some more exotic data types like 96-bit integers. If such columns are encountered in an input file, a
warning will be emitted through the logging system and the column will not appear in the read
table. Support may be introduced for some additional types if there is demand.

At present, only very limited metadata is read. Parquet does not seem(?) to have any standard
format for per-column metadata, so the only information read about each column apart from its
datatype is its name.

Depending on the way that the table is accessed, the reader tries to take advantage of the column
and row block structure of parquet files to read the data in parallel where possible.

Parquet support is currently somewhat experimental.

Note:

The parquet I/O handlers require large external libraries, which are not always bundled with
the library/application software because of their size. In some configurations, parquet
support may not be present, and attempts to read or write parquet files will result in a
message like:

Parquet-mr libraries not available

If you can supply the relevant libaries on the classpath at runtime, the parquet support will
work. At time of writing, the required libraries are included in the topcat-extra.jar

monolithic jar file; they can also be found in the starjava github repository
(https://github.com/Starlink/starjava/tree/master/parquet/src/lib, use parquet-mr-stil.jar

and its dependencies), or you can acquire them from the Parquet MR package. These
arrangements may be revised in future releases, for instance if parquet usage becomes more
mainstream. The required dependencies are those of the Parquet MR submodule
parquet-cli, in particular the files parquet-cli-1.11.1.jar,
parquet-column-1.11.1.jar, parquet-common-1.11.1.jar,
parquet-encoding-1.11.1.jar, parquet-format-structures-1.11.1.jar,
parquet-hadoop-1.11.1-noshaded.jar, parquet-jackson-1.11.1.jar,
commons-collections-3.2.2.jar, commons-configuration-1.6.jar,
commons-lang-2.6.jar, failureaccess-1.0.1.jar, guava-27.0.1-jre.jar,
hadoop-auth-2.7.3.jar, hadoop-common-2.7.3.jar, log4j-1.2.17.jar,
slf4j-api-1.7.22.jar, slf4j-log4j12-1.7.22.jar, snappy-java-1.1.7.3.jar.

SUN/256 42

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"parquet(cachecols=true,nThread=4)". The following options are available:

cachecols = true|false|null

Forces whether to read all the column data at table load time. If true, then when the table is
loaded, all data is read by column into local scratch disk files, which is generally the fastest
way to ingest all the data. If false, the table rows are read as required, and possibly cached
using the normal STIL mechanisms. If null (the default), the decision is taken automatically
based on available information.

nThread = <int>

Sets the number of read threads used for concurrently reading table columns if the columns are
cached at load time - see the cachecols option. If the value is <=0 (the default), a value is
chosen based on the number of apparently available processors.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading parquet tables, regardless of the filename.

5.1.1.12 hapi

HAPI, the Heliophysics Data Application Programmer’s Interface is a protocol for serving streamed
time series data. This reader can read HAPI CSV and binary tables if they include header
information (the include=header request parameter must be present). An example HAPI URL is

https://vires.services/hapi/data?dataset=GRACE_A_MAG&start=2009-01-01&stop=2009-01-02&include=header

While HAPI data is normally accessed directly from the service, it is possible to download a HAPI
stream to a local file and use this handler to read it from disk.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that a table is in HAPI format when reading it. However, if the input file has the extension ".hapi"
(case insensitive) an attempt will be made to read it using this format.

5.1.1.13 feather

The Feather file format is a column-oriented binary disk-based format based on Apache Arrow and
supported by (at least) Python, R and Julia. Some description of it is available at
https://github.com/wesm/feather and https://blog.rstudio.com/2016/03/29/feather/. It can be used for
large datasets, but it does not support array-valued columns. It can be a useful format to use for
exchanging data with R, for which FITS I/O is reported to be slow.

At present CATEGORY type columns are not supported, and metadata associated with TIME,
DATE and TIMESTAMP columns is not retrieved.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading feather tables, regardless of the filename.

5.1.1.14 gbin

GBIN format is a special-interest file format used within DPAC, the Data Processing and Analysis
Consortium working on data from the Gaia astrometry satellite. It is based on java serialization, and
in all of its various forms has the peculiarity that you only stand any chance of decoding it if you
have the Gaia data model classes on your java classpath at runtime. Since the set of relevant classes

SUN/256 43

is very large, and also depends on what version of the data model your GBIN file corresponds to,
those classes will not be packaged with this software, so some additional setup is required to read
GBIN files.

As well as the data model classes, you must provide on the runtime classpath the GaiaTools classes
required for GBIN reading. The table input handler accesses these by reflection, to avoid an
additional large library dependency for a rather niche requirement. It is likely that since you have to
supply the required data model classes you will also have the required GaiaTools classes to hand as
well, so this shouldn't constitute much of an additional burden for usage.

In practice, if you have a jar file or files for pretty much any java library or application which is
capable of reading a given GBIN file, just adding it or them to the classpath at runtime when using
this input handler ought to do the trick. Examples of such jar files are the
MDBExplorerStandalone.jar file available from https://gaia.esac.esa.int/mdbexp/, or the
gbcat.jar file you can build from the CU9/software/gbcat/ directory in the DPAC subversion
repository.

The GBIN format doesn't really store tables, it stores arrays of java objects, so the input handler has
to make some decisions about how to flatten these into table rows.

In its simplest form, the handler basically looks for public instance methods of the form getXxx()

and uses the Xxx as column names. If the corresponding values are themselves objects with suitable
getter methods, those objects are added as new columns instead. This more or less follows the
practice of the gbcat (gaia.cu1.tools.util.GbinInterogator) tool. Method names are sorted
alphabetically. Arrays of complex objects are not handled well, and various other things may trip it
up. See the source code (e.g. uk.ac.starlink.gbin.GbinTableProfile) for more details.

If the object types stored in the GBIN file are known to the special metadata-bearing class
gaia.cu9.tools.documentationexport.MetadataReader and its dependencies, and if that class is
on the runtime classpath, then the handler will be able to extract additional metadata as available,
including standardised column names, table and column descriptions, and UCDs. An example of a
jar file containing this metadata class alongside data model classes is
GaiaDataLibs-18.3.1-r515078.jar. Note however at time of writing there are some deficiencies
with this metadata extraction functionality related to unresolved issues in the upstream gaia class
libraries and the relevant interface control document (GAIA-C9-SP-UB-XL-034-01, "External Data
Centres ICD"). Currently columns appear in the output table in a more or less random order, units
and Utypes are not extracted, and using the GBIN reader tends to cause a 700kbyte file "temp.xml"
to be written in the current directory. If the upstream issues are fixed, this behaviour may improve.

Note: support for GBIN files is somewhat experimental. Please contact the author (who is not a
GBIN expert) if it doesn't seem to be working properly or you think it should do things differently.

Note: there is a known bug in some versions of GaiaTools (caused by a bug in its dependency
library zStd-jni) which in rare cases can fail to read all the rows in a GBIN input file. If this bug is
encountered by the reader, it will by default fail with an error mentioning zStd-jni. In this case, the
best thing to do is to put a fixed version of zStd-jni or GaiaTools on the classpath. However, if
instead you set the config option readMeta=false the read will complete without error, though the
missing rows will not be recovered.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"gbin(readMeta=false,hierarchicalNames=true)". The following options are available:

readMeta = true|false

Configures whether the GBIN metadata will be read prior to reading the data. This may slow
things down slightly, but means the row count can be determined up front, which may have

SUN/256 44

benefits for downstream processing.

Setting this false can prevent failing on an error related to a broken version of the zStd-jni
library in GaiaTools. Note however that in this case the data read, though not reporting an
error, will silently be missing some rows from the GBIN file.

hierarchicalNames = true|false

Configures whether column names in the output table should be forced to reflect the
compositional hierarchy of their position in the element objects. If set true, columns will have
names like "Astrometry_Alpha", if false they may just be called "Alpha". In case of name
duplication however, the hierarchical form is always used.

This format can be automatically identified by its content so you do not need to specify the format
explicitly when reading GBIN tables, regardless of the filename.

Example: Suppose you have the MDBExplorerStandalone.jar file containing the data model
classes, you can read GBIN files by starting STILTS like this:

stilts -classpath MDBExplorerStandalone.jar ...

or like this:

java -classpath stilts.jar:MDBExplorerStandalone.jar uk.ac.starlink.ttools.Stilts ...

5.1.1.15 tst

Tab-Separated Table, or TST, is a text-based table format used by a number of astronomical tools
including Starlink's GAIA and ESO's SkyCat on which it is based. A definition of the format can be
found in Starlink Software Note 75. The implementation here ignores all comment lines: special
comments such as the "#column-units:" are not processed.

An example looks like this:

Simple TST example; stellar photometry catalogue.

A.C. Davenhall (Edinburgh) 26/7/00.

Catalogue of U,B,V colours.
UBV photometry from Mount Pumpkin Observatory,
see Sage, Rosemary and Thyme (1988).

Start of parameter definitions.
EQUINOX: J2000.0
EPOCH: J1996.35

id_col: -1
ra_col: 0
dec_col: 1

End of parameter definitions.
ra<tab>dec<tab>V<tab>B_V<tab>U_B
--<tab>---<tab>-<tab>---<tab>---
5:09:08.7<tab> -8:45:15<tab> 4.27<tab> -0.19<tab> -0.90
5:07:50.9<tab> -5:05:11<tab> 2.79<tab> +0.13<tab> +0.10
5:01:26.3<tab> -7:10:26<tab> 4.81<tab> -0.19<tab> -0.74
5:17:36.3<tab> -6:50:40<tab> 3.60<tab> -0.11<tab> -0.47
[EOD]

This format cannot be automatically identified by its content, so in general it is necessary to specify
that a table is in TST format when reading it.

5.1.1.16 wdc

SUN/256 45

Some support is provided for files produced by the World Data Centre for Solar Terrestrial Physics.
The format itself apparently has no name, but files in this format look something like the following:

Column formats and units - (Fixed format columns which are single space separated.)

Datetime (YYYY mm dd HHMMSS) %4d %2d %2d %6d -

%1s
aa index - 3-HOURLY (Provisional) %3d nT

2000 01 01 000000 67
2000 01 01 030000 32

...

Support for this (obsolete?) format may not be very complete or robust.

This format cannot be automatically identified by its content, so in general it is necessary to specify
that a table is in WDC format when reading it.

5.1.2 Output Formats

Some of the tools ask you to specify the format of output tables using the ofmt parameter. The
output formats described below are supported; in some cases there are variants or options for the
basic formats as documented. If you don't specify an output format explicitly, STILTS will try to
guess what format to write based on the output filename; the details of those rules are also
documented below.

It is also possible to add new formats at runtime using the startable.writers system property, or
by setting the format to the classname of a uk.ac.starlink.table.StarTableWriter class.

5.1.2.1 fits

FITS is a very well-established format for storage of astronomical table or image data (see
https://fits.gsfc.nasa.gov/). This writer stores tables in a FITS file consisting of two HDUs
(Header+Data Units): a Primary HDU as required by the FITS standard, and a single extension of
type BINTABLE containing the table data.

There are a few variants of this format:

fits-plus
The primary HDU contains an array of bytes which stores the full table metadata as the text of
a VOTable document, along with headers that mark this has been done. Most FITS table
readers will ignore this altogether and treat the file just as if it contained only the table. When
it is re-read by this or compatible applications however, they can read out the metadata and
make it available for use. In this way you can store your data in the efficient and widely
portable FITS format without losing the additional metadata such as table parameters, column
UCDs, lengthy column descriptions etc that may be attached to the table.

fits-basic
The primary HDU contains only very minimal headers and no data.

fits-var
Behaves like fits-basic, but columns containing variable-length numeric array data are
stored using the P and Q formats where appropriate, rather than padding smaller arrays to the
size of the largest. This can make for more compact storage of variable-length array-valued
column data but may also result in tables less suitable for streaming.

fits-healpix
Used for storing HEALPix pixel data in a way that conforms to the HEALPix-FITS
serialization convention. In most ways it behaves the same as fits-basic, but it will rearrange
and rename columns as required to follow the convention, and it will fail if the table does not

SUN/256 46

contain the required HEALPix metadata (STIL_HPX_* parameters).

The default output format is fits-plus; in general you don't need to worry about this, it just gives
you some hidden benefits over fits-basic.

A private convention is used where required to support encoding of tables with more than 999
columns (not possible in standard FITS); this was discussed on the FITSBITS mailing list in July
2017 in the thread BINTABLE convention for >999 columns. If software unaware of this
convention (e.g. CFITSIO) is used to read such tables, it will only see the first 998 columns written
as intended, plus a column 999 containing an undescribed byte buffer.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "fits-plus(date=true)". The
following options are available:

date = true|false

If true, the DATE-HDU header is filled in with the current date; otherwise it is not included.

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to a filename with the extension ".fit", ".fits" or
".fts" (case insensitive) will select fits-plus format for output.

For column-oriented FITS table output, see Section 5.1.2.2.

5.1.2.2 colfits

Column-oriented FITS output consists of a FITS file containing two HDUs (Header+Data Units); a
primary one (required by the FITS standard) and a single extension of type BINTABLE containing
the table data. Unlike normal FITS format however, this table consists of a single row in which each
cell holds the data for an entire column.

This can be a more efficient format to work with when dealing with very large, and especially very
wide, tables. The benefits are greatest when the file size exceeds the amount of available physical
memory and operations are required which scan through the table using only a few of the columns
(many common operations, for instance plotting two columns against each other, fall into this
category). The overhead for reading and writing this format is somewhat higher than for normal
FITS however, and other applications may not be able to work with it (though it is a legal FITS
file), so in most cases normal FITS is a more suitable choice.

There are two variants of this format:

colfits-plus
The primary HDU contains an array of bytes which stores the table metadata in VOTable
format.

colfits-basic
The primary HDU contains no data.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "colfits-plus(date=true)". The
following options are available:

date = true|false

If true, the DATE-HDU header is filled in with the current date; otherwise it is not included.

SUN/256 47

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to a filename with the extension ".colfits" (case
insensitive) will select colfits-plus format for output.

For normal (row-oriented) FITS output, see Section 5.1.2.1.

5.1.2.3 votable

VOTable is an XML-based format for tabular data endorsed by the International Virtual
Observatory Alliance and defined in the VOTable Recommendation. While the tabular data which
can be encoded is by design close to what FITS allows, it provides for much richer encoding of
structure and metadata. Most of the table data exchanged by VO services is in VOTable format, but
it can be used for local table storage as well.

When a table is saved to VOTable format, a document conforming to the VOTable specification
containing a single TABLE element within a single RESOURCE element is written. Where the
table contains such information (often obtained by reading an input VOTable), column and table
metadata will be written out as appropriate to the attributes unit, ucd, xtype and utype, and the
elements COOSYS, TIMESYS and DESCRIPTION attached to table columns or parameters.

There are various ways that a VOTable can be written; by default the output serialization format is
TABLEDATA and the VOTable format version is 1.4, or a value controlled by the
votable.version system property. However, configuration options are available to adjust these
defaults.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"votable(format=BINARY2,version=V13)". The following options are available:

format = TABLEDATA|BINARY|BINARY2|FITS

Gives the serialization type (DATA element content) of output VOTables.

version = V10|V11|V12|V13|V14|V15

Gives the version of the VOTable format which will be used when writing the VOTable. "V10"
is version 1.0 etc.

inline = true|false

If true, STREAM elements are written base64-encoded within the body of the document, and
if false they are written to a new external binary file whose name is derived from that of the
output VOTable document. This is only applicable to BINARY, BINARY2 and FITS formats
where output is not to a stream.

compact = true|false|null

Controls whitespace formatting for TABLEDATA output, ignored for other formats. By
default a decision will be taken dependent on table width.

encoding = UTF-8|UTF-16|...

Specifies the XML encoding used in the output VOTable. The default value is UTF-8. Note
that certain optimisations are in place for UTF-8 output which means that other encodings may
be significantly slower.

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to a filename with the extension ".vot",
".votable" or ".xml" (case insensitive) will select votable format for output.

SUN/256 48

5.1.2.4 csv

Writes tables in the semi-standard Comma-Separated Values format. This does not preserve any
metadata apart from column names, and is generally inefficient to read, but it can be useful for
importing into certain external applications, such as some databases or spreadsheets.

By default, the first line is a header line giving the column names, but this can be inhibited using the
header=false configuration option.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"csv(header=true,maxCell=160)". The following options are available:

header = true|false

If true, the first line of the CSV output will be a header containing the column names; if false,
no header line is written and all lines represent data rows.

maxCell = <int>

Maximum width in characters of an output table cell. Cells longer than this will be truncated.

If no output format is explicitly chosen, writing to a filename with the extension ".csv" (case
insensitive) will select CSV format for output.

An example looks like this:

RECNO,SPECIES,NAME,LEGS,HEIGHT,MAMMAL
1,pig,Pigling Bland,4,0.8,true
2,cow,Daisy,4,2.0,true
3,goldfish,Dobbin,,0.05,false
4,ant,,6,0.001,false
5,ant,,6,0.001,false
6,queen ant,Ma'am,6,0.002,false
7,human,Mark,2,1.8,true

5.1.2.5 ecsv

The Enhanced Character Separated Values format was developed within the Astropy project and is
described in Astropy APE6 (DOI). It is composed of a YAML header followed by a CSV-like
body, and is intended to be a human-readable and maybe even human-writable format with rich
metadata. Most of the useful per-column and per-table metadata is preserved when de/serializing to
this format. The version supported by this writer is currently ECSV 1.0.

ECSV allows either a space or a comma for delimiting values, controlled by the delimiter

configuration option. If ecsv(delimiter=comma) is used, then removing the YAML header will
leave a CSV file that can be interpreted by the CSV inputhandler or imported into other
CSV-capable applications.

Following the ECSV 1.0 specification, array-valued columns are supported. ECSV 1.0, required for
working with array-valued columns, is supported by Astropy v4.3 and later.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "ecsv(delimiter=comma)". The
following options are available:

delimiter = comma|space

Delimiter character, which for ECSV may be either a space or a comma. Permitted values are
"space" or "comma".

SUN/256 49

If no output format is explicitly chosen, writing to a filename with the extension ".ecsv" (case
insensitive) will select ECSV format for output.

An example looks like this:

%ECSV 1.0

datatype:
-
name: RECNO
datatype: int32
-
name: SPECIES
datatype: string
-
name: NAME
datatype: string
description: How one should address the animal in public & private.
-
name: LEGS
datatype: int32
meta:
utype: anatomy:limb
-
name: HEIGHT
datatype: float64
unit: m
meta:
VOTable precision: 2
-
name: MAMMAL
datatype: bool
meta:
name: animals.vot
Description: Some animals
Author: Mark Taylor
RECNO SPECIES NAME LEGS HEIGHT MAMMAL
1 pig "Pigling Bland" 4 0.8 True
2 cow Daisy 4 2.0 True
3 goldfish Dobbin "" 0.05 False
4 ant "" 6 0.001 False
5 ant "" 6 0.001 False
6 "queen ant" Ma'am 6 0.002 False
7 human Mark 2 1.8 True

5.1.2.6 ascii

Writes to a simple plain-text format intended to be comprehensible by humans or machines.

The first line is a comment, starting with a "#" character, naming the columns, and an attempt is
made to line up data in columns using spaces. No metadata apart from column names is written.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"ascii(maxCell=158,maxParam=160)". The following options are available:

maxCell = <int>

Maximum width in characters of an output table cell. Cells longer than this will be truncated.

maxParam = <int>

Maximum width in characters of an output table parameter. Parameters with values longer than
this will be truncated.

params = true|false

Whether to output table parameters as well as row data.

SUN/256 50

sampledRows = <int>

The number of rows examined on a first pass of the table to determine the width of each
column. Only a representative number of rows needs to be examined, but if a formatted cell
value after this limit is wider than the cells up to it, then such later wide cells may get
truncated. If the value is <=0, all rows are examined in the first pass; this is the default, but it
can be configured to some other value if that takes too long.

If no output format is explicitly chosen, writing to a filename with the extension ".txt" (case
insensitive) will select ascii format for output.

An example looks like this:

RECNO SPECIES NAME LEGS HEIGHT MAMMAL
1 pig "Pigling Bland" 4 0.8 true
2 cow Daisy 4 2.0 true
3 goldfish Dobbin "" 0.05 false
4 ant "" 6 0.001 false
5 ant "" 6 0.001 false
6 "queen ant" "Ma\'am" 6 0.002 false
7 human Mark 2 1.8 true

5.1.2.7 ipac

Writes output in the format used by CalTech's Infrared Processing and Analysis Center, and defined
at http://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html. Column name, type, units
and null values are written, as well as table parameters.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"ipac(maxCell=1000,maxParam=100000)". The following options are available:

maxCell = <int>

Maximum width in characters of an output table cell. Cells longer than this will be truncated.

maxParam = <int>

Maximum width in characters of an output table parameter. Parameters with values longer than
this will be truncated.

params = true|false

Whether to output table parameters as well as row data.

sampledRows = <int>

The number of rows examined on a first pass of the table to determine the width of each
column. Only a representative number of rows needs to be examined, but if a formatted cell
value after this limit is wider than the cells up to it, then such later wide cells may get
truncated. If the value is <=0, all rows are examined in the first pass; this is the default, but it
can be configured to some other value if that takes too long.

If no output format is explicitly chosen, writing to a filename with the extension ".tbl" or ".ipac"
(case insensitive) will select IPAC format for output.

An example looks like this:

\Table name = "animals.vot"
\Description = "Some animals"
\Author = "Mark Taylor"
RECNO	SPECIES	NAME	LEGS	HEIGHT	MAMMAL
int	char	char	int	double	char
				m	

SUN/256 51

| null | null | null | null | null | null |
1 pig Pigling Bland 4 0.8 true
2 cow Daisy 4 2.0 true
3 goldfish Dobbin null 0.05 false
4 ant null 6 0.001 false
5 ant null 6 0.001 false
6 queen ant Ma'am 6 0.002 false
7 human Mark 2 1.8 true

5.1.2.8 parquet

Parquet is a columnar format developed within the Apache project. Data is compressed on disk and
read into memory before use.

At present, only very limited metadata is written. Parquet does not seem(?) to have any standard
format for per-column metadata, so the only information written about each column apart from its
datatype is its name.

Parquet support is currently somewhat experimental.

Note:

The parquet I/O handlers require large external libraries, which are not always bundled with
the library/application software because of their size. In some configurations, parquet
support may not be present, and attempts to read or write parquet files will result in a
message like:

Parquet-mr libraries not available

If you can supply the relevant libaries on the classpath at runtime, the parquet support will
work. At time of writing, the required libraries are included in the topcat-extra.jar

monolithic jar file; they can also be found in the starjava github repository
(https://github.com/Starlink/starjava/tree/master/parquet/src/lib, use parquet-mr-stil.jar

and its dependencies), or you can acquire them from the Parquet MR package. These
arrangements may be revised in future releases, for instance if parquet usage becomes more
mainstream. The required dependencies are those of the Parquet MR submodule
parquet-cli, in particular the files parquet-cli-1.11.1.jar,
parquet-column-1.11.1.jar, parquet-common-1.11.1.jar,
parquet-encoding-1.11.1.jar, parquet-format-structures-1.11.1.jar,
parquet-hadoop-1.11.1-noshaded.jar, parquet-jackson-1.11.1.jar,
commons-collections-3.2.2.jar, commons-configuration-1.6.jar,
commons-lang-2.6.jar, failureaccess-1.0.1.jar, guava-27.0.1-jre.jar,
hadoop-auth-2.7.3.jar, hadoop-common-2.7.3.jar, log4j-1.2.17.jar,
slf4j-api-1.7.22.jar, slf4j-log4j12-1.7.22.jar, snappy-java-1.1.7.3.jar.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "parquet(groupArray=false)".
The following options are available:

groupArray = true|false

Controls the low-level detail of how array-valued columns are written. For an array-valued
int32 column named IVAL, groupArray=false will write it as "repeated int32 IVAL" while
groupArray=true will write it as "optional group IVAL (LIST) { repeated group list {

optional int32 item} }". I don't know why you'd want to do it the latter way, but some
other parquet writers seem to do that by default, so there must be some good reason.

If no output format is explicitly chosen, writing to a filename with the extension ".parquet" or

SUN/256 52

.parq" (case insensitive) will select parquet format for output.

5.1.2.9 feather

The Feather file format is a column-oriented binary disk-based format based on Apache Arrow and
supported by (at least) Python, R and Julia. Some description of it is available at
https://github.com/wesm/feather and https://blog.rstudio.com/2016/03/29/feather/. It can be used for
large datasets, but it does not support array-valued columns. It can be a useful format to use for
exchanging data with R, for which FITS I/O is reported to be slow.

This writer is somewhat experimental; please report problems if you encounter them.

If no output format is explicitly chosen, writing to a filename with the extension ".fea" or
".feather" (case insensitive) will select feather format for output.

5.1.2.10 text

Writes tables in a simple text-based format designed to be read by humans. No reader exists for this
format.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"text(maxCell=40,maxParam=160)". The following options are available:

maxCell = <int>

Maximum width in characters of an output table cell. Cells longer than this will be truncated.

maxParam = <int>

Maximum width in characters of an output table parameter. Parameters with values longer than
this will be truncated.

params = true|false

Whether to output table parameters as well as row data.

sampledRows = <int>

The number of rows examined on a first pass of the table to determine the width of each
column. Only a representative number of rows needs to be examined, but if a formatted cell
value after this limit is wider than the cells up to it, then such later wide cells may get
truncated. If the value is <=0, all rows are examined in the first pass; this is the default, but it
can be configured to some other value if that takes too long.

Multiple tables may be written to a single output file using this format.

An example looks like this:

Table name: animals.vot
Description: Some animals
Author: Mark Taylor
+-------+-----------+---------------+------+--------+--------+
| RECNO | SPECIES | NAME | LEGS | HEIGHT | MAMMAL |
+-------+-----------+---------------+------+--------+--------+
1	pig	Pigling Bland	4	0.8	true
2	cow	Daisy	4	2.0	true
3	goldfish	Dobbin		0.05	false
4	ant		6	0.001	false
5	ant		6	0.001	false
6	queen ant	Ma'am	6	0.002	false
7	human	Mark	2	1.8	true
+-------+-----------+---------------+------+--------+--------+

SUN/256 53

5.1.2.11 html

Writes a basic HTML TABLE element suitable for use as a web page or for insertion into one.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g.
"html(maxCell=200,standalone=false)". The following options are available:

maxCell = <int>

Maximum width in characters of an output table cell. Cells longer than this will be truncated.

standalone = true|false

If true, the output is a freestanding HTML document complete with HTML, HEAD and
BODY tags. If false, the output is just a TABLE element.

Multiple tables may be written to a single output file using this format.

If no output format is explicitly chosen, writing to a filename with the extension ".html" or ".htm"
(case insensitive) will select HTML format for output.

An example looks like this:

<TABLE BORDER='1'>
<CAPTION>animals.vot</CAPTION>
<THEAD>
<TR> <TH>RECNO</TH> <TH>SPECIES</TH> <TH>NAME</TH> <TH>LEGS</TH> <TH>HEIGHT</TH> <TH>MAMMAL</TH></TR>
<TR> <TH> </TH> <TH> </TH> <TH> </TH> <TH> </TH> <TH>(m)</TH> <TH> </TH></TR>
<TR><TD colspan='6'></TD></TR>
</THEAD>
<TBODY>
<TR> <TD>1</TD> <TD>pig</TD> <TD>Pigling Bland</TD> <TD>4</TD> <TD>0.8</TD> <TD>true</TD></TR>
<TR> <TD>2</TD> <TD>cow</TD> <TD>Daisy</TD> <TD>4</TD> <TD>2.0</TD> <TD>true</TD></TR>
<TR> <TD>3</TD> <TD>goldfish</TD> <TD>Dobbin</TD> <TD> </TD> <TD>0.05</TD> <TD>false</TD></TR>
<TR> <TD>4</TD> <TD>ant</TD> <TD> </TD> <TD>6</TD> <TD>0.001</TD> <TD>false</TD></TR>
<TR> <TD>5</TD> <TD>ant</TD> <TD> </TD> <TD>6</TD> <TD>0.001</TD> <TD>false</TD></TR>
<TR> <TD>6</TD> <TD>queen ant</TD> <TD>Ma'am</TD> <TD>6</TD> <TD>0.002</TD> <TD>false</TD></TR>
<TR> <TD>7</TD> <TD>human</TD> <TD>Mark</TD> <TD>2</TD> <TD>1.8</TD> <TD>true</TD></TR>
</TBODY>
</TABLE>

5.1.2.12 latex

Writes a table as a LaTeX tabular environment, suitable for insertion into a document intended for
publication. This is only likely to be useful for fairly small tables.

The handler behaviour may be modified by specifying one or more comma-separated name=value
configuration options in parentheses after the handler name, e.g. "latex(standalone=false)". The
following options are available:

standalone = true|false

If true, the output is a freestanding LaTeX document consisting of a tabular environment
within a table within a document. If false, the output is just a tabular environment.

If no output format is explicitly chosen, writing to a filename with the extension ".tex" (case
insensitive) will select LaTeX format for output.

An example looks like this:

\begin{tabular}{|r|l|l|r|r|l|}

SUN/256 54

\hline
\multicolumn{1}{|c|}{RECNO} &
\multicolumn{1}{c|}{SPECIES} &
\multicolumn{1}{c|}{NAME} &
\multicolumn{1}{c|}{LEGS} &
\multicolumn{1}{c|}{HEIGHT} &
\multicolumn{1}{c|}{MAMMAL} \\

\hline
1 & pig & Pigling Bland & 4 & 0.8 & true\\
2 & cow & Daisy & 4 & 2.0 & true\\
3 & goldfish & Dobbin & & 0.05 & false\\
4 & ant & & 6 & 0.001 & false\\
5 & ant & & 6 & 0.001 & false\\
6 & queen ant & Ma'am & 6 & 0.002 & false\\
7 & human & Mark & 2 & 1.8 & true\\

\hline\end{tabular}

5.1.2.13 tst

Tab-Separated Table, or TST, is a text-based table format used by a number of astronomical tools
including Starlink's GAIA and ESO's SkyCat on which it is based. A definition of the format can be
found in Starlink Software Note 75.

If no output format is explicitly chosen, writing to a filename with the extension ".tst" (case
insensitive) will select TST format for output.

An example looks like this:

animals.vot

Table parameters
Description: Some animals
Author: Mark Taylor

Attempted guesses about identity of columns in the table.
These have been inferred from column UCDs and/or names
in the original table data.
The algorithm which identifies these columns is not particularly reliable,
so it is possible that these are incorrect.
id_col: 2
ra_col: -1
dec_col: -1

This TST file generated by STIL v4.2-1

RECNO SPECIES NAME LEGS HEIGHT MAMMAL
----- ------- ---- ---- ------ ------
1 pig Pigling Bland 4 0.8 true
2 cow Daisy 4 2.0 true
3 goldfish Dobbin 0.05 false
4 ant 6 0.001 false
5 ant 6 0.001 false
6 queen ant Ma'am 6 0.002 false
7 human Mark 2 1.8 true
[EOD]

5.1.2.14 mirage

Mirage was a nice standalone tool for analysis of multidimensional data, from which TOPCAT took
some inspiration. It was described in a 2007 paper 2007ASPC..371..391H, but no significant
development seems to have taken place since then. This format is therefore probably obsolete, but
you can still write table output in Mirage-compatible format if you like.

If no output format is explicitly chosen, writing to a filename with the extension ".mirage" (case
insensitive) will select mirage format for output.

SUN/256 55

An example looks like this:

#
Written by uk.ac.starlink.mirage.MirageFormatter
Omitted column 5: MAMMAL(Boolean)
#
Column names
format var RECNO SPECIES NAME LEGS HEIGHT
#
Text columns
format text SPECIES
format text NAME
#
Table data
1 pig Pigling_Bland 4 0.8
2 cow Daisy 4 2.0
3 goldfish Dobbin <blank> 0.05
4 ant <blank> 6 0.001
5 ant <blank> 6 0.001
6 queen_ant Ma'am 6 0.002
7 human Mark 2 1.8

5.2 Input Locations

The location of a serialized input table, usually given using the in parameter or similar, may be
given in one of the forms listed below.

Filename
Very often, you will simply specify a filename as location, and the tool will just read from it in
the usual way.

URL
Tables can be read from URLs directly. Some non-standard URL protocols are supported as
well as the usual ones. The list is:

http:

Read from HTTP resources.

https:

Read from HTTPS resources.

ftp:

Read from anonymous FTP resources.

file:

Read from local files, using the syntax file:///path/to/file. This is similar to
specifying the filename directly, but there is a difference: using this form forces reads to
be sequential rather than random access, which may allow you to experience a different
set of performance characteristics and bugs.

jar:

Specialised protocol for looking inside Java Archive files - see JarURLConnection
documentation.

myspace:

(Obsolete?) Accesses files in the AstroGrid "MySpace" virtual file store. These URLs
look something like "myspace:/survey/iras_psc.xml", and can access files in the
myspace are that the user is currently logged into. These URLs can be used for both input
and output of tables. To use them you must have an AstroGrid account and the AstroGrid
WorkBench or similar must be running; if you're not currently logged in a dialogue will
pop up to ask you for name and password.

ivo:

(Obsolete?) Understands ivo-type URLs which signify files in the AstroGrid "MySpace"

SUN/256 56

virtual file store. These URLs look something like
"ivo://uk.ac.le.star/filemanager#node-2583". These URLs can be used for both
input and output of tables. To use them you must have an AstroGrid account and the
AstroGrid WorkBench or similar must be running; if you're not currently logged in a
dialogue will pop up to ask you for name and password.

jdbc:

JDBC URLs may be used, but they don't work in the same way as the others listed here,
since they do not reference an input byte stream. See instead Section 5.3.3.

Minus sign ("-")
The special location "-" (minus sign) indicates standard input. This allows you to use STILTS
commands in a normal Unix pipeline.

System command ("< syscmd" or "syscmd |")
If the location starts with a "<" character or ends with a "|" character, the rest of the string is
taken as a command line to be executed by the system shell. For instance a location like "<cat
header.txt data.txt" (or equivalently "cat header.txt data.txt|") could be used to
prepend a header line to an ASCII data file before it is passed to the STILTS ASCII-format
input handler. Note this syntax will probably only work on Unix-like systems.

In any of these cases, for input locations compression is taken care of automatically. That means
that you can give the filename or URL of a file which is compressed using gzip, bzip2 or Unix
compress and the program will uncompress it on the fly.

For file formats that can contain multiple tables, the one required, if it's not the first in the file, can
generally be specified by a position indicator string appended to the basic location following a "#".
For instance "cat.fits#3" references HDU 3 in a multi-extension FITS file. The details of this syntax
depend on the file format, and are given in the relevant subsection of Section 5.1.1.

Note that tables can also be supplied from non-serialized sources, as described in Input Schemes.

5.3 Input Schemes

As well as being able to load tables from external data streams, STILTS offers a way to specify
tables that do not correspond to a stream of bytes. These may be defined programmatically or
interact with external services in some way that is not as straightforward as decoding a stream of
bytes.

Such tables are defined using different schemes, and scheme specifications may be used in the same
places as input table names, for instance as the value of the in parameter in tpipe and other
commands. If an input location parameter (in) uses a scheme specification, the corresponding input
format parameter (ifmt) is ignored.

The form of a scheme specification is:

:<scheme-name>:<scheme-specific-part>

so that for instance "in=:loop:10" specifies a 10-row single-column table, as described by the loop
scheme documentation below. For an example of using such tables, you can try running for instance

stilts plot2plane in=:attractor:1e7,clifford layer1=mark shading1=density densemap1=plasma x1=x y1=y

The following subsections describe all the schemes that are available by default. It is also possible
to add new schemes at runtime by using the startable.schemes system property.

SUN/256 57

5.3.1 skysim

Usage: :skysim:<nrow>

Generates a simulated all-sky star catalogue with a specified number of rows. This is intended to
provide crude test catalogues when no suitable real dataset of the required size is available. In the
current implementation the row count, which may be given in integer or exponential notation, is the
only parameter, so the specification ":skysim:5e6" would give a 5 million-row simulated
catalogue.

The current implementation provides somewhat realistic position-dependent star densities and
distributions of magnitudes and colours based on positionally averaged values from Gaia EDR3.
The source positions do not correspond to actual stars. The columns and the statistics on which the
output is based may change in future releases.

Example:

:skysim:6
+-----------+------------+------------+------------+-----------+-----------+------------+
| ra | dec | l | b | gmag | rmag | b_r |
+-----------+------------+------------+------------+-----------+-----------+------------+
266.7702	-32.689117	-3.044958	-2.217145	18.168278	16.03555	1.046624
276.83398	8.132022	37.491447	9.031909	18.331224	18.786451	1.4425725
92.04118	23.79857	-173.02219	1.7854756	16.743847	15.623316	1.690048
271.08215	-5.2012086	22.848532	8.022958	21.538874	17.782997	2.1645386
298.83368	31.401922	67.75605	1.6348709	20.145718	17.728764	1.1521724
204.9299	-77.07571	-54.29949	-14.464215	19.044079	20.277771	0.92987275
+-----------+------------+------------+------------+-----------+-----------+------------+

5.3.2 attractor

Usage: :attractor:<nrow>[,(clifford[,a,b,c,d]|rampe[,a,b,c,d,e,f]|henon[,a,b,c])]

Generates tables listing points sampled from one of a specified family of strange attractors. These
can provide tables with (X,Y) or (X,Y,Z) columns and arbitrarily many rows. They can be used, for
instance, to make (beautiful) example large-scale scatter plots in 2-d or 3-d space.

The specification syntax is of the form :attractor:<nrow>,<family-name>[,<args>] where
<nrow> is the number of rows required, <family-name> is the name of one of the supported families
of attractors, and <args> is an optional comma-separated list of numeric arguments specifying the
family-specific parameters of the required attractor. If the <args> part is omitted, an example
attractor from the family is used. Note that picking <args> values at random will often result in
rather boring (non-strange) attractors.

The following families are currently supported:

clifford
clifford attractors are 2-dimensional and have 4 parameters, with suggested values in the range
+/-2.0.

The iteration is defined by the equations:
x' = sin(a*y) + c * cos(a*x)
y' = sin(b*x) + d * cos(b*y)

Examples:

• :attractor:9999,clifford

• :attractor:1e6,clifford,1.32,-1.44,-1.7,-1.58

SUN/256 58

• :attractor:65536,clifford,1.27,-1.35,0.82,1.8

• :attractor:1e7,clifford,-1.9,1.18,-1.21,1.07

• :attractor:400,clifford,-1.27,-1.28,1.0,-1.26

• :attractor:4e6,clifford,1.8,0.9,-1.8,0.8

rampe
rampe attractors are 3-dimensional and have 6 parameters, with suggested values in the range
+/-2.0.

The iteration is defined by the equations:
x' = x * z * sin(a*x) - cos(b*y)
y' = y * x * sin(c*y) - cos(d*z)
z' = z * y * sin(e*z) - cos(f*x)

Examples:

• :attractor:10e6,rampe

• :attractor:4,rampe,-1.81,1.35,-0.85,0.32,1.68,-1.62

• :attractor:5.5e5,rampe,0.23,-1.77,1.32,-1.44,-1.7,-1.58

• :attractor:9999,rampe,-0.3,1.78,-0.87,1.69,1.42,1.21

• :attractor:1e6,rampe,1.42,-1.98,0.39,1.32,1.79,-0.37

henon
henon attractors are 2-dimensional and have 3 parameters, with suggested values in the range
+/-2.0.

The iteration is defined by the equations:
x' = y + a + b*x*x
y' = c*x

Examples:

• :attractor:65536,henon

• :attractor:1e7,henon,-0.68,1.64,0.36

• :attractor:400,henon,1.73,0.29,-0.99

• :attractor:4e6,henon,0.88,-0.9,-0.93

• :attractor:10e6,henon,1.4,-1.13,-0.01

Example:

:attractor:6,rampe
+----------------------+---------------------+----------------------+
| x | y | z |
+----------------------+---------------------+----------------------+
-0.5759098296568739	0.09844750286352466	-0.6712534741282851
-1.3295344852011892	-0.9829776649068059	-0.7814409891660122
-1.1910376215054008	0.04335596646295736	-1.0308958690758545
-2.0144704755218514	-0.9699626185329038	-0.35169532148364757
-0.16145296509226564	0.5245428249077974	0.17929370340580017
-0.8409807675257591	-0.9598486078341374	-0.955769158222801
+----------------------+---------------------+----------------------+

5.3.3 jdbc

Usage: :jdbc:<jdbc-part>

Interacts with the JDBC system (JDBC sort-of stands for Java DataBase Connectivity) to execute
an SQL query on a connected database. The jdbc:... specification is the JDBC URL. For
historical compatibility reasons, specifications of this scheme may omit the leading colon character,

SUN/256 59

so that the following are both legal, and are equivalent:

jdbc:mysql://localhost/dbl#SELECT TOP 10 ra, dec FROM gsc
:jdbc:mysql://localhost/dbl#SELECT TOP 10 ra, dec FROM gsc

In order for this to work, you must have access to a suitable database with a JDBC driver, and some
standard JDBC configuration is required to set the driver up. The following steps are necessary:

1. the driver class must be available on the runtime classpath
2. the jdbc.drivers system property must be set to the driver classname

More detailed information about how to set up the JDBC system to connect with an available
database, and of how to construct JDBC URLs, is provided elsewhere in the documentation.

5.3.4 loop

Usage: :loop:<count>|<start>,<end>[,<step>]

Generates a table whose single column increments over a given range.

The specification may either be a single value N giving the number of rows, which yields values in
the range 0..N-1, or two or three comma-separated values giving the start, end and optionally step
corresponding to the conventional specification of a loop variable.

The supplied numeric parameters are interpreted as floating point values, but the output column
type will be 32- or 64-bit integer or 64-bit floating point, depending on the values that it has to take.

Examples:

• :loop:5: a 5-row table whose integer column has values 0, 1, 2, 3, 4
• :loop:10,20: a 10-row table whose integer column has values 10, 11, ... 19
• :loop:1,2,0.25: a 10-row table whose floating point column has values 1.00, 1.25, 1.50, 1.75
• :loop:1e10: a ten billion row table, with 64-bit integer values

Example:

:loop:6
+---+
| i |
+---+
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
+---+

5.3.5 test

Usage: :test:[<nrow>[,<opts-ibsfvmk*>]]

Generates a table containing test data. The idea is to include columns of different data types, for
instance to provide an example for testing I/O handler implementations. The columns will contain
some variety of more or less meaningless values, but the content is reproducible between runs, so
the same specification will produce the same output each time. Updates of the implementation
might change the output however, so the output is not guaranteed to be the same for all time.

SUN/256 60

The table specification has two comma-separated parameters:

• <nrow>: row count
• <opts>: a string of letter options specifying what types of data will be included; options are:

• i: an integer index column
• b: a few basic columns
• s: a selection of typed scalar columns
• f: a selection of fixed-length 1-d array columns
• v: a selection of variable-length 1-d array columns
• m: a selection of multi-dimensional array columns
• k: almost a thousand columns
• *: equivalent to all of the above

If <opts> and/or <nrow> are omitted, some default values are used.

Example:

:test:10,is
+---------+--------+---------+-------+--------+---------+----------+----------------+-----------+
| i_index | s_byte | s_short | s_int | s_long | s_float | s_double | s_string | s_boolean |
+---------+--------+---------+-------+--------+---------+----------+----------------+-----------+
0	0	0	0	0	0.0	0.0	zero	false
1		1	1	1	1.0	1.0	one	true
2	2		2	2	2.0	2.0	two	false
3	3	3		3	3.0	3.0	three	true
4	4	4	4		4.0	4.0	four	false
5	5	5	5	5		5.0	five	true
6	6	6	6	6	6.0		six	false
7	7	7	7	7	7.0	7.0		true
8	8	8	8	8	8.0	8.0	' "\""' ; '&<>	
9	9	9	9	9				true
+---------+--------+---------+-------+--------+---------+----------+----------------+-----------+

5.3.6 class

Usage: :class:<TableScheme-classname>:<scheme-spec>

Uses an instance of a named class that implements the uk.ac.starlink.table.TableScheme

interface and that has a no-arg constructor. Arguments to be passed to an instance of the named
class are appended after a colon following the classname.

For example, the specification ":class:uk.ac.starlink.table.LoopTableScheme:10" would
return a table constructed by the code new

uk.ac.starlink.table.LoopTableScheme().createTable("10").

Example:

:class:uk.ac.starlink.table.LoopTableScheme:5
+---+
| i |
+---+
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
+---+

5.3.7 hapi

SUN/256 61

Usage:
:hapi:<server-url>;<dataset>;start=<start>;stop=<stop>[;maxChunk=<n>][;failOnLimit=<true|false>][;<key>=<value>...]

Generates a table by interacting with a HAPI service. HAPI, the Heliophysics Data Application
Programmer’s Interface is a protocol for serving streamed time series data.

In most cases it is not essential to use this scheme, since pointing the HAPI table input handler at a
URL with suitable parameters will be able to read the data, but this scheme provides some added
value by negotiating with the server to make sure that the correct version-sensitive request
parameter names and the most efficient data stream format are used, and can split the request into
multiple chunks if the service rejects the whole query as too large.

The first token in the specification is the base URL of the HAPI service, the second is the dataset
identifier, and others, as defined by the HAPI protocol, are supplied as <name>=<value> pairs,
separated by a semicolon (";") or an ampersand ("&"). The start and stop parameters, giving
ISO-8601-like bounds for the interval requested, are required.

Additionally, some parameters may be supplied which affect load behaviour but are not transmitted
to the HAPI service. These are:

maxChunk=<n>

divides the request up into at most <n> smaller chunks if the server refuses to supply the whole
range at once.

failOnLimit=<true|false>

determines what happens if the service does refuse to serve the whole range (in chunks or
otherwise); if true, the table load will fail, but if false as many rows as are available will be
loaded.

Some variant syntax is permitted; an ampersand ("&") may be used instead of a semicolon to
separate tokens, and the names "time.min" and "time.max" may be used in place of "start" and
"stop".

Note that since semicolons and/or ampersands form part of the syntax, and these characters have
special meaning in some contexts, it may be necessary to quote the scheme specification on the
command line.

Example:

:hapi:https://vires.services/hapi;GRACE_A_MAG;start=2009-01-01T00:00:00;stop=2009-01-01T00:00:10;parameters=Latitude,Longitude
+--------------------------+---------------+---------------+
| Timestamp | Latitude | Longitude |
+--------------------------+---------------+---------------+
2009-01-01T00:00:03.607Z	-74.136357526	-78.905620222
2009-01-01T00:00:05.607Z	-74.009378676	-78.884853931
2009-01-01T00:00:06.607Z	-73.945887793	-78.874590667
2009-01-01T00:00:07.607Z	-73.882397005	-78.864406236
2009-01-01T00:00:08.607Z	-73.818903534	-78.854396448
+--------------------------+---------------+---------------+

5.4 Authentication

Some external data services restrict access to registered users, meaning that you have to log in to
use them. If STILTS encounters such a restriction and knows how to try to authenticate to the
service in question, it will report on the console the URL for which the access is blocked (and
possibly some additional information about the way authentication is being carried out), and ask for
entry of a username and password. If authentication is successful, the resource can be retrieved, and

SUN/256 62

so can any other resources from the same place, so if multiple contacts to the same service are
required from the same STILTS command/session, only one login attempt should be required.

If user interaction during the command is not suitable, it is possible to supply a username and
password using the system properties auth.username and auth.password. If both of these are set,
then instead of asking on the console for login credentials, they will be taken from the property
values, for instance

stilts -Dauth.username=foo -Dauth.password=@~/passwd.txt
tpipe in=https://secret.com/data.vot

would access the named resource, and if challenged by the service for authentication would supply
"foo" for user name and the contents of the file at ~/passwd.txt as the password. Note however
that this feature should be used with care, since it passes private information indiscriminately to any
service that asks for it.

There is currently no way to log in to services that provide optional authentication (like some TAP
services that grant enhanced resource limits to authenticated users). This may be added in a future
release.

Note: These authentication arrangements in STILTS are new at version 3.4-9, and rely on VO
standards that are still under discussion. The behaviour and user interface may change in future
releases, and at time of writing not all data services that provide authentication advertise it in a way
that STILTS can work with. It is hoped that authentication interoperability will improve in future
versions of STILTS and of server-side software.

SUN/256 63

6 Table Pipelines

Several of the tasks available in STILTS take one or more input tables, do something or other with
them, and produce one or more output tables. This is a pretty obvious way to go about things, and in
the most straightforward case that's exactly what happens: you name one or more input tables,
specify the processing parameters, and name an output table; the task then reads the input tables
from disk, does the processing and writes the output table to disk.

However, many of the tasks in STILTS allow you to do pre-processing of the input tables before the
main job, post-processing of the output table after the main job, and to decide what happens to the
final tabular result, without any intermediate storage of the data. Examples of the kind of
pre-processing you might want to do are to rearrange the columns so that they have the right units
for the main task, or replace 'magic' values such as -999 with genuine blank values; the kind of
post-processing you might want to do is to sort the rows in the output table or delete some of the
columns you're not interested in. As for the destination of the final table, you might want to write it
to disk, but equally you might not want to store it anywhere, but only be interested in counting the
number of rows, or seeing the minima/maxima of a few of the columns, or you might want to send
it straight to TOPCAT or some other table viewing application for interactive analysis.

Clearly, you could achieve the same effect by running multiple applications: preprocess your
original input tables to write intermediate files on disk, run the main processing application which
reads those files from disk and writes a new output file, run another application to postprocess the
output file and write a new final output file, and finally do something with this such as counting the
rows in it or viewing it in TOPCAT. However, by doing it all within a single task instead, no
intermediate results have to be stored, and the whole sequence can be very much more efficient.
You can think of this (if it helps) like a Unix pipeline, except what is being streamed from the start
to the end of the pipe is not bytes, but table metadata and data. In most cases, the table data is
streamed through the pipeline a row at a time, meaning that the amount of memory required is small
(though in some cases, for instance row sorting and crossmatching, this is not possible).

Tasks which allow this pre/post-processing, or "filtering", have parameters with names like "cmd"
which you use to specify processing steps. Tasks with multiple input tables (tmatch2, tskymatch2,
tcatn, tjoin) may have parameters named icmd1, icmd2, ... for preprocessing the different input
tables and ocmd for postprocessing the output table. tpipe does nothing except filtering, so there is
no distinction between pre- and post-processing, and its filter parameter is just named cmd. tpipe
additionally has a script parameter which allows you to use a text file to write the commands in, to
prevent the command line getting too long. In both cases there is a parameter named omode which
defines the "output mode", that is, what happens to the post-processed output table that comes out
of the end of the pipeline.

Section 6.1 lists the processing steps available, and explains how to use them, Section 6.2 and
Section 6.3 describe the syntax used in some of these filter commands for specifying columns, and
Section 6.4 describes the available output modes. See the examples in the command reference, and
particularly the tpipe examples (Appendix B.41.2), for some examples putting all this together.

6.1 Processing Filters

This section lists the filter commands which can be used for table pipeline processing, in
conjunction with cmd- or script-type parameters.

You can string as many of these together as you like. On the command line, you can repeat the cmd

(or icmd1, or ocmd...) parameter multiple times, or use one cmd parameter and separate different
filter specifiers with semicolons (";"). The effect is the same.

It's important to note that each command in the sequence of processing steps acts on the table at that

SUN/256 64

point in the sequence. Thus either of the two identical invocations:

stilts tpipe cmd='delcols 1; delcols 1; delcols 1'
stilts tpipe cmd='delcols 1' cmd='delcols 1' cmd='delcols 1'

has the same effect as

stilts tpipe cmd='delcols "1 2 3"'

since in the first case the columns are shifted left after each one is deleted, so the table seen by each
step has one fewer column than the one before. Note also the use of quotes in the latter of the
examples above, which is necessary so that the <colid-list> of the delcols command is
interpreted as one argument not three separate words.

The available filters are described in the following subsections.

6.1.1 addcol

Usage:
addcol [-after <col-id> | -before <col-id>]

[-units <units>] [-ucd <ucd>] [-utype <utype>] [-xtype <xtype>]
[-desc <descrip>] [-shape <n>[,<n>...][,*]] [-elsize <n>]
<col-name> <expr>

Add a new column called <col-name> defined by the algebraic expression <expr>. By default the
new column appears after the last column of the table, but you can position it either before or after a
specified column using the -before or -after flags respectively.

The -units, -ucd, -utype, -xtype and -desc flags can be used to define textual metadata values for
the new column.

The -shape flag can also be used, but is intended only for array-valued columns, e.g. -shape 3,3 to
declare a 3x3 array. The final entry only in the shape list may be a "*" character to indicate
unknown extent. Array values with no specified shape effectively have a shape of "*". The -elsize

flag may be used to specify the length of fixed length strings; use with non-string columns is not
recommended.

Syntax for the <expr> and <col-id> arguments is described in the manual.

6.1.2 addpixsample

Usage:
addpixsample [-radius <expr-rad>] [-systems <in-sys> <pix-sys>]

<expr-lon> <expr-lat> <healpix-file>

Samples pixel data from an all-sky image file in HEALPix format. The <healpix-file> argument
must be the filename of a table containing HEALPix pixel data. The URL of such a file can be used
instead, but local files are likely to be more efficient.

The <expr-lon> and <expr-lat> arguments give expressions for the longitude and latitude in
degrees for each row of the input table; this is usually just the column names. The long/lat must
usually be in the same coordinate system as that used for the HEALPix data, so if the one is in
galactic coordinates the other must be as well. If this is not the case, use the -systems flag to give
the input long/lat and healpix data coordinate system names respectively. The available coordinate
system names are:

• icrs: ICRS (Right Ascension, Declination)

SUN/256 65

• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)
• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

The <expr-rad>, if present, is a constant or expression giving the radius in degrees over which
pixels will be averaged to obtain the result values. Note that this averaging is somewhat
approximate; pixels partly covered by the specified disc are weighted the same as those fully
covered. If no radius is specified, the value of the pixel covering the central position will be used.

The <healpix-file> file is a table with one row per HEALPix pixel and one or more columns
representing pixel data. A new column will be added to the output table corresponding to each of
these pixel columns. This type of data is available in FITS tables for a number of all-sky data sets,
particularly from the LAMBDA (https://lambda.gsfc.nasa.gov/) archive; see for instance the page
on foreground products (including dust emission, reddening etc) or WMAP 7 year data. If the
filename given does not appear to point to a file of the appropriate format, an error will result. Note
the LAMBDA files mostly (all?) use galactic coordinates, so coordinate conversion using the
-systems flag may be appropriate, see above.

Syntax for the <expr-lon> , <expr-lat> and <expr-rad> arguments is described in the manual.

This filter is somewhat experimental, and its usage may be changed or replaced in a future version.

Note: you may prefer to use the pixsample command instead.

6.1.3 addresolve

Usage:
addresolve <col-id-objname> <col-name-ra> <col-name-dec>

Performs name resolution on the string-valued column <col-id-objname> and appends two new
columns <col-name-ra> and <col-name-dec> containing the resolved Right Ascension and
Declination in degrees.

Syntax for the <col-id-objname> argument is described in Section 6.2.

UCDs are added to the new columns in a way which tries to be consistent with any UCDs already
existing in the table.

Since this filter works by interrogating a remote service, it will obviously be slow. The current
implementation is experimental; it may be replaced in a future release by some way of doing the
same thing (perhaps a new STILTS task) which is able to work more efficiently by dispatching
multiple concurrent requests.

This is currently implemented using the Simbad service operated by CDS.

6.1.4 addskycoords

Usage:
addskycoords [-epoch <expr>] [-inunit deg|rad|sex] [-outunit deg|rad|sex]

<insys> <outsys> <col-id1> <col-id2> <col-name1> <col-name2>

Add new columns to the table representing position on the sky. The values are determined by

SUN/256 66

converting a sky position whose coordinates are contained in existing columns. The <col-id>

arguments give identifiers for the two input coordinate columns in the coordinate system named by
<insys>, and the <col-name> arguments name the two new columns, which will be in the
coordinate system named by <outsys>. The <insys> and <outsys> coordinate system specifiers are
one of

• icrs: ICRS (Right Ascension, Declination)
• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)
• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

The -inunit and -outunit flags may be used to indicate the units of the existing coordinates and
the units for the new coordinates respectively; use one of degrees, radians or sexagesimal (may
be abbreviated), otherwise degrees will be assumed. For sexagesimal, the two corresponding
columns must be string-valued in forms like hh:mm:ss.s and dd:mm:ss.s respectively.

For certain conversions, the value specified by the -epoch flag is of significance. Where significant
its value defaults to 2000.0.

Syntax for the <expr> , <col-id1> and <col-id2> arguments is described in the manual.

6.1.5 assert

Usage:
assert <test-expr> [<msg-expr>]

Check that a boolean expression is true for each row. If the expression <test-expr> does not
evaluate true for any row of the table, execution terminates with an error. As long as no error
occurs, the output table is identical to the input one.

If the <msg-expr> parameter is supplied, then on failure it will be evaluated and its value presented
in the error message.

The exception generated by an assertion violation is of class
uk.ac.starlink.ttools.filter.AssertException although that is not usually obvious if you are
running from the shell in the usual way.

Syntax for the <test-expr> and <msg-expr> arguments is described in the manual.

6.1.6 badval

Usage:
badval <bad-val> <colid-list>

For each column specified in <colid-list> any occurrence of the value <bad-val> is replaced by a
blank entry.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.7 cache

Usage:

SUN/256 67

cache

Stores in memory or on disk a temporary copy of the table at this point in the pipeline. This can
provide improvements in efficiency if there is an expensive step upstream and a step which requires
more than one read of the data downstream. If you see an error like "Can't re-read data from stream"
then adding this step near the start of the filters might help.

The output table contains no code-level reference to the input table, so this filter can also be useful
when managing tables that have become deeply nested as the result of successively applying many
STILTS operations.

The result of this filter is guaranteed to be random-access.

See also the random filter, which caches only when the input table is not random-access.

6.1.8 check

Usage:
check

Runs checks on the table at the indicated point in the processing pipeline. This is strictly a
debugging measure, and may be time-consuming for large tables.

6.1.9 clearparams

Usage:
clearparams <pname> ...

Clears the value of one or more named parameters. Each of the <pname> values supplied may be
either a parameter name or a simple wildcard expression matching parameter names. Currently the
only wildcarding is a "*" to match any sequence of characters. clearparams * will clear all the
parameters in the table.

It is not an error to supply <pname>s which do not exist in the table - these have no effect.

6.1.10 collapsecols

Usage:
collapsecols [-[no]keepscalars] <array-colname> <col-id0> <ncol>

Adds a new array-valued column by using the values from a specified range of scalar columns as
array elements. The new column is named <array-colname>, and produced from the sequence of
<ncol> scalar columns starting with <col-id0>.

The array type of the output column is determined by the type of the first input column
(<col-id0>). If it is of type Double, the output array column will be a double[] array, and similarly
for types Long, Integer, Float and Boolean. Other integer types are currently mapped to int[],
and object types, e.g. String, to the corresponding array type. Array elements for null or mistyped
input values are mapped to NaN for floating point types, but note that they currently just turn into
zeros for integer array types and false for boolean.

By default the scalar columns that have been used are removed from the output table and the new
column replaces them at the same position. However, if you supply the -keepscalars flag they will

SUN/256 68

be retained alongside the new array column (the new column will appear just after the run of scalar
columns).

This filter does the opposite of explodecols.

Syntax for the <col-id0> argument is described in Section 6.2.

6.1.11 colmeta

Usage:
colmeta [-name <name>] [-units <units>] [-ucd <ucd>]

[-utype <utype>] [-xtype <xtype>] [-desc <descrip>]
[-shape <n>[,<n>...][,*]] [-elsize <n>]
<colid-list>

Modifies the metadata of one or more columns. Some or all of the name, units, ucd, utype, xtype,
description, shape and elementsize of the column(s), identified by <colid-list> can be set by
using some or all of the listed flags. Typically, <colid-list> will simply be the name of a single
column.

The -name, -units, -ucd, -utype, -xtype and -desc flags just take textual arguments. The -shape

flag can also be used, but is intended only for array-valued columns, e.g. -shape 3,3 to declare a
3x3 array. The final entry only in the shape list may be a "*" character to indicate unknown extent.
Array values with no specified shape effectively have a shape of "*". The -elsize flag may be used
to specify the length of fixed length strings; use with non-string columns is not recommended.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.12 constcol

Usage:
constcol [-noparam] [-acceptnull] [-[no]parallel] [<colid-list>]

Identifies columns with constant values. Such columns are removed from the table and by default
their fixed value is added to the table as a table parameter with the same name as the removed
column. Such columns may have scalar or array values.

The -noparam flag controls whether constant columns identified are recorded instead as table
parameters (per-table metadata items). By default they are, but supplying -noparam means these
values will just be discarded.

The -acceptnull flag controls how blank values in candidate columns are treated. By default, all
values in a column must be strictly the same for a column to be identified as constant value, but if
-acceptnull is supplied then a column will be treated as constant if all its entries are either a single
fixed value or blank.

The -[no]parallel flag controls whether processing is done using multithreading for large tables.

The <colid-list> gives the columns to be assessed by this filter; if not supplied, all columns will
be examined.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.13 delcols

SUN/256 69

Usage:
delcols <colid-list>

Delete the specified columns. The same column may harmlessly be specified more than once.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.14 every

Usage:
every [-exact|-approx] <step>

Include only every <step>'th row in the result, starting with the first row. The optional
-approx/-exact argument controls whether the selection needs to be exact; in some cases an
approximate calculation can take advantage of parallelism where an exact one cannot.

6.1.15 explodeall

Usage:
explodeall [-ifndim <ndim>] [-ifshape <dims>]

Replaces any columns which is an N-element arrays with N scalar columns. Only columns with
fixed array sizes are affected. The action can be restricted to only columns of a certain shape using
the flags.

If the -ifndim flag is used, then only columns of dimensionality <ndim> will be exploded. <ndim>
may be 1, 2,

If the -ifshape flag is used, then only columns with a specific shape will be exploded; <dims> is a
space- or comma-separated list of dimension extents, with the most rapidly-varying first, e.g. '2 5'
to explode all 2 x 5 element array columns.

6.1.16 explodecols

Usage:
explodecols <colid-list>

Takes a list of specified columns which represent N-element arrays and replaces each one with N
scalar columns. Each of the columns specified by <colid-list> must have a fixed-length array
type, though not all the arrays need to have the same number of elements.

This filter does the opposite of collapsecols.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.17 fixcolnames

Usage:
fixcolnames

Renames all columns and parameters in the input table so that they have names which have
convenient syntax for STILTS. For the most part this means replacing spaces and other

SUN/256 70

non-alphanumeric characters with underscores. This is a convenience which lets you use column
names in algebraic expressions and other STILTS syntax.

Additionally, column names are adjusted if necessary to ensure that they are all unique when
compared case-insensitively. If the names are all unique to start with then no changes are made, but
if for instance two columns exist with names gMag and GMag, one of them will be altered (for
instance to GMag_1).

6.1.18 group

Usage:
group [-[no]parallel] <key> [<key> ...] [<aggcol> ...]

Calculates aggregate functions on groups of rows. This does the same job as a SELECT ... GROUP

BY statement with aggregate functions in ADQL/SQL.

The functionality is identical to that of the tgroup command, and the meaning and syntax of the
<key> and <aggcol> words are identical too, except that the <aggcol> delimiter character is an at
sign ("@") rather than a semicolon (";"), so a group entry count can be added for instance using an
<aggcol> like "null@count". The <aggcol> arguments are distinguished by the fact that they
contain at least one delimiter ("@"). See the tgroup documentation for a full explanation of the
syntax and functionality.

The syntax here is rather cramped, so in many cases it will be more comfortable to use tgroup

instead, but this filter is provided for cases where that may be more convenient.

6.1.19 head

Usage:
head <nrows>

Include only the first <nrows> rows of the table. If the table has fewer than <nrows> rows then it
will be unchanged.

6.1.20 healpixmeta

Usage:
healpixmeta [-level <n>] [-implicit|-column <col-id>] [-csys C|G|E] [-nested|-ring]

Adjusts the table metadata items that describe how HEALPix pixel data is encoded in the table.

Zero or more of the following flags may be supplied:

• -level <n>: Defines the HEALPix level; the sky is split into 12*4^n pixels. This quantity is
equal to logarithm base 2 of NSIDE.

• -implicit: Declares that pixel indices are implicit, so that row i represents HEALPix pixel
index i. The table should have 12*4^level rows in this case. Not to be used with -column.

• -column <col-id>: Declares that the column identified contains the (0-based) HEALPix pixel
index. Not to be used with -implicit.

• -csys C|G|E: Declares the sky coordinate system to which the HEALPix pixels apply:
Celestial(=equatorial), Galactic or Ecliptic. Some applications assume Galactic if this is not
specified.

• -nested: Declares that the NESTED ordering scheme is in use. Not to be used with -ring.

SUN/256 71

• -ring: Declares that the RING ordering scheme is in use. Not to be used with -nested.

The effect of this filter is to write, or overwrite, certain special table parameters (per-table metadata)
that STIL uses to describe how HEALPix pixel information is encoded in a table, specifically the
HEALPix level, the column containing pixel index, the ordering scheme, and the sky coordinate
system. Adding these parameters doesn't do anything on its own, but some of the STIL I/O handlers
recognise these parameters, and they affect how the table will be formatted for output. In particular,
if you set these parameters and then output to FITS format, the output table will contain headers
defined by the HEALPix-FITS serialization format which is understood by several other
applications to describe HEALPix maps. If you write to VOTable format, the metadata will only be
recognised by other STIL-based applications but it means that if you, e.g., load the table into
TOPCAT and then write it out again as FITS, the HEALPix information should be preserved.

When writing tables marked up like this to FITS, you have two options. If you write to one of the
"normal" FITS formats (e.g. fits, fits-basic) then suitable headers will be added; in this case if
an explicit pixel index column is used it must be the first column, and should be named "PIXEL".
This may be enough for other applications to recognise the HEALPix metadata. However, if you
use the special fits-healpix format more efforts will be made to conform to the HEALPix-FITS
convention, for instance moving and renaming the explicit pixel index column if required.

The table parameters affected by this filter are: STIL_HPX_LEVEL, STIL_HPX_ISNEST,
STIL_HPX_COLNAME, STIL_HPX_CSYS. Note these are not defined by any standard, they are defined
and used only by STILTS and related applications (TOPCAT).

Syntax for the <col-id> argument is described in Section 6.2.

6.1.21 keepcols

Usage:
keepcols <colid-list>

Select the columns from the input table which will be included in the output table. The output table
will include only those columns listed in <colid-list>, in that order. The same column may be
listed more than once, in which case it will appear in the output table more than once.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.22 meta

Usage:
meta [<item> ...]

Provides information about the metadata for each column. This filter turns the table sideways, so
that each row of the output corresponds to a column of the input. The columns of the output table
contain metadata items such as column name, units, UCD etc corresponding to each column of the
input table.

By default the output table contains columns for all metadata items for which any of the columns
have non-blank values.

However, the output may be customised by supplying one or more <item> headings, in which case
exactly those columns will appear, regardless of whether they have entries. It is not an error to
specify an item for which no metadata exists in any of the columns (such entries will result in
empty columns).

SUN/256 72

Some of the metadata items commonly found are:

• Index: Position of column in table
• Name: Column name
• Class: Data type of objects in column
• Shape: Shape of array values
• ElSize: Size of each element in column (mostly useful for strings)
• Units: Unit string
• Description: Description of data in the column
• UCD: Unified Content Descriptor
• Utype: Type in data model
• Xtype: Extended data type
• CoosysSystem: Sky coordinate system name from COOSYS
• CoosysEpoch: Sky epoch from COOSYS
• CoosysRefposition: Reference position from COOSYS
• CoosysEquinox: Sky equinox from COOSYS
• TimesysTimeorigin: Time origin from TIMESYS
• TimesysTimescale: Timescale from TIMESYS
• TimesysRefposition: Ref position from TIMESYS
• STIL_HPX_LEVEL: Level of HEALPix pixels contained in the table (nside=2^level)
• STIL_HPX_ISNEST: True for NEST indexation scheme, False for RING
• STIL_HPX_COLNAME: Name of the table column containing HEALPix index; null value or empty

string indicates implicit
• STIL_HPX_CSYS: 'C'=celestial/equatorial, 'G'=galactic, 'E'=ecliptic

Any table parameters of the input table are propagated to the output one.

6.1.23 progress

Usage:
progress

Monitors progress by displaying the number of rows processed so far on the terminal (standard
error). This number is updated every second or thereabouts; if all the processing is done in under a
second you may not see any output. If the total number of rows in the table is known, an ASCII-art
progress bar is updated, otherwise just the number of rows seen so far is written.

Note under some circumstances progress may appear to complete before the actual work of the task
is done since part of the processing involves slurping up the whole table to provide random access
on it. In this case, applying the cache upstream may help.

6.1.24 random

Usage:
random

Ensures that random access is available on this table. If the table currently has random access, it has
no effect. If only sequential access is available, the table is cached so that downstream steps will see
the cached, hence random-access, copy.

6.1.25 randomview

Usage:

SUN/256 73

randomview

Ensures that steps downstream only use random access methods for table access. If the table is
sequential only, this will result in an error. Only useful for debugging.

6.1.26 repeat

Usage:
repeat [-row|-table] <count>

Repeats the rows of a table multiple times to produce a longer table. The output table will have
<count> times as many rows as the input table.

The optional flag determines the sequence of the output rows. If <count>=2 and there are three
rows, the output sequence will be 112233 for -row and 123123 for -table. The default behaviour is
currently -table.

The <count> value will usually be a constant integer value, but it can be an expression evaluated in
the context of the table.

6.1.27 replacecol

Usage:
replacecol [-name <name>] [-units <units>] [-ucd <ucd>]

[-utype <utype>] [-xtype <xtype>] [-desc <descrip>]
<col-id> <expr>

Replaces the content of a column with the value of an algebraic expression. The old values are
discarded in favour of the result of evaluating <expr>. You can specify the metadata for the new
column using the -name, -units, -ucd, -utype, -xtype and -desc flags; for any of these items
which you do not specify, they will take the values from the column being replaced.

It is legal to reference the replaced column in the expression, so for example "replacecol pixsize

pixsize*2" just multiplies the values in column pixsize by 2.

Syntax for the <col-id> and <expr> arguments is described in the manual.

6.1.28 replaceval

Usage:
replaceval <old-val> <new-val> <colid-list>

For each column specified in <colid-list> any instance of <old-val> is replaced by <new-val>.
The value string 'null' can be used for either <old-value> or <new-value> to indicate a blank value
(but see also the badval filter).

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.29 rowrange

Usage:
rowrange <first> <last>|+<count>

SUN/256 74

Includes only rows in a given range. The range can either be supplied as "<first> <last>", where
row indices are inclusive, or "<first> +<count>". In either case, the first row is numbered 1.

Thus, to get the first hundred rows, use either "rowrange 1 100" or "rowrange 1 +100" and to get
the second hundred, either "rowrange 101 200" or "rowrange 101 +100"

6.1.30 select

Usage:
select <expr>

Include in the output table only rows for which the expression <expr> evaluates to true. <expr>
must be an expression which evaluates to a boolean value (true/false).

Syntax for the <expr> argument is described in Section 10.

6.1.31 seqview

Usage:
seqview

Ensures that steps downstream see the table as sequential access. Any attempts at random access
will fail. Only useful for debugging.

6.1.32 setparam

Usage:
setparam [-type byte|short|int|long|float|double|boolean|string]

[-desc <descrip>] [-unit <units>] [-ucd <ucd>]
[-utype <utype>] [-xtype <xtype>]
<pname> <pexpr>

Sets a named parameter in the table to a given value. The parameter named <pname> is set to the
value <pexpr>, which may be a literal value or an expression involving mathematical operations
and other parameter names (using the param$<name> syntax). By default, the data type of the
parameter is determined by the type of the supplied expression, but this can be overridden using the
-type flag. The parameter description, units, UCD, Utype and Xtype attributes may optionally be
set using the other flags.

6.1.33 sort

Usage:
sort [-down] [-nullsfirst] [-[no]parallel] <key-list>

Sorts the table according to the value of one or more algebraic expressions. The sort key
expressions appear, as separate (space-separated) words, in <key-list>; sorting is done on the first
expression first, but if that results in a tie then the second one is used, and so on.

Each expression must evaluate to a type that it makes sense to sort, for instance numeric. If the
-down flag is used, the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the

SUN/256 75

-nullsfirst flag is given then they are considered to come at the start instead.

By default, sorting is done sequentially for small tables and in parallel for large tables, but this can
be controlled with the -parallel or -noparallel flag.

Syntax for the <key-list> argument is described in Section 10.

6.1.34 sorthead

Usage:
sorthead [-tail] [-down] [-nullsfirst] <nrows> <key-list>

Performs a sort on the table according to the value of one or more algebraic expressions, retaining
only <nrows> rows at the head of the resulting sorted table. The sort key expressions appear, as
separate (space-separated) words, in <key-list>; sorting is done on the first expression first, but if
that results in a tie then the second one is used, and so on. Each expression must evaluate to a type
that it makes sense to sort, for instance numeric.

If the -tail flag is used, then the last <nrows> rows rather than the first ones are retained.

If the -down flag is used the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nullsfirst flag is given then they are considered to come at the start instead.

This filter is functionally equivalent to using sort followed by head, but it can be done in one pass
and is usually cheaper on memory and faster, as long as <nrows> is significantly lower than the size
of the table.

Syntax for the <key-list> argument is described in Section 10.

6.1.35 stats

Usage:
stats [-[no]parallel] [-qapprox|-qexact] [<item> ...]

Calculates statistics on the data in the table. This filter turns the table sideways, so that each row of
the output corresponds to a column of the input. The columns of the output table contain statistical
items such as mean, standard deviation etc corresponding to each column of the input table.

By default the output table contains columns for the following items:

• Name: Column name
• Mean: Average
• StDev: Population Standard deviation
• Minimum: Numeric minimum
• Maximum: Numeric maximum
• NGood: Number of non-blank cells

However, the output may be customised by supplying one or more <item> headings. These may be
selected from the above as well as the following:

• NBad: Number of blank cells
• Variance: Population Variance
• SampStDev: Sample Standard Deviation

SUN/256 76

• SampVariance: Sample Variance
• MedAbsDev: Median Absolute Deviation
• ScMedAbsDev: Median Absolute Deviation * 1.4826
• Skew: Gamma 1 skewness measure
• Kurtosis: Gamma 2 peakedness measure
• Sum: Sum of values
• MinPos: Row index of numeric minimum
• MaxPos: Row index of numeric maximum
• Cardinality: Number of distinct values in column; values >100 ignored
• Median: Middle value in sequence
• Quartile1: First quartile
• Quartile2: Second quartile
• Quartile3: Third quartile
• ArrayNGood: Per-element non-blank counts for fixed-length array columns
• ArraySum: Per-element sums for fixed-length array columns
• ArrayMean: Per-element means for fixed-length array columns
• ArrayStDev: Per-element population standard deviation for fixed-length array columns

Additionally, the form "Q.nn" may be used to represent the quantile corresponding to the proportion
0.nn, e.g.:

• Q.25: First quartile
• Q.625: Fifth octile

Any parameters of the input table are propagated to the output one.

The -qapprox or -qexact flag controls how quantiles are calculated. With -qexact they are
calculated exactly, but this requires memory usage scaling with the number of rows. If the -qapprox

flag is supplied, an method is used which is typically slower and produces only approximate values,
but which will work in fixed memory and so can be used for arbitrarily large tables. By default,
exact calculation is used. These flags are ignored if neither quantiles nor the MAD are being
calculated

The -noparallel flag may be supplied to inhibit multi-threaded statistics accumulation.
Calculation is done in parallel by default if multi-threaded hardware is available, and it's usually
faster.

6.1.36 tablename

Usage:
tablename <name>

Sets the table's name attribute to the given string.

6.1.37 tail

Usage:
tail <nrows>

Include only the last <nrows> rows of the table. If the table has fewer than <nrows> rows then it will
be unchanged.

6.1.38 transpose

SUN/256 77

Usage:
transpose [-namecol <col-id>]

Transposes the input table so that columns become rows and vice versa. The -namecol flag can be
used to specify a column in the input table which will provide the column names for the output
table. The first column of the output table will contain the column names of the input table.

Syntax for the <col-id> argument is described in Section 6.2.

6.1.39 uniq

Usage:
uniq [-count] [<colid-list>]

Eliminates adjacent rows which have the same values. If used with no arguments, then any row
which has identical values to its predecessor is removed.

If the <colid-list> parameter is given then only the values in the specified columns must be equal
in order for the row to be removed.

If the -count flag is given, then an additional column with the name DupCount will be prepended to
the table giving a count of the number of duplicated input rows represented by each output row. A
unique row has a DupCount value of 1.

Syntax for the <colid-list> argument is described in Section 6.3.

6.2 Specifying a Single Column

If an argument is specified in the help text for a command with the symbol <col-id> it means you
must give a string which identifies one of the existing columns in a table.

There are several ways you can specify a column in this context:

Column Name
The name of the column may be used if it contains no spaces. It is usually matched case
insensitively. If multiple columns have the same name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; this is a useful fallback if the column name isn't
suitable for some reason. The first column is '1', the second is '2' and so on. You may
alternatively use the forms '$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running tpipe with
omode=meta or omode=stats on the table may help.

Column ucd$ specifier
If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form
"ucd$<ucd-spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot.mag;em.opt.R", you should use the identifier "ucd$phot_mag_em_opt_r".
Matching is not case-sensitive. Futhermore, a trailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot_mag_". If multiple
columns have UCDs which match the given identifer, the first one will be used.

SUN/256 78

Column utype$ specifier
If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "utype$<utype-spec>".
Utypes may contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores ("_"). So to identify a column which has
the Utype "ssa:Access.Format", you should use the identifier "utype$ssa_Access_format".
Matching is not case-sensitive. If multiple columns have Utypes which match the given
identifier, the first one will be used.

6.3 Specifying a List of Columns

If an argument is specified in the help text for a command with the symbol <colid-list> it means
you must give a string which identifies a list of zero, one or more of the existing columns in a table.
The string you specify is a separated into separate tokens by whitespace, which means that you will
normally have to surround it in single or double quotes to ensure that it is treated as a single
argument and not several of them.

Each token in the <colid-list> string may be one of the following:

Single Column Identifier
The identifier for a single column, as described in Section 6.2: one of <name>, <index>,
$<index>, ucd$<ucd-expr> or utype$<utype-expr>.

Wildcard Expression
You can use a simple form of wildcard expression which expands to any columns in the table
whose names match the pattern. Currently, the only special character is an asterisk '*' which
matches any sequence of characters. To match an unknown sequence at the start or end of the
string an asterisk must be given explicitly. Other than that, matching is usually case
insensitive. The order of the expanded list is the same as the order in which the columns
appear in the table.

Thus "col*" will match columns named col1, Column2 and COL_1024, but not decOld. "*MAG*"
will match columns named magnitude, ABS_MAG_U and JMAG. "*" on its own expands to a list of
all the columns of the table in order.

Column Range
You can specify a range of columns in order using a token of the form
<first-colid>-<last-colid>, where the syntax for <first-colid> and <last-colid> is a
Single Column Identifier as above (as long as it doesn't contain a "-" character). The range is
inclusive, so the first and last column are both included. The <first-colid> or <last-colid>
part (but not both) may be omitted, to indicate all the columns from the start or all the columns
to the end, respectively.

So "RA-PARALLAX" means all the columns starting with the one named RA and ending with the
one named PARALLAX (inclusive); "1-100" or "$1-$100" means the first hundred columns in the
table; "101-" or "$101-" means all the columns apart from the first hundred, "PARALLAX-"
means PARALLAX and all subsequent columns, etc.

Specifying a list which contains a given column more than once is not usually an error, but what
effect it has depends on the function you are executing.

6.4 Output Modes

This section lists the output modes which can be used as the value of the omode parameter of tpipe
and other commands. Typically, having produced a result table by pipeline processing an input one,
you will write it out by specifying omode=out (or not using the omode parameter at all - out is the

SUN/256 79

default). However, you can do other things such as calculate statistics, display metadata, etc. In
some of these cases, additional parameters are required. The different output modes, with their
associated parameters, are described in the following subsections.

6.4.1 cgi

Usage:
omode=cgi ofmt=<out-format>

Writes a table to standard output in a way suitable for use as output from a CGI (Common Gateway
Interface) program. This is very much like out mode but a short CGI header giving the MIME
Content-Type is prepended to the output

Additional parameters for this output mode are:

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters).

[Default: votable]

6.4.2 checksum

Usage:
omode=checksum

Calculates a checksum from all the data in the table. The checksum is written to standard output in
hexadecimal; row and column counts are also written.

If two tables have the same checksum it is extremely likely that they contain the same cell data. If
they have a different checksum, their cell data differs. By default, the checksum implementation
uses Adler32, which is fast but not cryptographically secure.

6.4.3 count

Usage:
omode=count

Counts the number of rows and columns and writes the result to standard output.

6.4.4 discard

Usage:
omode=discard

Reads all the data in the table in sequential mode and discards it. May be useful in conjunction with
the assert filter.

6.4.5 gui

Usage:
omode=gui

SUN/256 80

Displays the table in a scrollable window.

6.4.6 meta

Usage:
omode=meta

Prints the table metadata to standard output. The name and type etc of each column is tabulated, and
table parameters are also shown.

See the meta filter for more flexible output of table metadata.

6.4.7 out

Usage:
omode=out out=<out-table> ofmt=<out-format>

Writes a new table.

Additional parameters for this output mode are:

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

[Default: -]

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (auto)]

6.4.8 plastic

Usage:
omode=plastic transport=string|file client=<app-name>

Broadcasts the table to any registered Plastic-aware applications. PLASTIC, the PLatform for
AStronomical Tool InterConnection, is a tool interoperability protocol. A Plastic hub must be
running in order for this to work.

Additional parameters for this output mode are:

transport = string|file (String)
Determines the method (PLASTIC message) used to perform the PLASTIC communication.
The choices are

• string: VOTable serialized as a string and passed as a call parameter
(ivo://votech.org/votable/load). Not suitable for very large files.

• file: VOTable written to a temporary file and the filename passed as a call parameter

SUN/256 81

ivo://votech.org/votable/loadFromURL). The file ought to be deleted once it has been
loaded. Not suitable for inter-machine communication.

If no value is set (null) then a decision will be taken based on the apparent size of the table.

client = <app-name> (String)
Gives the name of a PLASTIC listener application which is to receive the broadcast table. If a
non-null value is given, then only the first registered application which reports its application
name as that value will receive the message. If no value is supplied, the broadcast will be to all
listening applications.

6.4.9 samp

Usage:
omode=samp format=<value> client=<name-or-id>

Sends the table to registered SAMP-aware applications subscribed to a suitable table load MType.
SAMP, the Simple Application Messaging Protocol, is a tool interoperability protocol. A SAMP
Hub must be running for this to work.

Additional parameters for this output mode are:

format = <value> (String[])
Gives one or more table format types for attempting the table transmission over SAMP. If
multiple values are supplied, they should be separated by spaces. Each value supplied for this
parameter corresponds to a different MType which may be used for the transmission. If a
single value is used, a SAMP broadcast will be used. If multiple values are used, each
registered client will be interrogated to see whether it subscribes to the corresponding MTypes
in order; the first one to which it is subscribed will be used to send the table. The standard
options are

• votable: use MType table.load.votable

• fits: use MType table.load.fits

If any other string is used which corresponds to one of STILTS's known table output formats,
an attempt will be made to use an ad-hoc MType of the form table.load.format.

[Default: votable fits]

client = <name-or-id> (String)
Identifies a registered SAMP client which is to receive the table. Either the client ID or the
(case-insensitive) application name may be used. If a non-null value is given, then the table
will be sent to only the first client with the given name or ID. If no value is supplied the table
will be sent to all suitably subscribed clients.

6.4.10 stats

Usage:
omode=stats

Calculates and displays univariate statistics for each of the numeric columns in the table. The
following entries are shown for each column as appropriate:

• mean
• population standard deviation
• minimum

SUN/256 82

• maximum
• number of non-null entries

See the stats filter for more flexible statistical calculations.

6.4.11 topcat

Usage:
omode=topcat

Attempts to display the output table directly in TOPCAT. If a TOPCAT instance is already running
on the local host, an attempt will be made to open the table in that. A variety of mechanisms are
used to attempt communication with an existing TOPCAT instance. In order:

1. SAMP using existing hub (TOPCAT v3.4+ only, requires SAMP hub to be running)
2. PLASTIC using existing hub (requires PLASTIC hub to be running)
3. SOAP (requires TOPCAT to run with somewhat deprecated -soap flag, may be limitations on

table size)
4. SAMP using internal, short-lived hub (TOPCAT v3.4+ only, running hub not required, but

may be slow. It's better to start an external hub, e.g. topcat -exthub)

Failing that, an attempt will be made to launch a new TOPCAT instance for display. This only
works if the TOPCAT classes are on the class path.

If large tables are involved, starting TOPCAT with the -disk flag is probably a good idea.

6.4.12 tosql

Usage:
omode=tosql protocol=<jdbc-protocol> host=<value> db=<db-name>

dbtable=<table-name> write=create|dropcreate|append
user=<username> password=<passwd>

Writes a new table to an SQL database. You need the appropriate JDBC drivers and
-Djdbc.drivers set as usual (see Section 3.4).

Additional parameters for this output mode are:

protocol = <jdbc-protocol> (String)
The driver-specific sub-protocol specifier for the JDBC connection. For MySQL's Connector/J
driver, this is mysql, and for PostgreSQL's driver it is postgresql. For other drivers, you may
have to consult the driver documentation.

host = <value> (String)
The host which is acting as a database server.

[Default: localhost]

db = <db-name> (String)
The name of the database on the server into which the new table will be written.

The value of this parameter forms the last part of the JDBC connection URL. That means that
for some JDBC drivers, you can append parameter specifications to it to affect the way the
connection is made to the database, e.g. "db=some_db?useSSL=false" for MySQL's
Connector/J.

dbtable = <table-name> (String)
The name of the table which will be written to the database.

SUN/256 83

write = create|dropcreate|append (WriteMode)
Controls how the values are written to a table in the database. The options are:

• create: Creates a new table before writing. It is an error if a table of the same name
already exists.

• dropcreate: Creates a new database table before writing. If a table of the same name
already exists, it is dropped first.

• append: Appends to an existing table. An error results if the named table has the wrong
structure (number or types of columns) for the data being written.

[Default: create]

user = <username> (String)
User name for the SQL connection to the database.

[Default: mbt]

password = <passwd> (String)
Password for the SQL connection to the database.

SUN/256 84

7 Crossmatching

STILTS offers flexible and efficient facilities for crossmatching tables. Crossmatching is
identifying different rows, which may be in the same or different tables, that refer to the same item.
In an astronomical context such an item is usually, though not necessarily, an astronomical source
or object. This operation corresponds to what in database terminology is called a join.

There are various complexities to specifying such a match. In the first place you have to define
what is the condition that must be satisfied for two rows to be considered matching. In the second
place you must decide what happens if, for a given row, more than one match can be found. Finally,
you have to decide what to do having worked out what the matched rows are; the result will
generally be presented as a new output table, but there are various choices about what columns and
rows it will consist of. Some of these issues are discussed in this section, and others in the reference
sections on the tools themselves in Appendix B.

Matching can in general be a computationally intensive process. The algorithm used by the tmatch*

tasks in STILTS, except in pathological cases, scales as O(N log(N)) or thereabouts, where N is the
total number of rows in all the tables being matched. No preparation (such as sorting) is required on
the tables prior to invoking the matching operation. It is reasonably fast; for instance an RA, Dec
positional match of two 105-row catalogues takes of the order of 60 seconds on current (2005
laptop) hardware. Attempting matches with large tables can lead to running out of memory; the
calculation just mentioned required a java heap size of around 200Mb (-Xmx200M).

In the current release of STILTS the following tasks are provided for crossmatching between local
tables:

tmatch2

Generic crossmatching between two tables.

tskymatch2

Crossmatching between two tables where the matching criterion is a fixed separation on the
sky. This is simply a stripped-down version of tmatch2 provided for convenience when the
full generality is not required.

tmatch1

Generic crossmatching internal to a single table. The basic task this performs is to identify
groups of rows within a single table which match each other.

tmatchn

Generic crossmatching between multiple (>2) tables.

tjoin

Trivial join operation between multiple tables in which no row re-ordering is required. This
barely warrants the term "crossmatch" and the concepts explained in the rest of this section are
not relevant to it.

7.1 Match Criteria

Determining whether one row represents the same item as another is done by comparing the values
in certain of their columns to see if they are the same or similar. The most common astronomical
case is to say that two rows match if their celestial coordinates (right ascension and declination) are
within a given small radius of each other on the sky. There are other possibilities; for instance the
coordinates to compare may be in a Cartesian space, or have a higher (or lower) dimensionality than
two, or the match may be exact rather than within an error radius....

If you just need to match two tables according to sky position with fixed errors you are

SUN/256 85

recommended to use the simplified tskymatch2 task. For other cases, this section describes how to
specify much more flexible match criteria for use with tmatch1, tmatch2 or tmatchn by setting the
following parameters:

matcher

Name of the match criteria type.

params

Fixed value(s) giving the parameters of the match (typically an error radius). If more than one
value is required, the values should be separated by spaces.

values*

Expressions to be compared between rows. This will typically contain the names of one or
more columns, but each element may be an algebraic expression (see Section 10) rather than
just a column name if required. If more than one value is required, the values should be
separated by spaces. There is one of these parameters for each table taking part in the match,
so for tmatch2 you must specify both values1 and values2.

tuning

Fixed value(s) supplying tuning parameters for the match algorithm. If there is more than one
value, they should be separated by spaces. This value will have a sensible default, so you do
not need to supply it, but providing adjusted values may make your match run faster or require
less memory (or the reverse). Adjusting tuning parameters will not change the result of any
match, only the resources required to run it. Looking at the progress output of a match will
indicate what tuning values have been used; adjusting the value a bit up or down is a good way
to experiment.

For example, suppose we wish to locate objects in two tables which are within 3 arcseconds of each
other on the sky. One table has columns RA and DEC which give coordinates in degrees, and the
other has columns RArad and DECrad which give coordinates in radians. These are the arguments
which would be used to tell tmatch2 what the match criteria are:

matcher=sky
params=3
values1='RA DEC'
values2='radiansToDegrees(RArad) radiansToDegrees(DECrad)'

It is clearly important that corresponding values are comparable (in the same units) between the
tables being matched, and in geometrically sensitive cases such as matching on the sky, it's
important that they are the units expected by the matcher as well. To determine what those units are,
either consult the roster below, or run the following command:

stilts tmatch2 help=matcher

which will tell you about all the known matchers and their associated params, values* and tuning

parameters.

The following subsections list the basic matcher types and the requirements of their associated
params, values* and tuning parameters. The units of the required values are given where
significant.

7.1.1 sky: Sky Matching

matcher=sky values*='<ra/degrees> <dec/degrees>'
params='<max-error/arcsec>'
tuning='<healpix-k>'

values*:

SUN/256 86

• ra/degrees: Right Ascension
• dec/degrees: Declination

params:

• max-error/arcsec: Maximum separation along a great circle

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 29. 0 is 60deg, 20 is 0.2".

The sky matcher compares positions on the celestial sphere with a fixed error radius. Rows are
considered to match when the two (ra, dec) positions are within max-error arcseconds of each
other along a great circle.

In fact this matching is not restricted to equatorial coordinates - the ra and dec parameters may
represent any longitude-like and latitude-like coordinates in degrees, since the spherical geometry
for the matching is unchanged under such transformations.

7.1.2 skyerr: Sky Matching with Per-Object Errors

matcher=skyerr values*='<ra/degrees> <dec/degrees> <error/arcsec>'
params='<scale/arcsec>'
tuning='<healpix-k>'

values*:

• ra/degrees: Right Ascension
• dec/degrees: Declination
• error/arcsec: Per-object error radius along a great circle

params:

• scale/arcsec: Rough average of per-object error distance; just used for tuning to
set default pixel size

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 29. 0 is 60deg, 20 is 0.2".

The skyerr matcher compares positions on the celestial sphere using error radii which can be
different for each row. Rows are considered to match when the separation between the two ra, dec
positions is no larger than the sum of the two per-row error values.

The scale parameter should be a rough average value of the error distances. It is used only to set a
sensible default for healpix-k tuning parameter, and its value does not affect the result. If you set
healpix-k directly, its value is ignored.

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

Note: the semantics of this matcher have changed slightly at version 2.4 of STILTS. In earlier
versions the single parameter was named max-error and provided an additional constraint on the
maximum accepted separation between matched objects. For most uses, the old and new behaviours

SUN/256 87

are expected to give the same results, but in cases of difference, the new behaviour is more likely
what you want.

7.1.3 skyellipse: Sky Matching of Elliptical Regions

matcher=skyellipse values*='<ra/degrees> <dec/degrees> <primary-radius/arcsec>
<secondary-radius/arcsec>
<position-angle/degrees>'

params='<scale/arcsec>'
tuning='<healpix-k>'

values*:

• ra/degrees: Right ascension of centre
• dec/degrees: Declination of centre
• primary-radius/arcsec: Length of ellipse semi-major axis
• secondary-radius/arcsec: Length of ellipse semi-minor axis
• position-angle/degrees: Position angle - measured from north pole to primary

axis, in direction of positive RA

params:

• scale/arcsec: Rough average of ellipse major radius; just used for tuning to set
default pixel size

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 29. 0 is 60deg, 20 is 0.2".

The skyellipse matcher compares elliptical regions on the sky for overlap. Each row has to
provide five values, giving the centre, the major and minor radii, and the position angle of an
ellipse. Rows are considered to match if there is any overlap between the ellipses. The goodness of
match is a normalised generalisation of the symmetrical case used by the skyerr matcher, in which
the best possible match is two concentric ellipses, and the worst allowable match is when the
circumferences just touch.

The calculations are approximate since in some cases they rely on projecting the ellipses onto a
Cartesian tangent plane before evaluating the match, so for larger ellipses the criterion will be less
exact. For objects the size of most observed stars or galaxies, this approximation is not expected to
be problematic.

The scale parameter must be supplied, and should be a rough average value of the major radii. it is
used only to set a sensible default for the healpix-k tuning parameter, and its value does not affect
the result. If you set healpix-k directly, the value of scale is ignored.

7.1.4 sky3d: Spherical Polar Matching

matcher=sky3d values*='<ra/degrees> <dec/degrees> <distance>'
params='<error/units of distance>'
tuning='<bin-factor>'

values*:

• ra/degrees: Right Ascension
• dec/degrees: Declination
• distance: Distance from origin

SUN/256 88

params:

• error/units of distance: Maximum Cartesian separation for match

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The sky3d matcher compares positions in the volume of the sky taking account of distance from the
observer. The position in three-dimensional space is calculated for each row using the ra, dec and
distance as spherical polar coordinates, where distance is the distance from the observer along
the line of sight. Rows are considered to match when their positions in this space are within error

units of each other. The units of error are the same as those of distance.

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

7.1.5 exact: Exact Matching

matcher=exact values*='<matched-value>'

values*:

• matched-value: Value for exact match

The exact matcher compares arbitrary key values for exact equality. Rows are considered to match
only if the values in their matched-value columns are exactly the same. These values can be
strings, numbers, or anything else. A blank value never matches, not even with another blank one.
Since the params parameter holds no values, it does not have to be specified. Note that the values
must also be of the same type, so for instance a Long (64-bit) integer value will not match an
Integer (32-bit) value.

7.1.6 1d, 2d, ...: Isotropic Cartesian Matching

matcher=1d values*='<x>'
params='<error>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1

params:

• error: Maximum Cartesian separation for match

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

matcher=2d values*='<x> <y>'
params='<error>'

SUN/256 89

tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2

params:

• error: Maximum Cartesian separation for match

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 1d matcher compares positions in 1-dimensional Cartesian space. Rows are considered to
match if their x column values differ by no more than error.

The 2d matcher compares postions in 2-dimensional Cartesian space. Rows are considered to match
if the difference in their (x,y) positions reckoned using Pythagoras is less than error.

Matching in any number of Cartesian dimensions can be done by extending this syntax in the
obvious way.

7.1.7 2d_anisotropic, ...: Anisotropic Cartesian Matching

matcher=2d_anisotropic values*='<x> <y>'
params='<error-in-x> <error-in-y>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2

params:

• error-in-x: Axis length of error ellipse in Cartesian co-ordinate #1 direction
• error-in-y: Axis length of error ellipse in Cartesian co-ordinate #2 direction

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_anisotropic matcher compares positions in 2-dimensional Cartesian space using an
anisotropic metric. Rows are considered to match if their (x,y) positions fall within an error ellipse
with axis lengths error-in-x, error-in-y of each other. This kind of match will typically be used
for non-'spatial' spaces, for instance (magnitude,redshift) space, in which the metrics along different
axes are not related to each other.

Matching in any number of dimensions of Cartesian space using an anisotropic metric can be done
by extending this syntax in the obvious way.

7.1.8 2d_cuboid, ...: Cuboid Cartesian Matching

SUN/256 90

matcher=2d_cuboid values*='<x> <y>'
params='<error-in-x> <error-in-y>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2

params:

• error-in-x: Half length of cuboid in Cartesian co-ordinate #1 direction
• error-in-y: Half length of cuboid in Cartesian co-ordinate #2 direction

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_cuboid matcher compares positions in 2-dimensional Cartesian space in cuboidal cells.
Rows are considered to match if their (x,y) positions fall within an error cuboid with half-axis
lengths error-in-x, error-in-y of each other. This kind of match is suitable for grouping items
into pixels, though it's not a very efficient way of doing that.

Matching in any number of dimensions using N-dimensional hyper-cuboids can be done by
extending this syntax in the obvious way.

7.1.9 1d_err, 2d_err, ...: Cartesian Matching with Per-Object Errors

matcher=2d_err values*='<x> <y> <error>'
params='<scale>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2
• error: Per-object error radius

params:

• scale: Rough average of per-object error distance; just used for tuning in
conjunction with bin factor

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 1d_err, 2d_err, ... matchers compare positions in N-dimensional Cartesian space like the 1d,
2d matchers described in Section 7.1.6, except that the match radius can be different for each row.
Rows are considered to match when the separation reckoned by Pythagoras between the x, y, ...
positions is no larger than the sum of the two per-row error values. Matching in any number of
Cartesian dimensions can be done by extending this syntax in the obvious way.

The scale parameter must be supplied, and should be approximately the characteristic size of the
per-object error values. In conjunction with the bin-factor tuning parameter its value affects the

SUN/256 91

performance of the match, but not the result.

7.1.10 2d_ellipse: Cartesian Matching of Elliptical Regions

matcher=2d_ellipse values*='<x> <y> <primary-radius> <secondary-radius>
<orientation-angle/degrees>'

params='<scale>'
tuning='<bin-factor>'

values*:

• x: X coordinate of centre
• y: Y coordinate of centre
• primary-radius: Length of ellipse semi-major axis
• secondary-radius: Length of ellipse semi-minor axis
• orientation-angle/degrees: Angle from X axis towards Y axis of semi-major

axis

params:

• scale: Rough average of per-object error distance; just used for tuning in
conjunction with bin factor

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_ellipse matcher compares elliptical regions in a 2d plane for overlap. Each row has to
specify five values, giving the centre, the major and minor radii, and the orientation angle of an
ellipse. Rows are considered to match if there is any overlap between the ellipses. The goodness of
match is a normalised generalisation of the symmetrical case used by the isotropic matcher, in
which the best possible match is two concentric ellipses, and the worst allowable match is when the
circumferences just touch.

Note the orientation angle is measured anticlockwise from the horizontal, unlike the position angle
used by the skyellipse matcher.

The scale parameter must be supplied, and should be approximately the characteristic size of the
per-object major radius. In conjunction with the bin-factor tuning parameter its value affects the
performance of the match, but not the result.

7.1.11 Custom Matchers

For advanced users, it is possible to supply the name of a class on the classpath which implements
the uk.ac.starlink.table.join.MatchEngine interface and which has a no-arg constructor. This
allows java programmers to write their own matchers using any match criteria and binning
algorithms they choose.

7.1.12 Matcher Combinations

In addition to the matching criteria listed in the previous subsections, you can build your own by
combining any of these. To do this, take the two (or more) matchers that you want to use, and
separate their names with a "+" character. The values* parameters of the combined matcher should
then hold the concatenation of the values* entries of the constituent matchers, and the same for the
params parameter. Two rows are then considered to match if the the match is successful for all of

SUN/256 92

their constituent matchers.

A variant form where the names are separated with a "*" character instead of "+" may also be used.
In this case an additional constraint is applied requiring that the distance measure (see below) is less
than or equal to unity, thus requiring the points in the notional scaled parameter coordinate space to
be within a unit hypersphere rather than a unit hypercube.

So for instance the matcher "sky+1d" could be used with the following syntax:
matcher=sky+1d values*='<ra/degrees> <dec/degrees> <x>'

params='<max-error/arcsec> <error>'
tuning='<healpix-k> <bin-factor>'

values*:

• ra/degrees: Right Ascension
• dec/degrees: Declination
• x: Cartesian co-ordinate #1

params:

• max-error/arcsec: Maximum separation along a great circle
• error: Maximum Cartesian separation for match

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 29. 0 is 60deg, 20 is 0.2".
• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

This would compare positions on the sky with an additional scalar constraint. Rows are considered
to match if both their ra, dec positions are within max-error arcseconds of each other along a great
circle (as for matcher=sky) and their x values differ by no more than error (as for matcher=1d).
Using matcher=sky*1d instead would work the same way but restrict the matches a bit further.

This example might be used for instance to identify objects from two catalogues which are within a
couple of arcseconds and also 0.5 blue magnitudes of each other. Rolling your own matchers in this
way can give you quite flexible match constraints.

When identifying the closest match (e.g. find=best1 in tmatch2) the "distance" measure is
obtained by scaling the distances from each of the constituent matchers and adding these scaled
distances in quadrature, so that each element of the matcher has approximately equal weight.
Scaling is generally done using the maximum permissible match radius (or equivalent), so the
distance measure looks something like d = sqrt([d

A
/max(d

A
)]2 + [d

B
/max(d

B
)]2). However the

details are a bit dependent on which matchers you are combining. If the "*" separator is used
instead of "+" in the matcher specification as described above, this distance will always be <=1 for
successful matches.

Note that in STILTS v3.0-9 and earlier, a linear unscaled distance measure was used here instead,
which did not give very meaningful Best match results.

7.2 Multi-Object Matches

The generic matching in STILTS is determined by specified match criteria, as described in Section
7.1. These criteria give conditions for whether two items (table rows) count as matched with each
other. In the case of a pair match, as provided by tmatch2, it is clear how this is to be interpreted.

However, some of the matching tasks (tmatchn in group mode and tmatch1) search for match

SUN/256 93

groups which may have more than two members. This section explains precisely how STILTS
applies the pair-wise matching criteria it is given to identifying multi-object groups.

In a multi-object match context, the matcher identifies a matched group as the largest possible
group of objects in which each is linked by a pair match to any other object in the group - it is a
group of "friends of friends". Formally, the set of matched groups is a set of disjoint graphs whose
nodes are input table rows and whose edges are successful pair matches, where no successful pair
match exists between nodes in different elements of that set. Thus the set has a minimal number of
elements, and each of its elements is a matched group of maximal size. The important point to note
is that for any particular pair in a matched group, there is no guarantee that the two objects match
each other, only that you can hop from one to the other via pairs which do match.

So in the case of a multi-object sky match on a field which is very crowded compared to the
specified error radius, it is quite possible for all the objects in the input table(s) to end up as part of
the same large matching group. Results at or near this percolation threshold are (a) probably not
useful and (b) likely to take a long time to run. Some care should therefore be exercised when
specifying match criteria in multi-object match contexts.

SUN/256 94

8 Plotting

As of version 3.0 (October 2014), STILTS offers plotting commands corresponding to the
new-style plots in version 4 of the TOPCAT application. The commands are currently:

• plot2plane (Appendix B.10): Draws a plane plot
• plot2sky (Appendix B.11): Draws a sky plot
• plot2cube (Appendix B.12): Draws a cube plot
• plot2sphere (Appendix B.13): Draws a sphere plot
• plot2corner (Appendix B.14): Draws a matrix of plane plots
• plot2time (Appendix B.15): Draws a time plot

(In previous versions the less capable commands plot2d, plot3d and plothist were available -
these are now deprecated, but described in Section 9).

These commands all have a similar structure. The plot surface, or geometry of the plot, is defined
by which command you use (for instance, if you want to plot longitude/latitude data on the celestial
sphere, use plot2sky). Content is added to the plot by specifying zero or more plot layers, as
described in Section 8.3 below. Section 8.4 describes the shading modes which affect how
colouring is performed for some of the layer types. Once a plot has been specified, it can be
displayed on the screen or exported in some way according to a selected output mode (Section 8.5)
and perhaps export format (Section 8.6). Plots displayed to the screen are by default "live" - they
can be resized and navigated around (pan, zoom, rotate, ...) using the mouse in the same way as in a
TOPCAT window.

These commands allow you to make all the plots that can be produced with TOPCAT, in some
cases with more flexibility in configuration. Unlike TOPCAT, the size of table you can plot is not
limited by the size of table you can load into the application. In most cases, STILTS will generate
plots from arbitrarily large data sets with fixed (and modest) memory requirements. Performance is
of course highly dependent on the details of the plot, but for instance an all-sky density plot for 2
billion points can be produced in the order of 30 minutes.

8.1 Plot Parameters

The plotting commands offer a great deal of control over what is plotted and how it is represented,
and thus unavoidably have lots of parameters. When looking at the command documentation in
Appendix B the Usage sections may look rather daunting. However, the discussion below and the
Examples sections should help. Generating a simple plot is straightforward and can be done with
only four or five parameters; if you want to represent more complicated data or have specific
preferences for appearance then you can consult the documentation for the additional options.

As a simple example, if a file "cat.fits" contains the columns RMAG and BMAG for red and blue
magnitudes, you can draw a two-dimensional colour-magnitude scatter plot with the command:

stilts plot2plane layer_1=mark in_1=cat.fits x_1=BMAG-RMAG y_1=BMAG

Since an output file is not specified, the plot is shown in a window on the screen. This plot window
is "live" - you can resize the window, or pan and zoom around it using the same mouse controls as
in TOPCAT. To send the output to a PNG file, do instead:

stilts plot2plane layer_1=mark in_1=cat.fits x_1=BMAG-RMAG y_1=BMAG out=fig.png

We can adjust the plot by inverting the Y axis so it increases downwards instead of upwards:

stilts plot2plane
yflip=true

SUN/256 95

layer_1=mark in_1=cat.fits x_1=BMAG-RMAG y_1=BMAG

The parameters of the plot now fall into two groups. Global parameters, without suffixes, make
global adjustments to the plot. In this example yflip=true inverts the Y axis. Layer parameters,
with suffixes, are introduced by a layer parameter and grouped together by a given suffix. Each
layer group defines a plot layer with content to be drawn on the plot surface. In this case the layer is
of type mark (draw markers) and the suffix is "_1". Global and Layer parameters are described
separately in the following subsections.

8.1.1 Global Parameters

The global plot parameters are documented in the usage sections of the various plot commands (e.g.
Appendix B.10.1). They deal with things like positioning the plot axes, fixing the data bounds,
selecting font types and sizes, adjusting grids and tickmarks, configuring how interactive navigation
works, managing data storage, and so on. They are all optional, since they all have sensible defaults,
for instance data bounds will be determined from the supplied data if they are not given explicitly.

8.1.2 Layer Parameters

The layer parameters come in groups, each specifying the details of one plot layer. Each layer type
has its own list of parameters. A plot layer is introduced on the command line with a parameter of
the form

layer<suffix>=<layer-type>

and any other parameters with the same <suffix> are considered to apply to the same layer. In the
basic example we considered:

stilts plot2plane layer_1=mark in_1=cat.fits x_1=BMAG-RMAG y_1=BMAG

the suffix is "_1" and the layer type associated with it is mark (plotting markers to make a scatter
plot). The different layer types are documented in Section 8.3, and each has its own set of
parameters, some of which are mandatory and some which are optional with sensible defaults. In
the documentation, the suffix is represented as "N". For instance the mark layer type requires you to
specify an input table (inN) and point positions (xN and yN). Since the suffix we have used in the
example for the layerN parameter is "_1", we have written in_1, x_1 and y_1. The mark layer has
some optional style parameters as well, so we could adjust the plot's appearance by adding
shape_1=cross size_1=4 color_1=blue.

You can have as many layers as you like (even none), so we could overplot two datasets from
different input files like this:

stilts plot2plane
layer_1=mark in_1=cat1.fits x_1=BMAG-RMAG y_1=BMAG color_1=magenta size_1=5
layer_2=mark in_2=cat2.fits x_2=mag_b-mag_r y_2=mag_b color_2=cyan size_2=5

We have assigned different colours to the different layers and boosted the marker size to 5 pixels.

As a convenience, if the same value is used for all the layers, you can omit the suffix. So to avoid
having to specify the same markers size for both layers, you can write instead:

stilts plot2plane
size=5
layer_1=mark in_1=cat1.fits x_1=BMAG-RMAG y_1=BMAG color_1=magenta
layer_2=mark in_2=cat2.fits x_2=mag_b-mag_r y_2=mag_b color_2=teal

Although the size parameter no longer has an explicit suffix, it's still a layer parameter, it just
applies to multiple layers. This shorthand works for all layer parameters. Here is another example
which also shows how you can use the icmdN parameter to pre-process input data prior to

SUN/256 96

performing the plot. Here, we make two different selections of the input rows to plot two different
data sets.

stilts plot2plane
in=cat.fits x=BMAG-RMAG y=BMAG
layer_1=mark icmd_1='select vel<1000' color_1=blue
layer_2=mark icmd_2='select vel>=1000' color_2=red

The input tables and data values are the same for both datasets, so we can just supply the parameters
in, x and y, rather than in_1, in_2 etc.

Any string can be used as a suffix, including the empty string (though an empty string can cause
confusion if there are multiple layers). The suffixing is also slightly more sophisticated than
described above; to find parameters relating to a layer with a given suffix, the parameter looks first
using the whole suffix, and strips single characters off it until it has none left. So if a layer is
introduced with the parameter layer_ab, you can give the marker shape using any of the parameters
shape_ab, shape_a, shape_ or shape. If more than one of these is present, the first one in that list
will be used (the order in which they appear on the command line is not significant). This can be
used to group sets of layers.

By default, if multiple layers are specified, they are plotted in the order in which the introducing
layerN parameters appear on the command line. This may be relevant, since layers plotted later
sometimes obscure ones plotted earlier. You can alter the order of plotting with the seq (global)
parameter, which is a comma-separated list of layer suffixes giving the sequence in which layers
should be plotted. So adding "seq=_2,_1" would cause layer _2 to be plotted before layer _1,
instead of the other way round.

By default, if more than one layer is plotted, a legend will appear labelling the datasets. The dataset
labels appearing in the legend are by default the layer suffixes specified on the command line.
However, the labels can be given explicitly with the legendN parameter, so for instance in the
example above leglabel_1=Slow leglabel_2=Fast would adjust the legend accordingly. Legend
appearance and positioning can be adjusted by various leg* global parameters.

8.1.3 Animation

The plotting commands can be used to produce animations. This is done by supplying an animation
control table using the animate parameter (which has associated afmt and acmd parameters for
specifying its file format and applying filters). One output image is produced for each row of the
control table. The columns of the table have names which correspond to plot command parameters,
and for each row, the basic plot command is executed with the parameters on the command line
supplied or replaced by those from the table. This is most commonly used for providing a movie of
the kind of navigation you can do interactively with the mouse, but other applications are possible.

For instance, given the following animation control table with the name "bounds.txt", in ASCII
format:

xmax ymax
4.0 2.0
3.0 1.5
2.0 1.0
1.0 0.5

then this command:

stilts plot2plane xmin=0 ymin=0
layer_1=mark in_1=gums_smc.fits x_1=ag y_1=av
animate=bounds.txt afmt=ascii

would produce a 4-frame animation zooming in towards the origin.

SUN/256 97

If output is to the screen (omode=swing, the default) the animation can be seen directly. If it is to an
output file (omode=out) then a number of output files is written with sequence numbers, so adding
the parameter "out=x.png" to the above command would produce 4 files, x-1.png, x-2.png,
x-3.png and x-4.png. Padding zeros are used to keep the files in alphanumeric sequence, so for
instance in a 500-frame animation the first one would be named x-001.png. STILTS does not
actually turn these files into a single animated output file, but you can use other tools to do this, for
instance using ImageMagick:

convert x-*.png xmovie.gif

or ffmpeg:

ffmpeg -i 'x-%03d.png' -framerate 15 -pix_fmt yuv420p xmovie.webm

You can create the animation control table any way you like, but you may find the tloop command
convenient. For instance the above table can be written like this:

stilts tloop xmax 4 0 -1 ocmd='addcol ymax xmax*0.5' ofmt=ascii out=bounds.txt

Alternatively, you can generate a table like this inline using the loop scheme. A common
requirement is to produce an animation of rotating a 3-d plot, here's an example of how to do that:

stilts plot2sphere layer_1=mark in_1=hip_main.fits lon_1=radeg lat_1=dedeg r_1=plx \
animate=:loop:15,375,2 acmd='colmeta -name phi $1'

The phi parameter controls the angle from which the 3D plot is viewed, and here it is incremented
by 2 degrees for each frame. The same thing would work for plot2cube as well as plot2sphere.

Note that producing animations in this way is usually much more efficient than writing a shell script
which invokes STILTS multiple times. The plot commands also employ multi-threading when
animating to output files, so should make efficient use of multi-core machines (though currently
animations to the screen are not multi-threaded).

8.2 Surface Types

The different plot2* commands correspond to different plot surface geometries. The different
commands come with their own specific axis configuration parameters. Some of the plot layer types
are specific to certain surface types. When supplying data from input tables to plot layers, the
coordinate values you need to supply (and hence the corresponding parameter names) are
determined not by the layer type, but by the surface type. For instance, point positions for layer N
on a 2-d Cartesian surface (plot2plane command) are given using parameters xN and yN, but when
plotting to the celestial sphere (plot2sky command) you supply lonN and latN).

The following list summarises the available surface types and their corresponding positional
coordinates.

Plane (plot2plane)
2-dimensional Cartesian axes. Positional coordinates are supplied as x, y pairs. Note that this
command can also be used to draw histograms.

Sky (plot2sky)
Celestial sphere. Positional coordinates are supplied as lon, lat pairs, giving longitude and
latitude in decimal degrees. A number of different projections are available, and conversion
between different celestial coordinate systems can also be performed. You could use it for
other spherical coordinate systems too (like the surface of a planet).

Cube (plot2cube)
3-dimensional Cartesian axes. Positional coordinates are supplied as x, y, z triples.

SUN/256 98

Sphere (plot2sphere)
3-dimensional isotropic space with spherical polar coordinates. Positional coordinates are
supplied as lon, lat, r triples, giving longitude and latitude in decimal degrees, and radius in
an arbitrary unit. The plotting surface (space) is similar to Cube, except that the unit distance is
always the same in all three directions.

Matrix (plot2corner)
Grid of scatter plots, one for each pair of N coordinates. Positional coordinates are supplied as
x1, x2, x3, ... xN, up to the number N specified by the nvar parameter.

Time (plot2time)
2-dimensional axes, but the horizontal axis represents time. The axis may be labelled in
various ways (ISO-8601 dates, decimal year, MJD etc). Positional coordinates are supplied as
t, y pairs. Time can be represented in input data in various ways; if sufficient metadata is
provided in the input format the epoch can be determined automatically, otherwise it may be
necessary to specify the time representation being used.

8.3 Layer Types

The different plot layers and how to configure them with parameters is given in the following
subsections. The layers which may be plotted on a particular surface depend on the plot geometry,
so not all of these are available for every plot command.

8.3.1 mark

Plots a marker of fixed size and shape at each position.

Usage Overview:

layerN=mark shapeN=filled_circle|open_circle|... sizeN=<pixels>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-paramsN> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 99

stilts plot2plane layer1=mark in1=rrlyrae.fits x1=p1 y1=peak_to_peak_g

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.

SUN/256 100

• The special value "-", meaning standard input. In this case the input format must be given
explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

SUN/256 101

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: filled_circle]

sizeN = <pixels> (Integer)
Size of the scatter plot markers. The unit is pixels, in most cases the marker is approximately
twice the size of the supplied value.

[Default: 1]

8.3.2 size

Plots a marker of fixed shape but variable size at each position. The size is determined by an
additional input data value.

The actual size of the markers depends on the setting of the autoscale parameter. If autoscaling is
off, then the basic size of each marker is the input data value in units of pixels. If autoscaling is on,
then the data values are gathered for all the currently visible points, and a scaling factor is applied
so that the largest ones will be a sensible size (a few tens of pixels). This basic size can be further
adjusted with the scale factor.

Currently data values of zero always correspond to marker size of zero, negative data values are not
represented, and the mapping is linear. An absolute maximum of 100 pixels is also imposed on
marker sizes. Other options may be introduced in future.

Note: for marker sizes that correspond to data values in data coordinates, you may find Error
plotting more appropriate.

Usage Overview:

layerN=size shapeN=filled_circle|open_circle|... scaleN=<factor>
autoscaleN=true|false
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-paramsN> sizeN=<num-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 102

stilts plot2sky projection=aitoff xpix=500 ypix=250
layer1=size in1=messier.xml shading1=transparent lon1=RA lat1=DEC size1=Radius

autoscaleN = true|false (Boolean)
Determines whether the basic size of variable sized markers is automatically scaled to have a
sensible size. If true, then the sizes of all the plotted markers are examined, and some
dynamically calculated factor is applied to them all to make them a sensible size (by default,
the largest ones will be a few tens of pixels). If false, the sizes will be the actual input values in
units of pixels.

If auto-scaling is off, then markers will keep exactly the same screen size during pan and zoom
operations; if it's on, then the visible sizes will change according to what other points are
currently plotted.

Marker size is also affected by the scale parameter.

[Default: true]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

SUN/256 103

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

scaleN = <factor> (Double)
Scales the size of variable-sized markers. The default is 1, smaller or larger values multiply the
visible sizes accordingly.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

• filled_circle

• open_circle

• cross

• x

SUN/256 104

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: filled_circle]

sizeN = <num-expr> (String)
Size to draw each sized marker. Units are pixels unless auto-scaling is in effect, in which case
units are arbitrary. The plotted size is also affected by the scale value.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.3 sizexy

Plots a shaped marker with variable horizontal and vertical extents at each position. The X and Y
dimensions are determined by two additional input data values.

The actual size of the markers depends on the setting of the autoscale parameter. If autoscaling is
off, the basic dimensions of each marker are given by the input data values in units of pixels. If
autoscaling is on, the data values are gathered for all the currently visible points, and scaling factors
are applied so that the largest ones will be a sensible size (a few tens of pixels). This autoscaling
happens independently for the X and Y directions. The basic sizes can be further adjusted with the
scale factor.

Currently data values of zero always correspond to marker dimension of zero, negative data values
are not represented, and the mapping is linear. An absolute maximum of 100 pixels is also imposed
on marker sizes. Other options may be introduced in future.

Note: for marker sizes that correspond to data values in data coordinates, you may find Error
plotting more appropriate.

Usage Overview:

layerN=sizexy shapeN=open_rectangle|open_triangle|... thickN=<int-value>
scaleN=<factor> autoscaleN=true|false
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-paramsN> xsizeN=<num-expr> ysizeN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input

SUN/256 105

table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

stilts plot2plane layer1=sizexy in1=dr5qso.fits shape1=filled_rectangle
x1=psfmag_u-psfmag_g y1=psfmag_r-psfmag_z xsize1=exp(psfmag_g) ysize1=exp(psfmag_r)
xmin=-3 xmax=1 ymin=1 ymax=3.2

autoscaleN = true|false (Boolean)
Determines whether the basic size of variable sized markers is automatically scaled to have a
sensible size. If true, then the sizes of all the plotted markers are examined, and some
dynamically calculated factor is applied to them all to make them a sensible size (by default,
the largest ones will be a few tens of pixels). If false, the sizes will be the actual input values in
units of pixels.

If auto-scaling is off, then markers will keep exactly the same screen size during pan and zoom
operations; if it's on, then the visible sizes will change according to what other points are
currently plotted.

Marker size is also affected by the scale parameter.

[Default: true]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter

SUN/256 106

can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

scaleN = <factor> (Double)
Scales the size of variable-sized markers. The default is 1, smaller or larger values multiply the
visible sizes accordingly.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

SUN/256 107

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

shapeN = open_rectangle|open_triangle|... (BasicXYShape)
The available options are:

• open_rectangle

• open_triangle

• open_triangle_down

• open_diamond

• open_ellipse

• filled_rectangle

• filled_triangle

• filled_triangle_down

• filled_diamond

• filled_ellipse

[Default: open_rectangle]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xsizeN = <num-expr> (String)
Horizontal extent of each marker. Units are pixels unless auto-scaling is in effect, in which
case units are arbitrary.

The value is a numeric algebraic expression based on column names as described in Section
10.

ysizeN = <num-expr> (String)
Vertical extent of each marker. Units are pixels unless auto-scaling is in effect, in which case
units are arbitrary.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.4 xyvector

Plots directed lines from the data position given delta values for the coordinates. The plotted
markers are typically little arrows, but there are other options.

In some cases the supplied data values give the actual extents in data coordinates for the plotted
vectors but sometimes the data is on a different scale or in different units to the positional
coordinates. As a convenience for this case, the plotter can optionally scale the magnitudes of all
the vectors to make them a reasonable size on the plot, so by default the largest ones are a few tens
of pixels long. This auto-scaling is turned off by default, but it can be activated with the autoscale

option. Whether autoscaling is on or off, the scale option can be used to apply a fixed scaling
factor.

SUN/256 108

Usage Overview:

layerN=xyvector arrowN=small_arrow|medium_arrow|... thickN=<int-value>
scaleN=<factor> autoscaleN=true|false
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xN=<num-expr> yN=<num-expr> xdeltaN=<num-expr>
ydeltaN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane layer1=xyvector in1=gavo_g2.fits
x1=x y1=y xdelta1=velX ydelta1=velY autoscale1=true thick1=1
xmin=9 xmax=11 ymin=12 ymax=13.5

arrowN = small_arrow|medium_arrow|... (MultiPointShape)
How arrows are represented.

The available options are:

• small_arrow

• medium_arrow

• large_arrow

• small_open_dart

• medium_open_dart

• large_open_dart

• small_filled_dart

• medium_filled_dart

• large_filled_dart

SUN/256 109

• lines

• capped_lines

[Default: small_arrow]

autoscaleN = true|false (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be a few tens of pixels). If false, the sizes will be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scale parameter.

[Default: false]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and

SUN/256 110

processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

scaleN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xN = <num-expr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xdeltaN = <num-expr> (String)
Vector component in the X direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <num-expr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

ydeltaN = <num-expr> (String)
Vector component in the Y direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

SUN/256 111

8.3.5 xyerror

Plots symmetric or asymmetric error bars in some or all of the plot dimensions. The shape of the
error "bars" is quite configurable, including (for 2-d and 3-d errors) ellipses, rectangles etc aligned
with the axes.

Usage Overview:

layerN=xyerror errorbarN=none|lines|capped_lines|... thickN=<int-value>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xN=<num-expr> yN=<num-expr> xerrhiN=<num-expr>
xerrloN=<num-expr> yerrhiN=<num-expr> yerrloN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false
icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=J_MNRAS_440_1571.vot x=S500 y=S160
layer1=mark size1=5 shape1=fat_circle
layer2=xyerror xerrhi2=e_S500 yerrhi2=e_S160 errorbar2=capped_lines thick2=1
xlog=true ylog=true shading=flat xmin=0.012 xmax=1 ymin=0.01 ymax=10

errorbarN = none|lines|capped_lines|... (MultiPointShape)
How errorbars are represented.

The available options are:

• none

• lines

SUN/256 112

• capped_lines

• caps

• arrows

• ellipse

• crosshair_ellipse

• rectangle

• crosshair_rectangle

• filled_ellipse

• filled_rectangle

[Default: lines]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

SUN/256 113

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xN = <num-expr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrhiN = <num-expr> (String)
Error in the X coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrloN = <num-expr> (String)
Error in the X coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <num-expr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrhiN = <num-expr> (String)
Error in the Y coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrloN = <num-expr> (String)

SUN/256 114

Error in the Y coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.6 xyellipse

Plots an ellipse (or rectangle, triangle, or other similar figure) defined by two principal radii and an
optional angle of rotation, the so-called position angle. This angle, if specified, is in degrees and
gives the angle counterclockwise from the horizontal axis to the first principal radius.

In some cases the supplied data values give the actual extents in data coordinates for the plotted
ellipses but sometimes the data is on a different scale or in different units to the positional
coordinates. As a convenience for this case, the plotter can optionally scale the magnitudes of all
the ellipses to make them a reasonable size on the plot, so by default the largest ones are a few tens
of pixels long. This auto-scaling is turned off by default, but it can be activated with the autoscale

option. Whether autoscaling is on or off, the scale option can be used to apply a fixed scaling
factor.

Usage Overview:

layerN=xyellipse ellipseN=ellipse|crosshair_ellipse|... thickN=<int-value>
scaleN=<factor> autoscaleN=true|false
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xN=<num-expr> yN=<num-expr> raN=<num-expr> rbN=<num-expr>
posangN=<deg-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 115

stilts plot2plane in=mgc_ok.fits x=mgc_alpha_j2000 y=mgc_delta_j2000
ra=bulge_re/3600. rb=bulge_re*bulge_e/3600. posang=bulge_pa
autoscale=false scale=10 color=blue
layer1=xyellipse ellipse1=filled_ellipse shading1=transparent opaque1=4
layer2=xyellipse ellipse2=crosshair_ellipse
aspect=1 xmin=181.3 xmax=181.9

autoscaleN = true|false (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be a few tens of pixels). If false, the sizes will be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scale parameter.

[Default: false]

ellipseN = ellipse|crosshair_ellipse|... (MultiPointShape)
How ellipses are represented.

The available options are:

• ellipse

• crosshair_ellipse

• filled_ellipse

• rectangle

• crosshair_rectangle

• filled_rectangle

• open_triangle

SUN/256 116

• filled_triangle

• lines

• capped_lines

• arrows

[Default: ellipse]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

posangN = <deg-expr> (String)
Orientation of the ellipse. The value is the angle in degrees from the X axis towards the Y axis
of the first principal axis of the ellipse.

SUN/256 117

The value is a numeric algebraic expression based on column names as described in Section
10.

raN = <num-expr> (String)
Ellipse first principal radius.

The value is a numeric algebraic expression based on column names as described in Section
10.

rbN = <num-expr> (String)
Ellipse second principal radius. If this value is blank, the two radii will be assumed equal, i.e.
the ellipses will be circles.

The value is a numeric algebraic expression based on column names as described in Section
10.

scaleN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xN = <num-expr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <num-expr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.7 xycorr

Plots an error ellipse (or rectangle or other similar figure) defined by errors in the X and Y

SUN/256 118

directions, and a correlation between the two errors.

The supplied correlation is a dimensionless value in the range -1..+1 and is equal to the covariance
divided by the product of the X and Y errors. The covariance matrix is thus:

[xerr*xerr xerr*yerr*xycorr]
[xerr*yerr*xycorr yerr*yerr]

In some cases the supplied data values give the actual extents in data coordinates for the plotted
ellipses but sometimes the data is on a different scale or in different units to the positional
coordinates. As a convenience for this case, the plotter can optionally scale the magnitudes of all
the ellipses to make them a reasonable size on the plot, so by default the largest ones are a few tens
of pixels long. This auto-scaling is turned off by default, but it can be activated with the autoscale

option. Whether autoscaling is on or off, the scale option can be used to apply a fixed scaling
factor.

This plot type is suitable for use with the <x>_error and <x>_<y>_corr columns in the Gaia source
catalogue.

Usage Overview:

layerN=xycorr ellipseN=ellipse|crosshair_ellipse|... thickN=<int-value>
scaleN=<factor> autoscaleN=true|false
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xN=<num-expr> yN=<num-expr> xerrN=<num-expr> yerrN=<num-expr>
xycorrN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 119

stilts plot2plane in=tgas_source.fits icmd='select skyDistanceDegrees(ra,dec,56.9,23.9)<0.4'
x=pmra y=pmdec
layer1=mark
xerrhi2=pmra_error yerrhi2=pmdec_error
color2=cyan shading2=transparent
layer2a=xyerror errorbar2a=filled_rectangle opaque2a=10
layer2b=xyerror errorbar2b=crosshair_rectangle opaque2b=4
layer3=xycorr autoscale3=false
xerr3=pmra_error yerr3=pmdec_error xycorr3=pmra_pmdec_corr
ellipse3=crosshair_ellipse
aspect=1
xmin=17 xmax=24 ymin=-48 ymax=-42

autoscaleN = true|false (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be a few tens of pixels). If false, the sizes will be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scale parameter.

[Default: false]

ellipseN = ellipse|crosshair_ellipse|... (MultiPointShape)
How ellipses are represented.

The available options are:

• ellipse

• crosshair_ellipse

SUN/256 120

• filled_ellipse

• rectangle

• crosshair_rectangle

• filled_rectangle

• open_triangle

• filled_triangle

• lines

• capped_lines

• arrows

[Default: ellipse]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

SUN/256 121

[Default: false]

scaleN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xN = <num-expr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrN = <num-expr> (String)
Error in the X coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xycorrN = <num-expr> (String)
Correlation beteween the errors in the X and Y directions. This is a dimensionless quantity in
the range -1..+1, and is equivalent to the covariance divided by the product of the X and Y
error values themselves. It corresponds to the *_corr values supplied in the Gaia source
catalogue.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <num-expr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrN = <num-expr> (String)
Error in the Y coordinate.

The value is a numeric algebraic expression based on column names as described in Section

SUN/256 122

10.

8.3.8 link2

Plots a line linking two positions from the same input table row.

Usage Overview:

layerN=link2 thickN=<int-value>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-params1N> <pos-coord-params2N> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-params1N> , <pos-coord-params2N> give 2 positions
for each row of the input table. Their form depends on the plot geometry, i.e. which plotting
command is used. For a plane plot (plot2plane) the parameters would be x1N, y1N, x2N and
y2N. The coordinate parameter values are in all cases strings interpreted as numeric expressions
based on column names. These can be column names, fixed values or algebraic expressions as
described in Section 10.

Example:

stilts plot2sky clon=14.78 clat=-72.1525 radius=0.0015 sex=false
layer_h=mark in_h=ngc346.fits lon_h=_RAJ2000 lat_h=_DEJ2000 color_h=red
layer_g=mark in_g=ngc346xGaiadr1.fits lon_g=ra lat_g=dec color_g=blue shading_g=flat size_g=3

SUN/256 123

in_x=ngc346xGaiadr1.fits lon1_x=_RAJ2000 lat1_x=_DEJ2000 lon2_x=ra lat2_x=dec shading_x=flat
layer_xl=link2 color_xl=forestgreen
layer_xm=mark2 color_xm=greenyellow size_xm=4 shape_xm=open_circle
seq=_xm,_xl,_h,_g leglabel_h=HST leglabel_g='Gaia DR1' legseq=_h,_g legpos=0.95,0.95

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options

SUN/256 124

(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing point-to-point links. Zero, the default value,
means a 1-pixel-wide line is used, and larger values make drawn lines thicker.

[Default: 0]

8.3.9 mark2

Plots 2 similar markers of fixed size and shape representing 2 separate positions from the same
input table row. This is a convenience option that can be used with other plot layers based on 2
positions.

Usage Overview:

layerN=mark2 shapeN=filled_circle|open_circle|... sizeN=<pixels>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-params1N> <pos-coord-params2N> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-params1N> , <pos-coord-params2N> give 2 positions
for each row of the input table. Their form depends on the plot geometry, i.e. which plotting
command is used. For a plane plot (plot2plane) the parameters would be x1N, y1N, x2N and
y2N. The coordinate parameter values are in all cases strings interpreted as numeric expressions
based on column names. These can be column names, fixed values or algebraic expressions as
described in Section 10.

Example:

SUN/256 125

stilts plot2sky clon=14.78 clat=-72.1525 radius=0.0015 sex=false
layer_h=mark in_h=ngc346.fits lon_h=_RAJ2000 lat_h=_DEJ2000 color_h=red
layer_g=mark in_g=ngc346xGaiadr1.fits lon_g=ra lat_g=dec color_g=blue shading_g=flat size_g=3
in_x=ngc346xGaiadr1.fits lon1_x=_RAJ2000 lat1_x=_DEJ2000 lon2_x=ra lat2_x=dec shading_x=flat
layer_xl=link2 color_xl=greenyellow
layer_xm=mark2 color_xm=forestgreen size_xm=4 shape_xm=open_circle
seq=_xm,_xl,_h,_g leglabel_h=HST leglabel_g='Gaia DR1' legseq=_h,_g legpos=0.95,0.95

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

SUN/256 126

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

SUN/256 127

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: filled_circle]

sizeN = <pixels> (Integer)
Size of the scatter plot markers. The unit is pixels, in most cases the marker is approximately
twice the size of the supplied value.

[Default: 1]

8.3.10 poly4

Draws a closed quadrilateral given the coordinates of its vertices supplied as 4 separate positions.
The way that the polygon is drawn (outline, fill etc) is determined using the polymode option.

Polygons smaller than a configurable threshold size in pixels are by default represented by a
replacement marker, so the position of even a very small polygon is still visible on the screen.

Usage Overview:

layerN=poly4 polymodeN=outline|border|fill|cross|star thickN=<int-value>
minsizeN=<pixels> minshapeN=filled_circle|open_circle|...
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-params1N> <pos-coord-params2N> <pos-coord-params3N>
<pos-coord-params4N> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-params1N> , <pos-coord-params2N> ,
<pos-coord-params3N> , <pos-coord-params4N> give 4 positions for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be x1N, y1N, x2N, y2N, x3N, y3N, x4N and y4N.
The coordinate parameter values are in all cases strings interpreted as numeric expressions
based on column names. These can be column names, fixed values or algebraic expressions as
described in Section 10.

Example:

SUN/256 128

stilts plot2sky in=big_tab_VIR_VIS_CSA_public.fits icmd='every 32'
lon1=LON_CORNER_1 lat1=LAT_CORNER_1
lon2=LON_CORNER_2 lat2=LAT_CORNER_2
lon3=LON_CORNER_3 lat3=LAT_CORNER_3
lon4=LON_CORNER_4 lat4=LAT_CORNER_4
aux=RADIUS
layer_o=poly4 polymode_o=outline shading_o=aux
layer_f=poly4 polymode_f=fill shading_f=aux opaque_f=4
auxmap=rainbow auxvisible=false xpix=300 ypix=300 labelpos=none

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)

SUN/256 129

The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

minshapeN = filled_circle|open_circle|... (MarkerShape)
Defines the shape of markers plotted instead of the actual polygon shape, for polygons that are
smaller than the size threshold defined by minsize.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: x]

minsizeN = <pixels> (Integer)
Defines a threshold size in pixels below which, instead of the polygon defined by the other
parameters, a replacement marker will be painted instead. If this is set to zero, then only the
shape itself will be plotted, but if it is small it may appear as only a single pixel. By setting a
larger value, you can ensure that the position of even small polygons is easily visible, at the
expense of giving them an artificial shape and size. This value also defines the size of the

SUN/256 130

replacement markers.

[Default: 1]

polymodeN = outline|border|fill|cross|star (PolygonShape)
Polygon drawing mode. Different options are available, including drawing an outline round the
edge and filling the interior with colour.

The available options are:

• outline: draws a line round the outside of the polygon
• border: draws a line butting up to the outside of the polygon; may look better for adjacent

shapes, but more expensive to draw
• fill: fills the interior of the polygon
• cross: draws a line round the outside of the polygon and lines between all the vertices
• star: draws a line round the outside of the polygon and lines from the nominal center to

each vertex

[Default: outline]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing polygons. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled polygons contain no line drawings.

[Default: 0]

8.3.11 mark4

Plots 4 similar markers of fixed size and shape representing 4 separate positions from the same
input table row. This is a convenience option that can be used with other plot layers based on 4
positions.

Usage Overview:

layerN=mark4 shapeN=filled_circle|open_circle|... sizeN=<pixels>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-params1N> <pos-coord-params2N> <pos-coord-params3N>
<pos-coord-params4N> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

SUN/256 131

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-params1N> , <pos-coord-params2N> ,
<pos-coord-params3N> , <pos-coord-params4N> give 4 positions for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be x1N, y1N, x2N, y2N, x3N, y3N, x4N and y4N.
The coordinate parameter values are in all cases strings interpreted as numeric expressions
based on column names. These can be column names, fixed values or algebraic expressions as
described in Section 10.

Example:

stilts plot2plane in=big_tab_VIR_VIS_CSA_public.fits
icmd='select IOF_055<0.005'
icmd='select lon_center>250&&lon_center<300&&lat_center>-65&&lat_center<-16'
x1=LON_CORNER_1 y1=LAT_CORNER_1
x2=LON_CORNER_2 y2=LAT_CORNER_2
x3=LON_CORNER_3 y3=LAT_CORNER_3
x4=LON_CORNER_4 y4=LAT_CORNER_4
layer_q=poly4 polymode_q=fill shading_q=transparent opaque_q=4
layer_m=mark4 color_m=404040 shape_m=open_circle size_m=3

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is

SUN/256 132

performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

SUN/256 133

[Default: auto]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: filled_circle]

sizeN = <pixels> (Integer)
Size of the scatter plot markers. The unit is pixels, in most cases the marker is approximately
twice the size of the supplied value.

[Default: 1]

8.3.12 polygon

Draws a closed polygon given an array of coordinates that define its vertices. In fact this plot
requires the position of the first vertex supplied as a positional value in the usual way (e.g. X and Y

coordinates) and the second, third etc vertices supplied as an array using the otherpoints

parameter.

Invocation might therefore look like "xN=x1 yN=y1 otherpointsN=array(x2,y2, x3,y3,

x4,y4)".

Usage Overview:

layerN=polygon useposN=true|false polymodeN=outline|border|fill|cross|star
thickN=<int-value>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
<pos-coord-paramsN> otherpointsN=<array-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input

SUN/256 134

table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

stilts plot2sky in=big_tab_VIR_VIS_CSA_public.fits
icmd='select ALTITUDE>4e4&&ALTITUDE<4.3e4'
layer=polygon polymode=fill
lon=LON_CENTER lat=LAT_CENTER
otherpoints=array(lon_corner_1,lat_corner_1,lon_corner_2,lat_corner_2)
shading=weighted weight=IR_TEMPERATURE auxmap=plasma
texttype=latex fontsize=14 auxlabel=T_{IR}
clon=83 clat=34 radius=11

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)

SUN/256 135

Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

otherpointsN = <array-expr> (String)
Array of coordinates giving the points of the vertices defining the polygon to be drawn. These
coordinates are given as an interleaved array by this parameter, e.g. (x1,y1, x2,y2, y3,y3). The
basic position for the row being plotted either is or is not included as the first vertex, according
to the setting of the usepos parameter.

Some expression language functions that can be useful when specifying this parameter are
array() and parseDoubles().

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

polymodeN = outline|border|fill|cross|star (PolygonShape)
Polygon drawing mode. Different options are available, including drawing an outline round the
edge and filling the interior with colour.

The available options are:

• outline: draws a line round the outside of the polygon
• border: draws a line butting up to the outside of the polygon; may look better for adjacent

shapes, but more expensive to draw
• fill: fills the interior of the polygon
• cross: draws a line round the outside of the polygon and lines between all the vertices
• star: draws a line round the outside of the polygon and lines from the nominal center to

each vertex

SUN/256 136

[Default: outline]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing polygons. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled polygons contain no line drawings.

[Default: 0]

useposN = true|false (Boolean)
Determines whether the basic positional coordinates are included as one of the polygon
vertices or not. The polygon has N+1 vertices if true, or N vertices if false, where N is the
number of vertices supplied by the array coordinate. If false, the basic position is ignored for
the purposes of drawing the polygon.

[Default: true]

8.3.13 area

Plots a region on the plotting surface specified by a string or array of numbers. The area may be
specified as an STC-S string (as for example in an ObsCore or EPN-TAP s_region column) or
using an array of numbers representing a polygon, circle or point as flagged using the
DALI/VOTable extended type (xtype) marker, or as an ASCII-encoded MOC.

Areas smaller than a configurable threshold size in pixels are by default represented by a
replacement marker, so the position of even a very small area is still visible on the screen.

This plot type is generally intended for displaying relatively small shapes such as instrument
footprints. It can be used for areas that are larger as well, but there may be issues with use, for
instance auto-determination of the initial plot region may not work so well, and the rendering of
shapes that are large relative to the sky may be inaccurate. These issues may be addressed in future
releases.

Usage Overview:

layerN=area polymodeN=outline|border|fill|cross|star thickN=<int-value>
minsizeN=<pixels> minshapeN=filled_circle|open_circle|...
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
areaN=<area-expr>
areatypeN=STC-S|POLYGON|CIRCLE|POINT|MOC-ASCII|UNIQ|TFCAT
inN=<table> ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

SUN/256 137

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2sky reflectlon=false sex=false clon=348.9 clat=79.8 radius=1.0
in=crism.fits icmd='select sensor_id==0x4c'
area_p=s_region areatype_p=stc-s
layer_pf=area polymode_pf=fill color_pf=1199ff shading_pf=transparent
layer_pl=area polymode_pl=outline color_pl=grey

areaN = <area-expr> (String)
Expression giving the geometry of a 2D region on the plot. It may be a string- or array-valued
expression, and its interpretation depends on the value of the corresponding areatype

parameter.

The value is a Area value algebraic expression based on column names as described in Section
10.

areatypeN = STC-S|POLYGON|CIRCLE|POINT|MOC-ASCII|UNIQ|TFCAT (AreaMapper)
Selects the form in which the Area value for parameter areaN is supplied. Options are:

• STC-S: Region description using STC-S syntax; see TAP 1.0, section 6. Note there are
some restrictions: <frame>, <refpos> and <flavor> metadata are ignored, polygon
winding direction is ignored (small polygons are assumed) and the INTERSECTION and NOT

constructions are not supported. The non-standard MOC construction is supported.
• POLYGON: 2n-element array (x1,y1, x2,y2,...); a NaN,NaN pair can be used to delimit distinct

polygons.
• CIRCLE: 3-element array (x,y,r)
• POINT: 2-element array (x,y)

SUN/256 138

• MOC-ASCII: Region description using ASCII MOC syntax; see MOC 1.1 2.3.2. Note there
are currently a few issues with MOC plotting, especially for large pixels.

• UNIQ: Region description representing a single HEALPix cell as defined by an UNIQ
value, see MOC 1.1 sec 2.3.1.

• TFCAT: Time-Frequency region defined by the TFCat standard. Support is currently
incomplete; holes in Polygons and MultiPolygons are not displayed correctly, single
Points may not be displayed, and Coordinate Reference System information is ignored.

If left blank, a guess will be taken depending on the data type of the value supplied for the
areaN value.

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

SUN/256 139

minshapeN = filled_circle|open_circle|... (MarkerShape)
Defines the shape of markers plotted instead of the actual polygon shape, for polygons that are
smaller than the size threshold defined by minsize.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: x]

minsizeN = <pixels> (Integer)
Defines a threshold size in pixels below which, instead of the polygon defined by the other
parameters, a replacement marker will be painted instead. If this is set to zero, then only the
shape itself will be plotted, but if it is small it may appear as only a single pixel. By setting a
larger value, you can ensure that the position of even small polygons is easily visible, at the
expense of giving them an artificial shape and size. This value also defines the size of the
replacement markers.

[Default: 1]

polymodeN = outline|border|fill|cross|star (PolygonShape)
Polygon drawing mode. Different options are available, including drawing an outline round the
edge and filling the interior with colour.

The available options are:

• outline: draws a line round the outside of the polygon
• border: draws a line butting up to the outside of the polygon; may look better for adjacent

shapes, but more expensive to draw
• fill: fills the interior of the polygon
• cross: draws a line round the outside of the polygon and lines between all the vertices
• star: draws a line round the outside of the polygon and lines from the nominal center to

each vertex

[Default: outline]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

SUN/256 140

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing polygons. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled polygons contain no line drawings.

[Default: 0]

8.3.14 central

Plots the nominal central point of an area. This appears just like a normal marker plot, but can be
used when the available geometry information is an area description (such as an STC-S string or an
array of polygon vertices) rather than coordinate values such as an X,Y pair. The position plotted is
the nominal center of the shape as determined by the plotting code; that may or may not correspond
to the actual center.

Usage Overview:

layerN=central shapeN=filled_circle|open_circle|... sizeN=<pixels>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
areaN=<area-expr>
areatypeN=STC-S|POLYGON|CIRCLE|POINT|MOC-ASCII|UNIQ|TFCAT
inN=<table> ifmtN=<in-format> istreamN=true|false
icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 141

stilts plot2plane xmin=136.7 xmax=138.5 ymin=-5.7 ymax=-4.2
in=crism.fits icmd='select sensor_id==0x53'
area=s_region areatype=STC-S
layer1=area polymode1=fill shading1=density densemap1=heat
layer2=central shape2=fat_circle size2=3 color2=black

areaN = <area-expr> (String)
Expression giving the geometry of a 2D region on the plot. It may be a string- or array-valued
expression, and its interpretation depends on the value of the corresponding areatype

parameter.

The value is a Area value algebraic expression based on column names as described in Section
10.

areatypeN = STC-S|POLYGON|CIRCLE|POINT|MOC-ASCII|UNIQ|TFCAT (AreaMapper)
Selects the form in which the Area value for parameter areaN is supplied. Options are:

• STC-S: Region description using STC-S syntax; see TAP 1.0, section 6. Note there are
some restrictions: <frame>, <refpos> and <flavor> metadata are ignored, polygon
winding direction is ignored (small polygons are assumed) and the INTERSECTION and NOT

constructions are not supported. The non-standard MOC construction is supported.
• POLYGON: 2n-element array (x1,y1, x2,y2,...); a NaN,NaN pair can be used to delimit distinct

polygons.
• CIRCLE: 3-element array (x,y,r)
• POINT: 2-element array (x,y)
• MOC-ASCII: Region description using ASCII MOC syntax; see MOC 1.1 2.3.2. Note there

are currently a few issues with MOC plotting, especially for large pixels.
• UNIQ: Region description representing a single HEALPix cell as defined by an UNIQ

value, see MOC 1.1 sec 2.3.1.
• TFCAT: Time-Frequency region defined by the TFCat standard. Support is currently

incomplete; holes in Polygons and MultiPolygons are not displayed correctly, single

SUN/256 142

Points may not be displayed, and Coordinate Reference System information is ignored.

If left blank, a guess will be taken depending on the data type of the value supplied for the
areaN value.

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

SUN/256 143

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: filled_circle]

sizeN = <pixels> (Integer)
Size of the scatter plot markers. The unit is pixels, in most cases the marker is approximately
twice the size of the supplied value.

[Default: 1]

8.3.15 lines

Plots an N-segment line for each input row, with the X and Y coordinate arrays each supplied by an
N-element array value.

Usage Overview:

layerN=lines thickN=<pixels> dashN=dot|dash|...|<a,b,...> sortaxisN=[X|Y]
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xsN=<array-expr> ysN=<array-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

SUN/256 144

Example:

stilts plot2plane in1=LRS_NPW_V010_20071101.cdf
layer1=lines xs=multiply(param$frequency,1e-6) xlabel=f/MHz ys=RX1 thick=2
shading=aux aux=Epoch auxmap=sron
icmd='every 100' xmin=13 xmax=16 xpix=660 auxvisible=false

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the line is solid.

Possible values for dashed lines are dot, dash, longdash, dotdash. You can alternatively
supply a comma-separated list of on/off length values such as "4,2,8,2".

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)

SUN/256 145

The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

sortaxisN = [X|Y] (AxisOpt)
May be set to "X" or "Y" to ensure that the points for each line are plotted in ascending order of
the corresponding coordinate. This will ensure that the plotted line resembles a function of the
corresponding coordinate rather than a scribble. The default (null) value causes the points for
each line to be joined in the sequence in which they appear in the arrays. If the points already
appear in the arrays sorted according to the corresponding coordinate, this option has no
visible effect, though it may slow things down.

[Default: None]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied

SUN/256 146

but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ysN = <array-expr> (String)
Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.16 marks

Plots N markers for each input row, with the X and Y coordinate values each supplied by an
N-element array value.

Usage Overview:

layerN=marks shapeN=filled_circle|open_circle|... sizeN=<pixels>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xsN=<array-expr> ysN=<array-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=LRS_NPW_V010_20071101.cdf xs=param$frequency ys=RX2
layer1=lines shading1=density densemap1=greyscale denseclip1=0.2,0.7
layer2=marks shading2=weighted weight2=epoch shape2=filled_triangle_down size2=4
xmin=13e6 xmax=16e6 xpix=660 icmd='head 50' auxmap=sron auxvisible=false

icmdN = <cmds> (ProcessingStep[])

SUN/256 147

Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

SUN/256 148

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: filled_circle]

sizeN = <pixels> (Integer)
Size of the scatter plot markers. The unit is pixels, in most cases the marker is approximately
twice the size of the supplied value.

[Default: 1]

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied
but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ysN = <array-expr> (String)
Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.17 handles

Draws a symbol representing the position of an X/Y array plot. Although this may not do a good

SUN/256 149

job of showing the position for a whole X/Y array, which is line-like rather than point-like, it
provides a visible reference position for the plotted row.

This plot type is therefore mostly useful in interactive environments like TOPCAT, where the
plotted marker can be used for activating or identifying the corresponding table row.

Usage Overview:

layerN=handles placementN=index|ymax|ymin|xmax|xmin|xymean fractionN=<0..1>
sizeN=<pixels> shapeN=filled_circle|open_circle|...
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xsN=<array-expr> ysN=<array-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=LRS_NPW_V010_20071101.cdf ys=add(RX1,20*$index)
shading=aux auxmap=sron aux=$index
icmd='head 8' auxvisible=false legend=false
layer0=lines opaque0=2
layer1=handles placement1=index fraction1=0.85

fractionN = <0..1> (Double)
Provides a numeric value in the range 0..1 that may influence where the handle is placed.
Currently, this is only relevant for placement=index, where it indicates how far through the
array the reference (X,Y) position should be taken (0.0 means the first element, 1.0 means the
last). For other values of placement it is ignored.

[Default: 0.5]

SUN/256 150

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

placementN = index|ymax|ymin|xmax|xmin|xymean (XYArrayPlacement)
Determines where the handle will be positioned in relation to the X/Y array values.

The available options are:

• index: (X,Y) point at a certain fraction of the way through the arrays, as given by the
fraction value; fraction=0.0 is the first element, fraction=1.0 is the last.

• ymax: (X,Y) position at which the maximum Y value is located (fraction is ignored)
• ymin: (X,Y) position at which the minimum Y value is located (fraction is ignored)
• xmax: (X,Y) position at which the maximum X value is located (fraction is ignored)

SUN/256 151

• xmin: (X,Y) position at which the minimum X value is located (fraction is ignored)
• xymean: center of gravity of all the (X,Y) points (fraction is ignored)

[Default: index]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of the marker that is drawn to identify the handle position.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: fat_square]

sizeN = <pixels> (Integer)
Sets the size of the marker that is drawn to identify the handle position. The unit is pixels, in
most cases the marker is approximately twice the size of the supplied value.

[Default: 4]

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied
but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

SUN/256 152

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ysN = <array-expr> (String)
Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.18 yerrors

Plots N error bars in the Y direction for each input row, with the X, Y and error bar extents each
supplied by N-element array values.

Usage Overview:

layerN=yerrors errorbarN=none|lines|capped_lines|caps|arrows
thickN=<int-value>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xsN=<array-expr> ysN=<array-expr> yerrhisN=<array-expr>
yerrlosN=<array-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=LRS_NPW_V010_20071101.cdf
shading=aux aux=epoch
xs=divide(2.998e8,param$Frequency) ys=multiply(add(RX1,RX2),0.5)
layer_l=lines thick_l=2
layer_e=yerrors yerrhis_e=arrayFunc("abs(x)",subtract(RX1,RX2)) errorbar_e=capped_lines
auxmap=paired auxvisible=false
xmin=116 xmax=161 ymin=-184 ymax=-148 xpix=660 ypix=300 icmd='every 1000'
xlabel=lambda ylabel=Intensity

errorbarN = none|lines|capped_lines|caps|arrows (MultiPointShape)
How errorbars are represented.

SUN/256 153

The available options are:

• none

• lines

• capped_lines

• caps

• arrows

[Default: lines]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

SUN/256 154

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied
but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

yerrhisN = <array-expr> (String)
Array of errors in the Y coordinates in the positive direction. If no corresponding negative
value is supplied, then this value is also used in the negative direction, i.e. in that case errors
are assumed to be symmetric. Error exents must be positive; negative array elements are
ignored.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

yerrlosN = <array-expr> (String)
Array of errors in the Y coordinates in the negative direction. If left blank, it is assumed to take
the same value as in the positive direction. Error extents must be positive; negative array
elements are ignored.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ysN = <array-expr> (String)
Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.19 xyerrors

SUN/256 155

Plots N error bars in the X and Y directions for each input row, with the X, Y and error bar extents
each supplied by N-element array values.

Usage Overview:

layerN=xyerrors errorbarN=none|lines|capped_lines|... thickN=<int-value>
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xsN=<array-expr> ysN=<array-expr> xerrhisN=<array-expr>
xerrlosN=<array-expr> yerrhisN=<array-expr>
yerrlosN=<array-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=LRS_NPW_V010_20071101.cdf ys=RX1
shading=aux aux=epoch
layer_l=lines opaque_l=1
layer_xy=xyerrors opaque_xy=3.3 errorbar_xy=crosshair_ellipse
xerrhis_xy=constant(512,0.5) yerrhis_xy=arrayFunc("abs(x)",subtract(RX1,RX2))
xmin=125 xmax=144 ymin=-184 ymax=-145 xpix=660 icmd='every 1000'
auxmap=viridis auxvisible=false

errorbarN = none|lines|capped_lines|... (MultiPointShape)
How errorbars are represented.

The available options are:

• none

• lines

• capped_lines

• caps

• arrows

• ellipse

• crosshair_ellipse

• rectangle

• crosshair_rectangle

SUN/256 156

• filled_ellipse

• filled_rectangle

[Default: lines]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

SUN/256 157

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xerrhisN = <array-expr> (String)
Array of errors in the X coordinates in the positive direction. If no corresponding negative
value is supplied, then this value is also used in the negative direction, i.e. in that case errors
are assumed to be symmetric. Error exents must be positive; negative array elements are
ignored.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

xerrlosN = <array-expr> (String)
Array of errors in the X coordinates in the negative direction. If left blank, it is assumed to take
the same value as in the positive direction. Error extents must be positive; negative array
elements are ignored.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied
but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

yerrhisN = <array-expr> (String)
Array of errors in the Y coordinates in the positive direction. If no corresponding negative
value is supplied, then this value is also used in the negative direction, i.e. in that case errors
are assumed to be symmetric. Error exents must be positive; negative array elements are
ignored.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

yerrlosN = <array-expr> (String)
Array of errors in the Y coordinates in the negative direction. If left blank, it is assumed to take
the same value as in the positive direction. Error extents must be positive; negative array
elements are ignored.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ysN = <array-expr> (String)

SUN/256 158

Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.20 statline

Plots a single line based on a combination (typically the mean) of input array-valued coordinates.
The input X and Y coordinates must be fixed-length arrays of length N; a line with N points is
plotted, each point representing the mean (or median, minimum, maximum, ...) of all the input array
elements at the corresponding position.

Note that because the X and Y arrays must be of a fixed size for all rows, and because combination
is performed in both X and Y directions, this is typically only suitable for plotting combined spectra
if they all share a common horizontal axis, e.g. are all sampled into the same wavelength bins. To
visually combine spectra with non-uniform sampling, the arrayquantile plotter may be more useful.

Usage Overview:

layerN=statline xcombineN=mean|median|min|max|q.01|...
ycombineN=mean|median|min|max|q.01|...
colorN=<rrggbb>|red|blue|... thickN=<pixels>
antialiasN=true|false xsN=<array-expr> ysN=<array-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false
icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=LRS_NPW_V010_20071101.cdf xs=multiply(param$frequency,1e-6) ys=RX2
xlabel=f/MHz ylabel=RX2/dB xmin=0.7 xmax=2.0 icmd='select rx2[71]<-170' xpix=700
layer1=lines color1=cyan
layer2=statline color2=red thick2=3

SUN/256 159

antialiasN = true|false (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)

SUN/256 160

If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 3]

xcombineN = mean|median|min|max|q.01|... (Combiner)
Defines how corresponding array elements on the X axis are combined together to produce the
plotted value.

The available options are:

• mean: the mean of the combined values
• median: the median
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• q.01: 1st percentile
• q1: first quartile
• q3: third quartile
• q.99: 99th percentile
• stdev: the sample standard deviation of the combined values
• sum: the sum of all the combined values per bin
• count: the number of non-blank values per bin (weight is ignored)

[Default: mean]

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied
but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ycombineN = mean|median|min|max|q.01|... (Combiner)
Defines how corresponding array elements on the Y axis are combined together to produce the
plotted value.

The available options are:

• mean: the mean of the combined values
• median: the median
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• q.01: 1st percentile
• q1: first quartile
• q3: third quartile
• q.99: 99th percentile
• stdev: the sample standard deviation of the combined values
• sum: the sum of all the combined values per bin
• count: the number of non-blank values per bin (weight is ignored)

SUN/256 161

[Default: mean]

ysN = <array-expr> (String)
Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.21 statmark

Plots a set of markers based on a combination (typically the mean) of input array-valued
coordinates. The input X and Y coordinates must be fixed-length arrays of length N; N markers are
plotted, each one representing the mean (or median, minimum, maximum, ...) of all the input array
elements at the corresponding position.

Note that because the X and Y arrays must be of a fixed size for all rows, and because combination
is performed in both X and Y directions, this is typically only suitable for plotting combined spectra
if they all share a common horizontal axis, e.g. are all sampled into the same wavelength bins. To
visually combine spectra with non-uniform sampling, the arrayquantile plotter may be more useful.

Usage Overview:

layerN=statmark xcombineN=mean|median|min|max|q.01|...
ycombineN=mean|median|min|max|q.01|...
colorN=<rrggbb>|red|blue|...
shapeN=filled_circle|open_circle|... sizeN=<pixels>
xsN=<array-expr> ysN=<array-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=LRS_NPW_V010_20071101.cdf ys=RX1
xmin=115 xmax=145 ymin=-183 ymax=-149 xpix=700 xcrowd=0.8
layer-d=lines color-d=wheat
layer-m=statline ycombine-m=median color-m=LimeGreen thick-m=3

SUN/256 162

color-q=DodgerBlue size-q=4
layer-q1=statmark ycombine-q1=Q1 shape-q1=filled_triangle_up
layer-q3=statmark ycombine-q3=Q3 shape-q3=filled_triangle_down
leglabel-m=Median leglabel-q1='First Quartile' leglabel-q3='Third Quartile'
legseq=-q3,-m,-q1 legpos=0.98,0.93

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)

SUN/256 163

If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shapeN = filled_circle|open_circle|... (MarkerShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• fat_circle

• fat_cross

• fat_x

• fat_square

• fat_diamond

• fat_triangle_up

• fat_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

[Default: filled_circle]

sizeN = <pixels> (Integer)
Size of the markers. The unit is pixels, in most cases the marker is approximately twice the
size of the supplied value.

[Default: 4]

xcombineN = mean|median|min|max|q.01|... (Combiner)
Defines how corresponding array elements on the X axis are combined together to produce the
plotted value.

The available options are:

• mean: the mean of the combined values
• median: the median
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• q.01: 1st percentile
• q1: first quartile
• q3: third quartile
• q.99: 99th percentile
• stdev: the sample standard deviation of the combined values
• sum: the sum of all the combined values per bin
• count: the number of non-blank values per bin (weight is ignored)

SUN/256 164

[Default: mean]

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied
but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ycombineN = mean|median|min|max|q.01|... (Combiner)
Defines how corresponding array elements on the Y axis are combined together to produce the
plotted value.

The available options are:

• mean: the mean of the combined values
• median: the median
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• q.01: 1st percentile
• q1: first quartile
• q3: third quartile
• q.99: 99th percentile
• stdev: the sample standard deviation of the combined values
• sum: the sum of all the combined values per bin
• count: the number of non-blank values per bin (weight is ignored)

[Default: mean]

ysN = <array-expr> (String)
Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.22 arrayquantile

Displays a quantile or quantile range for a set of plotted X/Y array pairs. If a table contains one
spectrum per row in array-valued wavelength and flux columns, this plotter can be used to display a
median of all the spectra, or a range between two quantiles. Smoothing options are available to even
out noise arising from the pixel binning.

For each row, the xs and ys arrays must be the same length as each other, but this plot type does not
require all the arrays to be sampled into the same bins.

The algorithm calculates quantiles for all the X,Y points plotted in each column of pixels. This
means that more densely sampled spectra have more influence on the output than sparser ones.

Note: in the current implementation, depending on the details of the configuration and the data,
there may be some distortions or missing graphics near the edges of the plot. This may be improved
in future releases, depending on feedback.

Usage Overview:

layerN=arrayquantile colorN=<rrggbb>|red|blue|... transparencyN=0..1

SUN/256 165

quantilesN=<low-frac>[,<high-frac>] thickN=<pixels>
smoothN=+<width>|-<count>
kernelN=square|linear|epanechnikov|cos|cos2|gauss3|gauss6
joinN=none|polygon|lines horizontalN=true|false
xsN=<array-expr> ysN=<array-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane in=xq100sub.fits xs=subWave ys=multiply(subFlux,1./mean(subFlux))
xlabel=Wavelength/nm ylabel='Normalised Flux'
x2func=SPEED_OF_LIGHT*1E9*1E-12/x x2label=Frequency/THz
layer1=lines shading1=density densemap1=greyscale
denseclip1=0.2,1 densefunc1=linear leglabel1=Spectra
layer_q13=ArrayQuantile color_q13=DodgerBlue transparency_q13=0.5
quantiles_q13=0.25,0.75 leglabel_q13='Quartile Range'
layer_med=ArrayQuantile color_med=blue join_med=lines leglabel_med=Median
legend=true legpos=0.95,0.95
xpix=600 ypix=380
xmin=1348 xmax=1358 ymin=-0.2 ymax=2.2

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

SUN/256 166

[Default: red]

horizontalN = true|false (Boolean)
Determines whether the trace bins are horizontal or vertical. If true, y quantiles are calculated
for each pixel column, and if false, x quantiles are calculated for each pixel row.

[Default: true]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

joinN = none|polygon|lines (QJoin)
Defines the graphical style for connecting distinct quantile values. If smoothed samples are
packed more closely than the pixel grid the option chosen here doesn't make much difference,

SUN/256 167

but if there are gaps in the data along the sampled axis, it's useful to have a guide to the eye to
join one quantile determination to the next.

The available options are:

• none: displayed quantile ranges are not joined
• polygon: the area between a line connecting the upper quantiles and a line connecting the

lower quantiles is filled
• lines: a line of thickness given by thick is drawn from the center of each quantile range

to the next

[Default: polygon]

kernelN = square|linear|epanechnikov|cos|cos2|gauss3|gauss6 (Kernel1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give a total area of unity.

The available options are:

• square: Uniform value: f(x)=1, |x|=0..1
• linear: Triangle: f(x)=1-|x|, |x|=0..1
• epanechnikov: Parabola: f(x)=1-x*x, |x|=0..1
• cos: Cosine: f(x)=cos(x*pi/2), |x|=0..1
• cos2: Cosine squared: f(x)=cos^2(x*pi/2), |x|=0..1
• gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), |x|=0..3
• gauss6: Gaussian truncated at 6.0 sigma: f(x)=exp(-x*x/2), |x|=0..6

[Default: epanechnikov]

quantilesN = <low-frac>[,<high-frac>] (Subrange)
Defines the quantile or quantile range of values that should be marked in each pixel column (or
row). The value may be a single number in the range 0..1 indicating the quantile which should
be marked. Alternatively, it may be a pair of numbers, each in the range 0..1, separated by
commas (<lo>,<hi>) indicating two quantile lines bounding an area to be filled. A pair of
equal values "a,a" is equivalent to the single value "a". The default is 0.5, which means to
mark the median value in each column, and could equivalently be specified 0.5,0.5.

[Default: 0.5]

smoothN = +<width>|-<count> (BinSizer)
Configures the smoothing width. This is the characteristic width of the kernel function to be
convolved with the density in one dimension to smooth the quantile function.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it is a
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: 0]

thickN = <pixels> (Integer)
Sets the minimum extent of the markers that are plotted in each pixel column (or row) to
indicate the designated value range. If the range is zero sized (quantiles specifies a single
value rather than a pair) this will give the actual thickness of the plotted line. If the range is
non-zero however, the line may be thicker than this in places according to the quantile
positions.

[Default: 3]

SUN/256 168

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

xsN = <array-expr> (String)
Array giving the X coordinate array for each line. In most cases, if a blank value is supplied
but Y values are present then a suitable linear sequence, of the same length as the Y array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

ysN = <array-expr> (String)
Array giving the Y coordinate array for each line. In most cases, if a blank value is supplied
but X values are present then a suitable linear sequence, of the same length as the X array, is
assumed.

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

8.3.23 line

Plots a point-to-point line joining up the positions of data points. There are additional options to
pre-sort the points according to their order on the X or Y axis (using the sortaxis value), and to
vary the colour of the line along its length (using the aux value).

The options for controlling the Aux colour map are controlled at the level of the plot itself, rather
than by per-layer configuration.

Usage Overview:

layerN=line colorN=<rrggbb>|red|blue|... thickN=<pixels>
dashN=dot|dash|...|<a,b,...> sortaxisN=[X|Y]
antialiasN=true|false auxnullcolorN=<rrggbb>|red|blue|...
<pos-coord-paramsN> auxN=<num-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 169

stilts plot2time in=ACE_data.vot t=epoch
layer1=line y1=Br zone1=A
layer2=line y2=Bt zone2=B
layer3=line y3=Bn zone3=C

antialiasN = true|false (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

auxN = <num-expr> (String)
If supplied, this controls the colouring of the line along its length according to the value of this
coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

auxnullcolorN = <rrggbb>|red|blue|... (Color)
The color of points with a null value of the Aux coordinate, given by name or as a hexadecimal
RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

If the value is null, then points with a null Aux value will not be plotted at all.

SUN/256 170

[Default: grey]

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the line is solid.

Possible values for dashed lines are dot, dash, longdash, dotdash. You can alternatively
supply a comma-separated list of on/off length values such as "4,2,8,2".

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

SUN/256 171

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

sortaxisN = [X|Y] (AxisOpt)
May be set to "X" or "Y" to ensure that the points are plotted in ascending order of the
corresponding coordinate. This will ensure that the plotted line resembles a function of the
corresponding coordinate rather than a scribble. The default (null) value causes the points to be
joined in the sequence in which they appear in the table. If the points already appear in the
table sorted according to the corresponding coordinate, this option has no visible effect, though
it may slow things down.

[Default: None]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

8.3.24 linearfit

Plots a line of best fit for the data points.

Usage Overview:

layerN=linearfit colorN=<rrggbb>|red|blue|... thickN=<pixels>
dashN=dot|dash|...|<a,b,...> antialiasN=true|false
<pos-coord-paramsN> weightN=<num-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 172

stilts plot2plane in=6dfgs_mini.xml x=RMAG y=BMAG layer1=mark layer2=linearfit

antialiasN = true|false (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the line is solid.

Possible values for dashed lines are dot, dash, longdash, dotdash. You can alternatively
supply a comma-separated list of on/off length values such as "4,2,8,2".

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If

SUN/256 173

more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

weightN = <num-expr> (String)
The weight associated with each data point for fitting purposes. This is used for calculating the
coefficients of the line of best fit, and the correlation coefficient. If no coordinate is supplied,
all points are assumed to have equal weight (1). Otherwise, any point with a null weight value
is assigned a weight of zero, i.e. ignored.

Given certain assumptions about independence of samples, a suitable value for the weight may
be 1/(err*err), if err is the measurement error for each Y value.

SUN/256 174

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.25 label

Draws a text label at each position. You can select the font, where the labels appear in relation to
the point positions, and how crowded the points have to get before they are suppressed.

Usage Overview:

layerN=label texttypeN=plain|antialias|latex fontsizeN=<int-value>
fontstyleN=standard|serif|mono
fontweightN=plain|bold|italic|bold_italic
anchorN=west|east|north|south|center
colorN=<rrggbb>|red|blue|... xoffN=<pixels> yoffN=<pixels>
spacingN=<pixels> crowdlimitN=<n> <pos-coord-paramsN>
labelN=<txt-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 175

stilts plot2sky in=messier.xml lon=RA lat=DEC
layer1=mark size1=3
layer2=label label2=NAME color2=black

anchorN = west|east|north|south|center (Anchor)
Determines where the text appears in relation to the plotted points. Values are points of the
compass.

The available options are:

• west

• east

• north

• south

• center

[Default: west]

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

crowdlimitN = <n> (Integer)
Sets the maximum number of labels in a label group. This many labels can appear closely
spaced without being affected by the label spacing parameter.

It is useful for instance if you are looking at pairs of points, which will always be close
together; if you set this value to 2, an isolated pair of labels can be seen, but if it's 1 then they
will only be plotted when they are distant from each other, which may only happen at very
high magnifications.

[Default: 2]

fontsizeN = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyleN = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

[Default: standard]

fontweightN = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

SUN/256 176

The available options are:

• plain

• bold

• italic

• bold_italic

[Default: plain]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

labelN = <txt-expr> (String)

SUN/256 177

Column or expression giving the text of the label to be written near the position being labelled.
Label values may be of any type (string or numeric)

The value is a string algebraic expression based on column names as described in Section 10.

spacingN = <pixels> (Integer)
Determines the closest that labels can be spaced. If a group of labels is closer to another group
than the value of this parameter, they will not be drawn, to avoid the display becoming too
cluttered. The effect is that you can see individual labels when you zoom in, but not when
there are many labelled points plotted close together on the screen. Set the value higher for less
cluttered labelling.

[Default: 12]

texttypeN = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: plain]

xoffN = <pixels> (Integer)
Allows fine adjustment of label positioning in the X direction. The value is a positive or
negative pixel offset applied to the position of each plotted label.

[Default: 0]

yoffN = <pixels> (Integer)
Allows fine adjustment of label positioning in the Y direction. The value is a positive or
negative pixel offset applied to the position of each plotted label.

[Default: 0]

8.3.26 arealabel

Draws a text label near the center of each area.You can select the font, where the labels appear in
relation to the point positions, and how crowded the points have to get before they are suppressed.

This is just like a normal Label plot, but the positions are taken from an Area coordinate rather than
normal positional coordinates.

Usage Overview:

layerN=arealabel texttypeN=plain|antialias|latex fontsizeN=<int-value>
fontstyleN=standard|serif|mono
fontweightN=plain|bold|italic|bold_italic
anchorN=west|east|north|south|center
colorN=<rrggbb>|red|blue|... xoffN=<pixels> yoffN=<pixels>
spacingN=<pixels> crowdlimitN=<n> areaN=<area-expr>
areatypeN=STC-S|POLYGON|CIRCLE|POINT|MOC-ASCII|UNIQ|TFCAT
labelN=<txt-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 178

stilts plot2sky reflectlon=false sex=false
clon=18 clat=0 radius=36 xpix=550 ypix=600
in=countries.vot
area=shape areatype=STC-S
layer_1=area polymode_1=fill
shading_1=aux aux_1=index opaque_1=2 layer_2=area polymode_2=outline
shading_2=flat color_2=grey
auxmap=paired auxvisible=false
layer_3=arealabel label_3=name anchor_3=center color_3=black

anchorN = west|east|north|south|center (Anchor)
Determines where the text appears in relation to the plotted points. Values are points of the
compass.

The available options are:

• west

SUN/256 179

• east

• north

• south

• center

[Default: west]

areaN = <area-expr> (String)
Expression giving the geometry of a 2D region on the plot. It may be a string- or array-valued
expression, and its interpretation depends on the value of the corresponding areatype

parameter.

The value is a Area value algebraic expression based on column names as described in Section
10.

areatypeN = STC-S|POLYGON|CIRCLE|POINT|MOC-ASCII|UNIQ|TFCAT (AreaMapper)
Selects the form in which the Area value for parameter areaN is supplied. Options are:

• STC-S: Region description using STC-S syntax; see TAP 1.0, section 6. Note there are
some restrictions: <frame>, <refpos> and <flavor> metadata are ignored, polygon
winding direction is ignored (small polygons are assumed) and the INTERSECTION and NOT

constructions are not supported. The non-standard MOC construction is supported.
• POLYGON: 2n-element array (x1,y1, x2,y2,...); a NaN,NaN pair can be used to delimit distinct

polygons.
• CIRCLE: 3-element array (x,y,r)
• POINT: 2-element array (x,y)
• MOC-ASCII: Region description using ASCII MOC syntax; see MOC 1.1 2.3.2. Note there

are currently a few issues with MOC plotting, especially for large pixels.
• UNIQ: Region description representing a single HEALPix cell as defined by an UNIQ

value, see MOC 1.1 sec 2.3.1.
• TFCAT: Time-Frequency region defined by the TFCat standard. Support is currently

incomplete; holes in Polygons and MultiPolygons are not displayed correctly, single
Points may not be displayed, and Coordinate Reference System information is ignored.

If left blank, a guess will be taken depending on the data type of the value supplied for the
areaN value.

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

crowdlimitN = <n> (Integer)
Sets the maximum number of labels in a label group. This many labels can appear closely
spaced without being affected by the label spacing parameter.

It is useful for instance if you are looking at pairs of points, which will always be close
together; if you set this value to 2, an isolated pair of labels can be seen, but if it's 1 then they
will only be plotted when they are distant from each other, which may only happen at very
high magnifications.

[Default: 2]

SUN/256 180

fontsizeN = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyleN = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

[Default: standard]

fontweightN = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

• plain

• bold

• italic

• bold_italic

[Default: plain]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

SUN/256 181

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

labelN = <txt-expr> (String)
Column or expression giving the text of the label to be written near the position being labelled.
Label values may be of any type (string or numeric)

The value is a string algebraic expression based on column names as described in Section 10.

spacingN = <pixels> (Integer)
Determines the closest that labels can be spaced. If a group of labels is closer to another group
than the value of this parameter, they will not be drawn, to avoid the display becoming too
cluttered. The effect is that you can see individual labels when you zoom in, but not when
there are many labelled points plotted close together on the screen. Set the value higher for less
cluttered labelling.

[Default: 12]

texttypeN = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: plain]

xoffN = <pixels> (Integer)
Allows fine adjustment of label positioning in the X direction. The value is a positive or
negative pixel offset applied to the position of each plotted label.

[Default: 0]

yoffN = <pixels> (Integer)
Allows fine adjustment of label positioning in the Y direction. The value is a positive or
negative pixel offset applied to the position of each plotted label.

[Default: 0]

8.3.27 contour

Plots position density contours. This provides another way (alongside the auto, density and
weighted shading modes) to visualise the characteristics of overdense regions in a crowded plot. It's
not very useful if you just have a few points.

A weighting may optionally be applied to the quantity being contoured. To do this, provide a

SUN/256 182

non-blank value for the weight coordinate, and use the combine parameter to define how the
weights are combined (sum, mean, etc).

The contours are currently drawn as pixels rather than lines so they don't look very beautiful in
exported vector output formats (PDF, PostScript). This may be improved in the future.

Usage Overview:

layerN=contour colorN=<rrggbb>|red|blue|...
combineN=sum|mean|median|stdev|min|max|count
nlevelN=<int-value> smoothN=<pixels> thickN=<pixels>
scalingN=linear|log|equal zeroN=<number> <pos-coord-paramsN>
weightN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

stilts plot2plane in=tgas_source.fits x=phot_g_mean_mag y=phot_g_mean_flux_error
ylog=true xmax=14 ymin=10
layer1=mark shading1=density densemap1=greyscale
layer2=contour scaling2=log nlevel=6

SUN/256 183

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

combineN = sum|mean|median|stdev|min|max|count (Combiner)
Defines the way that the weight values are combined when generating the value grid for which
the contours will be plotted. If a weighting is supplied, the most useful values are mean which
traces the mean values of a quantity and sum which traces the weighted sum. Other values such
as median are of dubious validity because of the way that the smoothing is done.

This value is ignored if the weighting coordinate weight is not set.

The available options are:

• sum: the sum of all the combined values per bin
• mean: the mean of the combined values
• median: the median
• stdev: the sample standard deviation of the combined values
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• count: the number of non-blank values per bin (weight is ignored)

[Default: sum]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)

SUN/256 184

The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

nlevelN = <int-value> (Integer)
Number of countour lines drawn. In fact, this is an upper limit; if there is not enough variation
in the plot's density, then fewer contour lines will be drawn.

[Default: 5]

scalingN = linear|log|equal (LevelMode)
How the smoothed density is treated before contour levels are determined.

The available options are:

• linear: levels are equally spaced
• log: level logarithms are equally spaced
• equal: levels are spaced to provide equal-area inter-contour regions

[Default: linear]

smoothN = <pixels> (Integer)
The linear size of the smoothing kernel applied to the density before performing the contour
determination. If set too low the contours will be too crinkly, and if too high they will lose
definition. Smoothing currently uses an approximately Gaussian kernel for extensive
combination modes (count, sum) or a circular top hat for intensive modes (weighted mean).

[Default: 5]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

SUN/256 185

zeroN = <number> (Double)
Determines the level at which the first contour (and hence all the others, which are separated
from it by a fixed amount) are drawn.

[Default: 1]

8.3.28 grid

Plots 2-d data aggregated into rectangular cells. You can optionally use a weighting for the points,
and you can configure how the values are combined to produce the output pixel values (colours).
You can use this plotter in various ways, including as a 2-d histogram or weighted density map, or
to plot gridded data.

The X and Y dimensions of the grid cells (or equivalently histogram bins) can be configured either
in terms of the data coordinates or relative to the plot dimensions.

The way that data values are mapped to colours is usually controlled by options at the level of the
plot itself, rather than by per-layer configuration.

Usage Overview:

layerN=grid xbinsizeN=+<extent>|-<count> ybinsizeN=+<extent>|-<count>
combineN=sum|sum-per-unit|count|... transparencyN=0..1
xphaseN=<number> yphaseN=<number> <pos-coord-paramsN>
weightN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 186

stilts plot2plane layer1=grid in1=gk_hess.fits x1=g_min_ks y1=g_mag_abs
weight1=n combine1=sum xbinsize1=0.2 ybinsize1=0.2 xphase1=0.5 yphase1=0.5
yflip=true auxfunc=log auxmap=viridis

combineN = sum|sum-per-unit|count|... (Combiner)
Defines how values contributing to the same grid cell are combined together to produce the
value assigned to that cell, and hence its colour. The combined values are the weights, but if
the weight coordinate is left blank, a weighting of unity is assumed.

The available options are:

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)
• mean: the mean of the combined values
• median: the median
• q1: first quartile
• q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

[Default: mean]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If

SUN/256 187

more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

SUN/256 188

xbinsizeN = +<extent>|-<count> (BinSizer)
Configures the extent of the density grid bins on the X axis.

If the supplied value is a positive number it is interpreted as a fixed size in data coordinates (if
the X axis is logarithmic, the value is a fixed factor). If it is a negative number, then it will be
interpreted as the approximate number of bins to display across the plot in the X direction
(though an attempt is made to use only round numbers for bin sizes).

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin size.

[Default: -30]

xphaseN = <number> (Double)
Controls where the zero point on the X axis is set. For instance if your bin size is 1, this value
controls whether bin boundaries are at 0, 1, 2, .. or 0.5, 1.5, 2.5, ... etc.

A value of 0 (or any integer) will result in a bin boundary at X=0 (linear X axis) or X=1
(logarithmic X axis). A fractional value will give a bin boundary at that value multiplied by the
bin width.

[Default: 0]

ybinsizeN = +<extent>|-<count> (BinSizer)
Configures the extent of the density grid bins on the Y axis.

If the supplied value is a positive number it is interpreted as a fixed size in data coordinates (if
the Y axis is logarithmic, the value is a fixed factor). If it is a negative number, then it will be
interpreted as the approximate number of bins to display across the plot in the Y direction
(though an attempt is made to use only round numbers for bin sizes).

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin size.

[Default: -30]

yphaseN = <number> (Double)
Controls where the zero point on the Y axis is set. For instance if your bin size is 1, this value
controls whether bin boundaries are at 0, 1, 2, .. or 0.5, 1.5, 2.5, ... etc.

A value of 0 (or any integer) will result in a bin boundary at X=0 (linear X axis) or X=1
(logarithmic X axis). A fractional value will give a bin boundary at that value multiplied by the
bin width.

[Default: 0]

8.3.29 fill

If a two-dimensional dataset represents a single-valued function, this plotter will fill the area
underneath the function's curve with a solid colour. Parts of the surface which would only be
partially covered (because of rapid function variation within the width of a single pixel) are
represented using appropriate alpha-blending. The filled area may alternatively be that above the
curve or to its left or right.

One example of its use is to reconstruct the appearance of a histogram plot from a set of histogram
bins. For X,Y data which is not single-valued, the result may not be very useful.

Usage Overview:

layerN=fill colorN=<rrggbb>|red|blue|... transparencyN=0..1
horizontalN=true|false positiveN=true|false <pos-coord-paramsN>
inN=<table> ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

SUN/256 189

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

stilts plot2time layer1=fill in1=iers.fits t1=decYear y1=lodErr ylog=true
texttype=latex fontsize=16

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

SUN/256 190

[Default: red]

horizontalN = true|false (Boolean)
Determines whether the filling is vertical (suitable for functions of the horizontal variable), or
horizontal (suitable for functions of the vertical variable). If false, the fill is vertical (to the X
axis), and if true, the fill is horizontal (to the Y axis).

[Default: false]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

positiveN = true|false (Boolean)
Determines the directional sense of the filling. If false, the fill is between the data points and

SUN/256 191

negative infinity along the relevant axis (e.g. down from the data points to the bottom of the
plot). If true, the fill is in the other direction.

[Default: false]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

8.3.30 quantile

Plots a line through a given quantile of the values binned within each pixel column (or row) of a
plot. The line is optionally smoothed using a configurable kernel and width, to even out noise
arising from the pixel binning. Instead of a simple line through a given quantile, it is also possible
to fill the region between two quantiles.

One way to use this is to draw a line estimating a function y=f(x) (or x=g(y)) sampled by a noisy set
of data points in two dimensions.

Note: in the current implementation, depending on the details of the configuration and the data,
there may be some distortions or missing graphics near the edges of the plot. This may be improved
in future releases, depending on feedback.

Usage Overview:

layerN=quantile colorN=<rrggbb>|red|blue|... transparencyN=0..1
quantilesN=<low-frac>[,<high-frac>] thickN=<pixels>
smoothN=+<width>|-<count>
kernelN=square|linear|epanechnikov|cos|cos2|gauss3|gauss6
joinN=none|polygon|lines horizontalN=true|false
<pos-coord-paramsN> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 192

stilts plot2plane in=tgas_source.fits x=phot_g_mean_mag y=phot_g_mean_flux_error
ylog=true xmax=15 ymin=10
layer.d=mark color.d=99ff99
layer.q4=quantile quantiles.q4=0.25,0.75 color.q4=magenta transparency.q4=0.35
layer.q2=quantile quantiles.q2=0.5 color.q2=SkyBlue thick.q2=4
smooth.q=0.05
leglabel.q4=Quartiles leglabel.q2=Median legseq=.q4,.q2 legpos=0.95,0.95

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

horizontalN = true|false (Boolean)
Determines whether the trace bins are horizontal or vertical. If true, y quantiles are calculated
for each pixel column, and if false, x quantiles are calculated for each pixel row.

[Default: true]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter

SUN/256 193

can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

joinN = none|polygon|lines (QJoin)
Defines the graphical style for connecting distinct quantile values. If smoothed samples are
packed more closely than the pixel grid the option chosen here doesn't make much difference,
but if there are gaps in the data along the sampled axis, it's useful to have a guide to the eye to
join one quantile determination to the next.

The available options are:

• none: displayed quantile ranges are not joined
• polygon: the area between a line connecting the upper quantiles and a line connecting the

lower quantiles is filled
• lines: a line of thickness given by thick is drawn from the center of each quantile range

to the next

SUN/256 194

[Default: none]

kernelN = square|linear|epanechnikov|cos|cos2|gauss3|gauss6 (Kernel1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give a total area of unity.

The available options are:

• square: Uniform value: f(x)=1, |x|=0..1
• linear: Triangle: f(x)=1-|x|, |x|=0..1
• epanechnikov: Parabola: f(x)=1-x*x, |x|=0..1
• cos: Cosine: f(x)=cos(x*pi/2), |x|=0..1
• cos2: Cosine squared: f(x)=cos^2(x*pi/2), |x|=0..1
• gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), |x|=0..3
• gauss6: Gaussian truncated at 6.0 sigma: f(x)=exp(-x*x/2), |x|=0..6

[Default: epanechnikov]

quantilesN = <low-frac>[,<high-frac>] (Subrange)
Defines the quantile or quantile range of values that should be marked in each pixel column (or
row). The value may be a single number in the range 0..1 indicating the quantile which should
be marked. Alternatively, it may be a pair of numbers, each in the range 0..1, separated by
commas (<lo>,<hi>) indicating two quantile lines bounding an area to be filled. A pair of
equal values "a,a" is equivalent to the single value "a". The default is 0.5, which means to
mark the median value in each column, and could equivalently be specified 0.5,0.5.

[Default: 0.5]

smoothN = +<width>|-<count> (BinSizer)
Configures the smoothing width. This is the characteristic width of the kernel function to be
convolved with the density in one dimension to smooth the quantile function.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it is a
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: 0]

thickN = <pixels> (Integer)
Sets the minimum extent of the markers that are plotted in each pixel column (or row) to
indicate the designated value range. If the range is zero sized (quantiles specifies a single
value rather than a pair) this will give the actual thickness of the plotted line. If the range is
non-zero however, the line may be thicker than this in places according to the quantile
positions.

[Default: 3]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

8.3.31 histogram

Plots a histogram.

SUN/256 195

Bin heights may optionally be weighted by the values of some additional coordinate, supplied using
the weight parameter. In this case you can choose how these weights are combined in each bin
using the combine parameter.

Various options are provided for configuring how the bar heights are calculated, but note that not all
combinations of the available parameters will necessarily lead to meaningful visualisations.

Usage Overview:

layerN=histogram colorN=<rrggbb>|red|blue|... transparencyN=0..1
binsizeN=+<width>|-<count> phaseN=<number>
combineN=sum|sum-per-unit|count|...
cumulativeN=none|forward|reverse
normaliseN=none|area|unit|maximum|height
barformN=open|filled|semi_filled|steps|semi_steps|spikes
thickN=<pixels> dashN=dot|dash|...|<a,b,...> xN=<num-expr>
weightN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane layer1=histogram in1=rrlyrae.fits x1=p1

barformN = open|filled|semi_filled|steps|semi_steps|spikes (Form)
How histogram bars are represented. Note that options using transparent colours may not
render very faithfully to some vector formats like PDF and EPS.

The available options are:

SUN/256 196

• open

• filled

• semi_filled

• steps

• semi_steps

• spikes

[Default: semi_filled]

binsizeN = +<width>|-<count> (BinSizer)
Configures the width of histogram bins. If the supplied string is a positive number, it is
interpreted as a fixed width in the data coordinates of the X axis (if the X axis is logarithmic,
the value is a fixed factor). If it is a negative number, then it will be interpreted as the
approximate number of bins to display across the width of the plot (though an attempt is made
to use only round numbers for bin widths).

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: -30]

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

combineN = sum|sum-per-unit|count|... (Combiner)
Defines how values contributing to the same bin are combined together to produce the value
assigned to that bin, and hence its height. The combined values are those given by the weight

coordinate, but if no weight is supplied, a weighting of unity is assumed.

The available options are:

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)
• mean: the mean of the combined values
• median: the median
• q1: first quartile
• q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

[Default: sum]

cumulativeN = none|forward|reverse (Cumulation)
If set to forward/reverse the histogram bars plotted are calculated cumulatively; each bin

SUN/256 197

includes the counts from all previous bins working up/down the independent axis.

Note that setting cumulative plotting may not make much sense with some other parameter
values, for instance averaging aggregation modes.

For reasons of backward compatibility, the values true and false may be used as aliases for
forward and none.

The available options are:

• none: The value plotted for each bin uses the samples accumulated in that bin.
• forward: The value plotted for each bin uses the samples accumulated all the way from

negative infinity to that bin.
• reverse: The value plotted for each bin uses the samples accumulated all the way from

positive infinity to that bin.

[Default: none]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the line is solid.

Possible values for dashed lines are dot, dash, longdash, dotdash. You can alternatively
supply a comma-separated list of on/off length values such as "4,2,8,2".

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix

SUN/256 198

compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

normaliseN = none|area|unit|maximum|height (Normalisation)
Defines how, if at all, the bars of histogram-like plots are normalised or otherwise scaled
vertically.

Note that some of the normalisation options may not make much sense with some other
parameter values, for instance averaging aggregation modes.

The available options are:

• none: No normalisation is performed.
• area: The total area of histogram bars is normalised to unity. For cumulative plots, this

behaves like height.
• unit: Histogram bars are scaled by the inverse of the bin width in data units. For

cumulative plots, this behaves like none.
• maximum: The height of the tallest histogram bar is normalised to unity. For cumulative

plots, this behaves like height.
• height: The total height of histogram bars is normalised to unity.

[Default: none]

phaseN = <number> (Double)
Controls where the horizontal zero point for binning is set. For instance if your bin size is 1,
this value controls whether bin boundaries are at 0, 1, 2, .. or 0.5, 1.5, 2.5, ... etc.

A value of 0 (or any integer) will result in a bin boundary at X=0 (linear X axis) or X=1
(logarithmic X axis). A fractional value will give a bin boundary at that value multiplied by the
bin width.

[Default: 0]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 2]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num-expr> (String)
Horizontal coordinate.

SUN/256 199

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.32 kde

Plots a Discrete Kernel Density Estimate giving a smoothed frequency of data values along the
horizontal axis, using a fixed-width smoothing kernel. This is a generalisation of a histogram in
which the bins are always 1 pixel wide, and a smoothing kernel is applied to each bin. The width
and shape of the kernel may be varied.

This is suitable for cases where the division into discrete bins done by a normal histogram is
unnecessary or troublesome.

Note this is not a true Kernel Density Estimate, since, for performance reasons, the smoothing is
applied to the (pixel-width) bins rather than to each data sample. The deviation from a true KDE
caused by this quantisation will be at the pixel level, hence in most cases not visually apparent.

A weighting may be applied to the calculated levels by supplying the weight coordinate. In this
case you can choose how these weights are aggregated in each pixel bin using the combine

parameter. The result is something like a smoothed version of the corresponding weighted
histogram. Note that some combinations of the available parameters (e.g. a normalised cumulative
median-aggregated KDE) may not make much visual sense.

Usage Overview:

layerN=kde colorN=<rrggbb>|red|blue|... transparencyN=0..1
smoothN=+<width>|-<count> combineN=sum|sum-per-unit|count|...
kernelN=square|linear|epanechnikov|cos|cos2|gauss3|gauss6
cumulativeN=none|forward|reverse
normaliseN=none|area|unit|maximum|height fillN=solid|line|semi
thickN=<pixels> xN=<num-expr> weightN=<num-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 200

stilts plot2plane ymin=0 layer1=kde in1=rrlyrae.fits x1=p1

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

combineN = sum|sum-per-unit|count|... (Combiner)
Defines how values contributing to the same bin are combined together to produce the value
assigned to that bin, and hence its height. The bins in this case are 1-pixel wide, so lack much
physical significance. This means that while some combination modes, such as sum-per-unit

and mean make sense, others such as sum do not.

The combined values are those given by the weight coordinate, but if no weight is supplied, a
weighting of unity is assumed.

The available options are:

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)

SUN/256 201

• mean: the mean of the combined values
• median: the median
• q1: first quartile
• q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

[Default: sum-per-unit]

cumulativeN = none|forward|reverse (Cumulation)
If set to forward/reverse the histogram bars plotted are calculated cumulatively; each bin
includes the counts from all previous bins working up/down the independent axis.

Note that setting cumulative plotting may not make much sense with some other parameter
values, for instance averaging aggregation modes.

For reasons of backward compatibility, the values true and false may be used as aliases for
forward and none.

The available options are:

• none: The value plotted for each bin uses the samples accumulated in that bin.
• forward: The value plotted for each bin uses the samples accumulated all the way from

negative infinity to that bin.
• reverse: The value plotted for each bin uses the samples accumulated all the way from

positive infinity to that bin.

[Default: none]

fillN = solid|line|semi (FillMode)
How the density function is represented.

The available options are:

• solid: area between level and axis is filled with solid colour
• line: level is marked by a wiggly line
• semi: level is marked by a wiggly line, and area below it is filled with a transparent colour

[Default: semi]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the

SUN/256 202

table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

kernelN = square|linear|epanechnikov|cos|cos2|gauss3|gauss6 (Kernel1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give a total area of unity.

The available options are:

• square: Uniform value: f(x)=1, |x|=0..1
• linear: Triangle: f(x)=1-|x|, |x|=0..1
• epanechnikov: Parabola: f(x)=1-x*x, |x|=0..1
• cos: Cosine: f(x)=cos(x*pi/2), |x|=0..1
• cos2: Cosine squared: f(x)=cos^2(x*pi/2), |x|=0..1
• gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), |x|=0..3
• gauss6: Gaussian truncated at 6.0 sigma: f(x)=exp(-x*x/2), |x|=0..6

[Default: epanechnikov]

normaliseN = none|area|unit|maximum|height (Normalisation)
Defines how, if at all, the bars of histogram-like plots are normalised or otherwise scaled
vertically.

Note that some of the normalisation options may not make much sense with some other
parameter values, for instance averaging aggregation modes.

The available options are:

• none: No normalisation is performed.
• area: The total area of histogram bars is normalised to unity. For cumulative plots, this

behaves like height.
• unit: Histogram bars are scaled by the inverse of the bin width in data units. For

SUN/256 203

cumulative plots, this behaves like none.
• maximum: The height of the tallest histogram bar is normalised to unity. For cumulative

plots, this behaves like height.
• height: The total height of histogram bars is normalised to unity.

[Default: none]

smoothN = +<width>|-<count> (BinSizer)
Configures the smoothing width for kernel density estimation. This is the characteristic width
of the kernel function to be convolved with the density to produce the visible plot.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it is a
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: -100]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 2]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num-expr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.33 knn

Plots a Discrete Kernel Density Estimate giving a smoothed frequency of data values along the
horizontal axis, using an adaptive (K-Nearest-Neighbours) smoothing kernel. This is a
generalisation of a histogram in which the bins are always 1 pixel wide, and a smoothing kernel is
applied to each bin. The width and shape of the kernel may be varied.

The K-Nearest-Neighbour figure gives the number of points in each direction to determine the
width of the smoothing kernel for smoothing each bin. Upper and lower limits for the kernel width
are also supplied; if the upper and lower limits are equal, this is equivalent to a fixed-width kernel.

Note this is not a true Kernel Density Estimate, since, for performance reasons, the smoothing is
applied to the (pixel-width) bins rather than to each data sample. The deviation from a true KDE
caused by this quantisation will be at the pixel level, hence in most cases not visually apparent.

SUN/256 204

Usage Overview:

layerN=knn colorN=<rrggbb>|red|blue|... transparencyN=0..1 knnN=<number>
symmetricN=true|false minsmoothN=+<width>|-<count>
maxsmoothN=+<width>|-<count>
kernelN=square|linear|epanechnikov|cos|cos2|gauss3|gauss6
cumulativeN=none|forward|reverse
normaliseN=none|area|unit|maximum|height fillN=solid|line|semi
thickN=<pixels> xN=<num-expr> weightN=<num-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane layer1=knn in1=rrlyrae.fits x1=p1

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

SUN/256 205

cumulativeN = none|forward|reverse (Cumulation)
If set to forward/reverse the histogram bars plotted are calculated cumulatively; each bin
includes the counts from all previous bins working up/down the independent axis.

Note that setting cumulative plotting may not make much sense with some other parameter
values, for instance averaging aggregation modes.

For reasons of backward compatibility, the values true and false may be used as aliases for
forward and none.

The available options are:

• none: The value plotted for each bin uses the samples accumulated in that bin.
• forward: The value plotted for each bin uses the samples accumulated all the way from

negative infinity to that bin.
• reverse: The value plotted for each bin uses the samples accumulated all the way from

positive infinity to that bin.

[Default: none]

fillN = solid|line|semi (FillMode)
How the density function is represented.

The available options are:

• solid: area between level and axis is filled with solid colour
• line: level is marked by a wiggly line
• semi: level is marked by a wiggly line, and area below it is filled with a transparent colour

[Default: semi]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this

SUN/256 206

way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

kernelN = square|linear|epanechnikov|cos|cos2|gauss3|gauss6 (Kernel1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give a total area of unity.

The available options are:

• square: Uniform value: f(x)=1, |x|=0..1
• linear: Triangle: f(x)=1-|x|, |x|=0..1
• epanechnikov: Parabola: f(x)=1-x*x, |x|=0..1
• cos: Cosine: f(x)=cos(x*pi/2), |x|=0..1
• cos2: Cosine squared: f(x)=cos^2(x*pi/2), |x|=0..1
• gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), |x|=0..3
• gauss6: Gaussian truncated at 6.0 sigma: f(x)=exp(-x*x/2), |x|=0..6

[Default: epanechnikov]

knnN = <number> (Double)
Sets the number of nearest neighbours to count away from a sample point to determine the
width of the smoothing kernel at that point. For the symmetric case this is the number of
nearest neighbours summed over both directions, and for the asymmetric case it is the number
in a single direction.

The threshold is actually the weighted total of samples; for unweighted (weight=1) bins that is
equivalent to the number of samples.

[Default: 100]

maxsmoothN = +<width>|-<count> (BinSizer)
Fixes the maximum size of the smoothing kernel. This functions as an upper limit on the
distance that is otherwise determined by searching for the K nearest neighbours at each sample
point.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it is a
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: -100]

SUN/256 207

minsmoothN = +<width>|-<count> (BinSizer)
Fixes the minimum size of the smoothing kernel. This functions as a lower limit on the
distance that is otherwise determined by searching for the K nearest neighbours at each sample
point.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it is a
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: 0]

normaliseN = none|area|unit|maximum|height (Normalisation)
Defines how, if at all, the bars of histogram-like plots are normalised or otherwise scaled
vertically.

Note that some of the normalisation options may not make much sense with some other
parameter values, for instance averaging aggregation modes.

The available options are:

• none: No normalisation is performed.
• area: The total area of histogram bars is normalised to unity. For cumulative plots, this

behaves like height.
• unit: Histogram bars are scaled by the inverse of the bin width in data units. For

cumulative plots, this behaves like none.
• maximum: The height of the tallest histogram bar is normalised to unity. For cumulative

plots, this behaves like height.
• height: The total height of histogram bars is normalised to unity.

[Default: none]

symmetricN = true|false (Boolean)
If true, the nearest neigbour search is carried out in both directions, and the kernel is
symmetric. If false, the nearest neigbour search is carried out separately in the positive and
negative directions, and the kernel width is accordingly different in the positive and negative
directions.

[Default: true]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 2]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num-expr> (String)

SUN/256 208

Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.34 densogram

Represents smoothed density of data values along the horizontal axis using a colourmap. This is
like a Kernel Density Estimate (smoothed histogram with bins 1 pixel wide), but instead of
representing the data extent vertically as bars or a line, values are represented by a fixed-size
pixel-width column of a colour from a colour map. A smoothing kernel, whose width and shape
may be varied, is applied to each data point.

A weighting may be applied to the calculated levels by supplying the weight coordinate. In this
case you can choose how these weights are aggregated in each pixel bin using the combine

parameter. The result is something like a smoothed version of the corresponding weighted
histogram. Note that some combinations of the available parameters (e.g. a normalised cumulative
median-aggregated KDE) may not make much visual sense.

This is a rather unconventional way to represent density data, and this plotting mode is probably not
very useful. But hey, nobody's forcing you to use it.

Usage Overview:

layerN=densogram colorN=<rrggbb>|red|blue|... smoothN=+<width>|-<count>
kernelN=square|linear|epanechnikov|cos|cos2|gauss3|gauss6
densemapN=<map-name>|<color>-<color>[-<color>...]
denseclipN=<lo>,<hi> denseflipN=true|false
densequantN=<number> densesubN=<lo>,<hi>
densefuncN=log|linear|histogram|histolog|sqrt|square|acos|cos
cumulativeN=none|forward|reverse sizeN=<pixels>
posN=<fraction> xN=<num-expr> weightN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false
icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 209

stilts plot2plane in=tgas_source.fits x=hypot(pmra_error,pmdec_error)
xlog=true normalise=maximum
color=grey layer1=histogram layer2=kde
layer3=densogram densemap3=skyblue-yellow-hotpink densefunc3=log
size3=50 pos3=0.5

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

cumulativeN = none|forward|reverse (Cumulation)
If set to forward/reverse the histogram bars plotted are calculated cumulatively; each bin
includes the counts from all previous bins working up/down the independent axis.

Note that setting cumulative plotting may not make much sense with some other parameter
values, for instance averaging aggregation modes.

For reasons of backward compatibility, the values true and false may be used as aliases for
forward and none.

The available options are:

SUN/256 210

• none: The value plotted for each bin uses the samples accumulated in that bin.
• forward: The value plotted for each bin uses the samples accumulated all the way from

negative infinity to that bin.
• reverse: The value plotted for each bin uses the samples accumulated all the way from

positive infinity to that bin.

[Default: none]

denseclipN = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Density shading. The value is specified as
a (low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or
all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white
background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

denseflipN = true|false (Boolean)
If true, the colour map on the Density axis will be reversed.

[Default: false]

densefuncN = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Density range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis
• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling
• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable (though it can be restricted using the densesub option) The Linear, Log, Square and
Sqrt options just apply the named function to the full data range. The histogram options on the
other hand use a scaling function that corresponds to the actual distribution of the data, so that
there are about the same number of points (or pixels, or whatever is being scaled) of each
colour. The histogram options are somewhat more expensive, but can be a good choice if you
are exploring data whose distribution is unknown or not well-behaved over its min-max range.
The Histogram and HistoLog options both assign the colours in the same way, but they
display the colour ramp with linear or logarithmic annotation respectively; the HistoLog

option also ignores non-positive values.

[Default: linear]

densemapN = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Density axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: inferno, magma, plasma,
viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, cosmic, ember,

SUN/256 211

gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon, tropical, accent,
gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn, redshift, pride, rdbu,
piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light, greyscale, colour, standard,
bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue, intensity, rgb_red,
rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scale_hsv_s, scale_hsv_v,
scale_yuv_y, mask, blacker, whiter, transparency. Note: many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

[Default: inferno]

densequantN = <number> (Double)
Allows the colour map used for the Density axis to be quantised. If an integer value N is
chosen then the colour map will be viewed as N discrete evenly-spaced levels, so that only N
different colours will appear in the plot. This can be used to generate a contour-like effect, and
may make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

densesubN = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the Density axis. The value may be
specified as a comma-separated pair of two numbers, giving the lower and upper bounds of the
range of of interest respectively. This sub-range is applied to the data range that would
otherwise be used, either automatically calculated or explicitly supplied; zero corresponds to
the lower bound and one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

[Default: 0,1]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

SUN/256 212

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

kernelN = square|linear|epanechnikov|cos|cos2|gauss3|gauss6 (Kernel1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give a total area of unity.

The available options are:

• square: Uniform value: f(x)=1, |x|=0..1
• linear: Triangle: f(x)=1-|x|, |x|=0..1
• epanechnikov: Parabola: f(x)=1-x*x, |x|=0..1
• cos: Cosine: f(x)=cos(x*pi/2), |x|=0..1
• cos2: Cosine squared: f(x)=cos^2(x*pi/2), |x|=0..1
• gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), |x|=0..3
• gauss6: Gaussian truncated at 6.0 sigma: f(x)=exp(-x*x/2), |x|=0..6

[Default: epanechnikov]

posN = <fraction> (Double)
Determines where on the plot region the density bar appears. The value should be in the range
0..1; zero corresponds to the bottom of the plot and one to the top.

[Default: 0.05]

sizeN = <pixels> (Integer)
Height of the density bar in pixels.

[Default: 12]

smoothN = +<width>|-<count> (BinSizer)
Configures the smoothing width for kernel density estimation. This is the characteristic width
of the kernel function to be convolved with the density to produce the visible plot.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it is a
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the

SUN/256 213

numeric entry field to fix the bin width.

[Default: -100]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num-expr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.35 gaussian

Plots a best fit Gaussian to the histogram of a sample of data. In fact, all this plotter does is to
calculate the mean and standard deviation of the sample, and plot the corresponding Gaussian
curve. The mean and standard deviation values are reported by the plot.

The normalise config option, perhaps in conjunction with binsize, can be used to scale the height
of the plotted curve in data units. In this case, binsize just describes the bar width of a notional
histogram whose outline the plotted Gaussian should try to fit, and is only relevant for some of the
normalisation options.

Usage Overview:

layerN=gaussian colorN=<rrggbb>|red|blue|... showmeanN=true|false
thickN=<pixels> dashN=dot|dash|...|<a,b,...>
antialiasN=true|false
normaliseN=none|area|unit|maximum|height
binsizeN=+<width>|-<count> xN=<num-expr> weightN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false
icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 214

stilts plot2plane in=mgc_ok.fits x=mgc_dc_sb
layer1=histogram color1=green
layer2=gaussian color2=grey thick2=3
ymax=1200 shadow=false

antialiasN = true|false (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

binsizeN = +<width>|-<count> (BinSizer)
Configures the width of histogram bins. If the supplied string is a positive number, it is
interpreted as a fixed width in the data coordinates of the X axis (if the X axis is logarithmic,
the value is a fixed factor). If it is a negative number, then it will be interpreted as the
approximate number of bins to display across the width of the plot (though an attempt is made
to use only round numbers for bin widths).

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: -30]

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed

SUN/256 215

by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the line is solid.

Possible values for dashed lines are dot, dash, longdash, dotdash. You can alternatively
supply a comma-separated list of on/off length values such as "4,2,8,2".

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

SUN/256 216

normaliseN = none|area|unit|maximum|height (Normalisation)
Defines how, if at all, the bars of histogram-like plots are normalised or otherwise scaled
vertically.

Note that some of the normalisation options may not make much sense with some other
parameter values, for instance averaging aggregation modes.

The available options are:

• none: No normalisation is performed.
• area: The total area of histogram bars is normalised to unity. For cumulative plots, this

behaves like height.
• unit: Histogram bars are scaled by the inverse of the bin width in data units. For

cumulative plots, this behaves like none.
• maximum: The height of the tallest histogram bar is normalised to unity. For cumulative

plots, this behaves like height.
• height: The total height of histogram bars is normalised to unity.

[Default: none]

showmeanN = true|false (Boolean)
If true, a line is drawn at the position of the calculated mean.

[Default: true]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num-expr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.36 function

Plots an analytic function. This layer is currently only available for the Plane plots (including
histogram).

Usage Overview:

layerN=function axisN=Horizontal|Vertical xnameN=<name> fexprN=<expr>
colorN=<rrggbb>|red|blue|... thickN=<pixels>
dashN=dot|dash|...|<a,b,...> antialiasN=true|false

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 217

stilts plot2plane layer1=function fexpr1=sin(x)/x thick1=3
xmin=0 xmax=30 ymin=-0.25 ymax=0.25

antialiasN = true|false (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

axisN = Horizontal|Vertical (FuncAxis)
Which axis the independent variable varies along. Options are currently Horizontal and
Vertical.

[Default: Horizontal]

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the line is solid.

SUN/256 218

Possible values for dashed lines are dot, dash, longdash, dotdash. You can alternatively
supply a comma-separated list of on/off length values such as "4,2,8,2".

fexprN = <expr> (String)
An expression using TOPCAT's expression language in terms of the independent variable to
define the function. This expression must be standalone - it cannot reference any tables.

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

xnameN = <name> (String)
Name of the independent variable for use in the function expression. This is typically x for a
horizontal independent variable and y for a vertical independent variable, but any string that is
a legal expression language identifier (starts with a letter, continues with letters, numbers,
underscores) can be used.

[Default: x]

8.3.37 skyvector

Plots directed lines from the data position given delta values for the coordinates The plotted
markers are typically little arrows, but there are other options.

The dimensions of the plotted vectors are given by the dlon and dlat coordinates. The units of
these values are specified using the unit option. If only the relative rather than the absolute sizes
are required on the plot, or if the units are not known, the special value unit=scaled may be used;
this applies a non-physical scaling factor to make the vectors appear at some reasonable size in the
plot. When unit=scaled vectors will keep approximately the same screen size during zoom
operations; when one of the angular units is chosen, they will keep the same size in data
coordinates.

Additionally, the scale option may be used to scale all the plotted vectors by a given factor to make
them all larger or smaller.

Usage Overview:

layerN=skyvector arrowN=small_arrow|medium_arrow|... thickN=<int-value>
scaleN=<number>
unitN=scaled|radian|degree|minute|arcsec|mas|uas
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
lonN=<deg-expr> latN=<deg-expr> dlonN=<num-expr>
dlatN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 219

stilts plot2sky in=tgas_source.fits lon=ra lat=dec
layer1=mark
layer2=skyvector
dlon2=pmra dlat2=pmdec unit2=scaled scale2=6 arrow2=medium_arrow
clon=56.75 clat=24.10 radius=1.5

arrowN = small_arrow|medium_arrow|... (MultiPointShape)
How arrows are represented.

The available options are:

• small_arrow

• medium_arrow

• large_arrow

• small_open_dart

• medium_open_dart

• large_open_dart

• small_filled_dart

• medium_filled_dart

• large_filled_dart

• lines

• capped_lines

[Default: small_arrow]

dlatN = <num-expr> (String)
Change in the latitude coordinate represented by the plotted vector. The units of this angular
extent are determined by the unit option.

The value is a numeric algebraic expression based on column names as described in Section
10.

SUN/256 220

dlonN = <num-expr> (String)
Change in the longitude coordinate represented by the plotted vector. The supplied value is
considered to be premultiplied by cos(Latitude). The units of this angular extent are
determined by the unit option.

The value is a numeric algebraic expression based on column names as described in Section
10.

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

latN = <deg-expr> (String)
Latitude in decimal degrees.

SUN/256 221

The value is a numeric algebraic expression based on column names as described in Section
10.

lonN = <deg-expr> (String)
Longitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

scaleN = <number> (Double)
Scales the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

The main purpose of this option is to tweak the visible sizes of the plotted markers for better
visibility. The unit option should be used to account for the units in which the angular extent
coordinates are supplied. If the markers are supposed to be plotted with their absolute angular
extents visible, this option should be set to its default value of 1.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

unitN = scaled|radian|degree|minute|arcsec|mas|uas (AngleUnit)
Defines the units in which the angular extents are specified. Options are degrees, arcseconds
etc. If the special value scaled is given then a non-physical scaling is applied to the input
values to make the the largest markers appear at a reasonable size (a few tens of pixels) in the
plot.

Note that the actual plotted size of the markers can also be scaled using the scale option; these
two work together to determine the actual plotted sizes.

The available options are:

• scaled: a non-physical scaling is applied based on the size of values present
• radian: radians
• degree: degrees
• minute: arcminutes
• arcsec: arcseconds
• mas: milli-arcseconds

SUN/256 222

• uas: micro-arcseconds

[Default: degree]

8.3.38 skyellipse

Plots an ellipse (or rectangle, triangle, or other similar figure) defined by two principal radii and an
optional angle of rotation, the so-called position angle. This angle, if specified, is in degrees and
gives the angle from the North pole towards the direction of increasing longitude on the longitude
axis.

The dimensions of the plotted ellipses are given by the ra and rb coordinates. The units of these
values are specified using the unit option. If only the relative rather than the absolute sizes are
required on the plot, or if the units are not known, the special value unit=scaled may be used; this
applies a non-physical scaling factor to make the ellipses appear at some reasonable size in the plot.
When unit=scaled ellipses will keep approximately the same screen size during zoom operations;
when one of the angular units is chosen, they will keep the same size in data coordinates.

Additionally, the scale option may be used to scale all the plotted ellipses by a given factor to
make them all larger or smaller.

Usage Overview:

layerN=skyellipse ellipseN=ellipse|crosshair_ellipse|... thickN=<int-value>
scaleN=<number>
unitN=scaled|radian|degree|minute|arcsec|mas|uas
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
lonN=<deg-expr> latN=<deg-expr> raN=<num-expr>
rbN=<num-expr> posangN=<deg-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 223

stilts plot2sky in=mgc_ok.fits
lon=mgc_alpha_j2000 lat=mgc_delta_j2000
ra=bulge_re rb=bulge_re*bulge_e unit=arcsec posang=bulge_pa
scale=10 color=#cc00ff
layer1=skyellipse ellipse1=filled_ellipse shading1=transparent opaque1=4
layer2=skyellipse ellipse2=crosshair_ellipse
clon=180.1 clat=0 radius=0.25

ellipseN = ellipse|crosshair_ellipse|... (MultiPointShape)
How ellipses are represented.

The available options are:

• ellipse

• crosshair_ellipse

• filled_ellipse

• rectangle

• crosshair_rectangle

• filled_rectangle

• open_triangle

• filled_triangle

• lines

• capped_lines

• arrows

[Default: ellipse]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter

SUN/256 224

can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

latN = <deg-expr> (String)
Latitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

lonN = <deg-expr> (String)
Longitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

posangN = <deg-expr> (String)
Orientation of the ellipse. The value is the angle in degrees from the North pole to the primary
axis of the ellipse in the direction of increasing longitude.

SUN/256 225

The value is a numeric algebraic expression based on column names as described in Section
10.

raN = <num-expr> (String)
Ellipse first principal radius. The units of this angular extent are determined by the unit

option.

The value is a numeric algebraic expression based on column names as described in Section
10.

rbN = <num-expr> (String)
Ellipse second principal radius. The units of this angular extent are determined by the unit

option. If this value is blank, the two radii will be assumed equal, i.e. the ellipses will be
circles.

The value is a numeric algebraic expression based on column names as described in Section
10.

scaleN = <number> (Double)
Scales the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

The main purpose of this option is to tweak the visible sizes of the plotted markers for better
visibility. The unit option should be used to account for the units in which the angular extent
coordinates are supplied. If the markers are supposed to be plotted with their absolute angular
extents visible, this option should be set to its default value of 1.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

unitN = scaled|radian|degree|minute|arcsec|mas|uas (AngleUnit)
Defines the units in which the angular extents are specified. Options are degrees, arcseconds
etc. If the special value scaled is given then a non-physical scaling is applied to the input
values to make the the largest markers appear at a reasonable size (a few tens of pixels) in the
plot.

Note that the actual plotted size of the markers can also be scaled using the scale option; these
two work together to determine the actual plotted sizes.

SUN/256 226

The available options are:

• scaled: a non-physical scaling is applied based on the size of values present
• radian: radians
• degree: degrees
• minute: arcminutes
• arcsec: arcseconds
• mas: milli-arcseconds
• uas: micro-arcseconds

[Default: degree]

8.3.39 skycorr

Plots an error ellipse (or rectangle or other similar figure) on the sky defined by errors in the
longitude and latitude directions, and a correlation between the two errors.

The error in longitude is considered to be premultiplied by the cosine of the latitude, i.e. both errors
correspond to angular distances along a great circle.

The supplied correlation is a dimensionless value in the range -1..+1 and is equal to the covariance
divided by the product of the lon and lat errors. The covariance matrix is thus:

[lonerr*lonerr lonerr*laterr*corr]
[lonerr*laterr*corr laterr*laterr]

The dimensions of the plotted ellipses are given by the lonerr and laterr coordinates. The units of
these values are specified using the unit option. If only the relative rather than the absolute sizes
are required on the plot, or if the units are not known, the special value unit=scaled may be used;
this applies a non-physical scaling factor to make the ellipses appear at some reasonable size in the
plot. When unit=scaled ellipses will keep approximately the same screen size during zoom
operations; when one of the angular units is chosen, they will keep the same size in data
coordinates.

Additionally, the scale option may be used to scale all the plotted ellipses by a given factor to
make them all larger or smaller.

This plot type is suitable for use with the ra_error, dec_error and ra_dec_corr columns in the
Gaia source catalogue. Note that Gaia positional errors are generally quoted in milli-arcseconds, so
you should set unit=mas. Note also that in most plots Gaia positional errors are much too small to
see!

Usage Overview:

layerN=skycorr ellipseN=ellipse|crosshair_ellipse|... thickN=<int-value>
scaleN=<number>
unitN=scaled|radian|degree|minute|arcsec|mas|uas
shadingN=auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>
lonN=<deg-expr> latN=<deg-expr> lonerrN=<num-expr>
laterrN=<num-expr> corrN=<num-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 227

stilts plot2sky in=tgas_source.fits
lon=ra lat=dec
icmd='select ra>245.1&&ra<245.9&&dec>-17.8&&dec<-17.2'
color=blue
layer1=mark
unit=mas scale=2e5
ra2=ra_error rb2=dec_error posang2=90
color2=orange shading2=transparent
layer2a=skyellipse ellipse2a=filled_rectangle opaque2a=6
layer2b=skyellipse ellipse2b=crosshair_rectangle opaque2b=2
layer3=skycorr
lonerr3=ra_error laterr3=dec_error corr3=ra_dec_corr
ellipse3=crosshair_ellipse

corrN = <num-expr> (String)
Correlation between the errors in longitude and latitude. This is a dimensionless quantity in the
range -1..+1, and is equivalent to the covariance divided by the product of the Longitude and
Latitude error values themselves. It corresponds to the ra_dec_corr value supplied in the Gaia
source catalogue.

The value is a numeric algebraic expression based on column names as described in Section
10.

ellipseN = ellipse|crosshair_ellipse|... (MultiPointShape)
How ellipses are represented.

The available options are:

• ellipse

• crosshair_ellipse

• filled_ellipse

• rectangle

• crosshair_rectangle

SUN/256 228

• filled_rectangle

• open_triangle

• filled_triangle

• lines

• capped_lines

• arrows

[Default: ellipse]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

latN = <deg-expr> (String)

SUN/256 229

Latitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

laterrN = <num-expr> (String)
Error in the latitude coordinate. The units of this angular extent are determined by the unit

option.

The value is a numeric algebraic expression based on column names as described in Section
10.

lonN = <deg-expr> (String)
Longitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

lonerrN = <num-expr> (String)
Error in the longitude coordinate. The supplied value is considered to be premultiplied by
cos(Latitude). The units of this angular extent are determined by the unit option.

The value is a numeric algebraic expression based on column names as described in Section
10.

scaleN = <number> (Double)
Scales the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

The main purpose of this option is to tweak the visible sizes of the plotted markers for better
visibility. The unit option should be used to account for the units in which the angular extent
coordinates are supplied. If the markers are supposed to be plotted with their absolute angular
extents visible, this option should be set to its default value of 1.

[Default: 1]

shadingN = auto|flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• auto (Section 8.4.1)

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: auto]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

unitN = scaled|radian|degree|minute|arcsec|mas|uas (AngleUnit)
Defines the units in which the angular extents are specified. Options are degrees, arcseconds

SUN/256 230

etc. If the special value scaled is given then a non-physical scaling is applied to the input
values to make the the largest markers appear at a reasonable size (a few tens of pixels) in the
plot.

Note that the actual plotted size of the markers can also be scaled using the scale option; these
two work together to determine the actual plotted sizes.

The available options are:

• scaled: a non-physical scaling is applied based on the size of values present
• radian: radians
• degree: degrees
• minute: arcminutes
• arcsec: arcseconds
• mas: milli-arcseconds
• uas: micro-arcseconds

[Default: degree]

8.3.40 skydensity

Plots a density map on the sky. The grid on which the values are drawn uses the HEALPix
tesselation, with a configurable resolution. You can optionally use a weighting for the points, and
you can configure how the points are combined to produce the output pixel values.

The way that data values are mapped to colours is usually controlled by options at the level of the
plot itself, rather than by per-layer configuration.

Usage Overview:

layerN=skydensity levelN=<-rel-level|+abs-level>
combineN=sum|sum-per-unit|count|...
perunitN=steradian|degree2|arcmin2|arcsec2|mas2|uas2
transparencyN=0..1 lonN=<deg-expr> latN=<deg-expr>
weightN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 231

stilts plot2sky in=tgas_source.fits lon=l lat=b
layer1=skydensity weight1=parallax combine1=mean level1=4
projection=aitoff auxmap=PuRd auxfunc=histogram
xpix=540 ypix=250

combineN = sum|sum-per-unit|count|... (Combiner)
Defines how values contributing to the same density map bin are combined together to
produce the value assigned to that bin, and hence its colour. The combined values are the
weights, but if the weight is left blank, a weighting of unity is assumed.

For density-like values (count-per-unit, sum-per-unit) the scaling is additionally influenced
by the perunit parameter.

The available options are:

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)
• mean: the mean of the combined values
• median: the median
• q1: first quartile
• q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

[Default: sum-per-unit]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.

SUN/256 232

• The special value "-", meaning standard input. In this case the input format must be given
explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

latN = <deg-expr> (String)
Latitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

levelN = <-rel-level|+abs-level> (Integer)
Determines the HEALPix level of pixels which are averaged over to calculate density.

If the supplied value is a non-negative integer, it gives the absolute level to use; at level 0 there
are 12 pixels on the sky, and the count multiplies by 4 for each increment.

If the value is negative, it represents a relative level; it is approximately the (negative) number
of screen pixels along one side of a HEALPix sky pixel. In this case the actual HEALPix level
will depend on the current zoom.

[Default: -3]

lonN = <deg-expr> (String)
Longitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

perunitN = steradian|degree2|arcmin2|arcsec2|mas2|uas2 (SolidAngleUnit)
Defines the unit of sky area used for scaling density-like combinations (e.g.
combine=count-per-unit or sum-per-unit). If the Combination mode is calculating values
per unit area, this configures the area scale in question. For non-density-like combination
modes (e.g. combine=sum or mean) it has no effect.

The available options are:

• steradian: (180/Pi)^2 deg^2
• degree2: square degrees
• arcmin2: square arcminute, (1/60)^2 deg^2
• arcsec2: square arcsecond, (1/3600)^2 deg^2
• mas2: square milliarcsecond, (.001/3600)^2 deg^2
• uas2: square microarcsecond, (1e-6/3600)^2 deg^2

[Default: degree2]

SUN/256 233

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

weightN = <num-expr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
a fixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.41 healpix

Plots a table representing HEALPix pixels on the sky. Each row represents a single HEALPix tile,
and a value from that row is used to colour the corresponding region of the sky plot.

The way that data values are mapped to colours is usually controlled by options at the level of the
plot itself, rather than by per-layer configuration.

Usage Overview:

layerN=healpix datalevelN=<int-value> datasysN=<value> degradeN=<int-value>
combineN=sum|sum-per-unit|count|...
perunitN=steradian|degree2|arcmin2|arcsec2|mas2|uas2
transparencyN=0..1 healpixN=<num-expr> valueN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false
icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2sky layer1=healpix in1=simbad-hpx8.fits healpix1=HPX8 value1=NBREF
datalevel1=8 degrade1=2 combine=sum-per-unit perunit=arcmin2
projection=aitoff datasys1=equatorial viewsys=galactic labelpos=none gridcolor=beige
auxfunc=log auxmap=cold auxflip=true auxclip=0,1
xpix=600 ypix=280

SUN/256 234

combineN = sum|sum-per-unit|count|... (Combiner)
Defines how values degraded to a lower HEALPix level are combined together to produce the
value assigned to the larger tile, and hence its colour. This is mostly useful in the case that
degrade>0.

For density-like values (count-per-unit, sum-per-unit) the scaling is additionally influenced
by the perunit parameter.

The available options are:

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)
• mean: the mean of the combined values
• median: the median
• q1: first quartile
• q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

[Default: mean]

datalevelN = <int-value> (Integer)
HEALPix level of the (implicit or explicit) tile indices. Legal values are between 0 (12 pixels)
and 29 (3458764513820540928 pixels). If a negative value is supplied (the default), then an
attempt is made to determine the correct level from the data.

[Default: -1]

datasysN = <value> (SkySys)
The sky coordinate system to which the HEALPix grid used by the input pixel file refers.

[Default: equatorial]

degradeN = <int-value> (Integer)
Allows the HEALPix grid to be drawn at a less detailed level than the level at which the input
data are supplied. A value of zero (the default) means that the HEALPix tiles are painted with
the same resolution as the input data, but a higher value will degrade resolution of the plot
tiles; each plotted tile will correspond to 4^degrade input tiles. The way that values are
combined within each painted tile is controlled by the combine value.

[Default: 0]

healpixN = <num-expr> (String)
HEALPix index indicating the sky position of the tile whose value is plotted. If not supplied,
the assumption is that the supplied table contains one row for each HEALPix tile at a given
level, in ascending order.

The value is a numeric algebraic expression based on column names as described in Section
10.

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.

SUN/256 235

The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

perunitN = steradian|degree2|arcmin2|arcsec2|mas2|uas2 (SolidAngleUnit)
Defines the unit of sky area used for scaling density-like combinations (e.g.
combine=count-per-unit or sum-per-unit). If the Combination mode is calculating values
per unit area, this configures the area scale in question. For non-density-like combination
modes (e.g. combine=sum or mean) it has no effect.

The available options are:

• steradian: (180/Pi)^2 deg^2
• degree2: square degrees
• arcmin2: square arcminute, (1/60)^2 deg^2
• arcsec2: square arcsecond, (1/3600)^2 deg^2
• mas2: square milliarcsecond, (.001/3600)^2 deg^2
• uas2: square microarcsecond, (1e-6/3600)^2 deg^2

SUN/256 236

[Default: degree2]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

valueN = <num-expr> (String)
Value of HEALPix tile, determining the colour which will be plotted.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.42 skygrid

Plots an additional axis grid on the celestial sphere. This can be overlaid on the default sky axis grid
so that axes for multiple sky coordinate systems are simultaneously visible. The plots are done
relative to the View sky system (viewsys parameter) defined for the plot as a whole.

Note that some of the configuration items for this plotter, such as grid line antialiasing and the
decimal/sexagesimal flag, are inherited from the values set for the main sky plot grid.

Usage Overview:

layerN=skygrid gridsysN=equatorial|galactic|supergalactic|ecliptic
gridcolorN=<rrggbb>|red|blue|... transparencyN=0..1
labelposN=Internal|None loncrowdN=<number> latcrowdN=<number>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2sky xpix=500 ypix=250 projection=aitoff
viewsys=equatorial labelpos=none sex=false
layer1=skygrid gridsys1=ecliptic gridcolor1=HotPink transparency1=0.7 labelpos1=internal

gridcolorN = <rrggbb>|red|blue|... (Color)

SUN/256 237

The color of the plot grid, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: grey]

gridsysN = equatorial|galactic|supergalactic|ecliptic (SkySys)
The sky coordinate system used for the additional grid axes. This is used in conjunction with
the viewsys parameter defined for the plot as a whole to determine what grid lines to plot.

The available options are:

• equatorial: J2000 equatorial system
• galactic: IAU 1958 galactic system
• supergalactic: De Vaucouleurs supergalactic system
• ecliptic: ecliptic system based on conversion at 2000.0

[Default: equatorial]

labelposN = Internal|None (SkyAxisLabeller)
Controls how and whether the numeric annotations of the lon/lat axes are displayed.

The available options are:

• Internal: Labels are drawn inside the plot bounds
• None: Axes are not labelled

[Default: Internal]

latcrowdN = <number> (Double)
Determines how closely sky latitude grid lines (parallels) are spaced. The default value is 1,
meaning normal crowding. Larger values result in more grid lines, and smaller values in fewer
grid lines.

[Default: 1]

loncrowdN = <number> (Double)
Determines how closely sky longitude grid lines (meridians) are spaced. The default value is 1,
meaning normal crowding. Larger values result in more grid lines, and smaller values in fewer
grid lines.

[Default: 1]

transparencyN = 0..1 (Double)
Transparency with which components are plotted, in the range 0 (opaque) to 1 (invisible). The
value is 1-alpha.

[Default: 0]

8.3.43 xyzvector

Plots directed lines from the data position given delta values for the coordinates. The plotted
markers are typically little arrows, but there are other options.

SUN/256 238

In some cases the supplied data values give the actual extents in data coordinates for the plotted
vectors but sometimes the data is on a different scale or in different units to the positional
coordinates. As a convenience for this case, the plotter can optionally scale the magnitudes of all
the vectors to make them a reasonable size on the plot, so by default the largest ones are a few tens
of pixels long. This auto-scaling is turned off by default, but it can be activated with the autoscale

option. Whether autoscaling is on or off, the scale option can be used to apply a fixed scaling
factor.

Usage Overview:

layerN=xyzvector arrowN=small_arrow|medium_arrow|... thickN=<int-value>
scaleN=<factor> autoscaleN=true|false
shadingN=flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xN=<num-expr> yN=<num-expr> zN=<num-expr>
xdeltaN=<num-expr> ydeltaN=<num-expr> zdeltaN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false
icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2cube in=gavo_g2.fits
x=x y=y z=z xdelta=velX ydelta=velY zdelta=velZ autoscale=true
color=BlueViolet scale=1.5
layer1=xyzvector shading1=transparent opaque1=5 arrow1=medium_filled_dart
layer2=xyzvector shading2=flat arrow2=medium_open_dart
xmin=6 xmax=7.5 ymin=12.5 ymax=13.5 zmin=19 zmax=21.5

arrowN = small_arrow|medium_arrow|... (MultiPointShape)
How arrows are represented.

SUN/256 239

The available options are:

• small_arrow

• medium_arrow

• large_arrow

• small_open_dart

• medium_open_dart

• large_open_dart

• small_filled_dart

• medium_filled_dart

• large_filled_dart

• lines

• capped_lines

[Default: small_arrow]

autoscaleN = true|false (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be a few tens of pixels). If false, the sizes will be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scale parameter.

[Default: false]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this

SUN/256 240

way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

scaleN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadingN = flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: flat]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xN = <num-expr> (String)
X coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xdeltaN = <num-expr> (String)
Vector component in the X direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <num-expr> (String)

SUN/256 241

Y coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

ydeltaN = <num-expr> (String)
Vector component in the Y direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

zN = <num-expr> (String)
Z coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

zdeltaN = <num-expr> (String)
Vector component in the Z direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.44 xyzerror

Plots symmetric or asymmetric error bars in some or all of the plot dimensions. The shape of the
error "bars" is quite configurable, including (for 2-d and 3-d errors) ellipses, rectangles etc aligned
with the axes.

Usage Overview:

layerN=xyzerror errorbarN=none|lines|capped_lines|... thickN=<int-value>
shadingN=flat|translucent|transparent|density|aux|weighted <shade-paramsN>
xN=<num-expr> yN=<num-expr> zN=<num-expr> xerrhiN=<num-expr>
xerrloN=<num-expr> yerrhiN=<num-expr> yerrloN=<num-expr>
zerrhiN=<num-expr> zerrloN=<num-expr> inN=<table>
ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 242

stilts plot2cube in=dr5qso.fits icmd='select morphology==1'
x=psfmag_g xerrhi=psfmagerr_g
y=psfmag_r yerrhi=psfmagerr_r
z=psfmag_u zerrhi=psfmagerr_u
layer1=mark
layer2=xyzerror errorbar2=cuboid
shading=transparent opaque=3
xmin=17.5 xmax=18 ymin=17.3 ymax=17.7 zmin=17.4 zmax=18.2

errorbarN = none|lines|capped_lines|... (MultiPointShape)
How errorbars are represented.

The available options are:

• none

• lines

• capped_lines

• caps

• arrows

• cuboid

• ellipse

• crosshair_ellipse

• rectangle

• crosshair_rectangle

• filled_ellipse

• filled_rectangle

[Default: lines]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If

SUN/256 243

more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = flat|translucent|transparent|density|aux|weighted <shade-paramsN>

(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• flat (Section 8.4.2)

• translucent (Section 8.4.3)

• transparent (Section 8.4.4)

• density (Section 8.4.5)

• aux (Section 8.4.6)

• weighted (Section 8.4.7)

SUN/256 244

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: flat]

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

xN = <num-expr> (String)
X coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrhiN = <num-expr> (String)
Error in the X coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrloN = <num-expr> (String)
Error in the X coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <num-expr> (String)
Y coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrhiN = <num-expr> (String)
Error in the Y coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrloN = <num-expr> (String)
Error in the Y coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

zN = <num-expr> (String)
Z coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

zerrhiN = <num-expr> (String)
Error in the Z coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section

SUN/256 245

10.

zerrloN = <num-expr> (String)
Error in the Z coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.45 line3d

Plots a point-to-point line joining up the positions of data points in three dimensions. There are
additional options to pre-sort the points by a given quantity before drawing the lines (using the sort

value), and to vary the colour of the line along its length (using the aux value). The options for
controlling the Aux colour map are controlled at the level of the plot itself, rather than by per-layer
configuration.

Note that the line positioning in 3d and the line segment aux colouring is somewhat approximate. In
most cases it is good enough for visual inspection, but pixel-level examination may reveal
discrepancies.

Usage Overview:

layerN=line3d colorN=<rrggbb>|red|blue|... thickN=<pixels>
<pos-coord-paramsN> auxN=<num-expr> sortN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos-coord-paramsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (plot2plane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

Example:

SUN/256 246

stilts plot2cube in=iers.fits x=x y=y z=LOD
layer1=line3d icmd1='select decYear>1963&&decYear<1964.5' thick1=3 aux1=LOD
layer2=mark shading2=translucent color2=cccc00 translevel2=0.35
auxmap=cyan-magenta auxvisible=false legend=false
phi=-150 theta=25 psi=180 xpix=400 ypix=400

auxN = <num-expr> (String)
If supplied, this adjusts the colouring of the line along its length according to the value of this
coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

SUN/256 247

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

sortN = <num-expr> (String)
If supplied, this gives a value to define in what order points are joined together. If no value is
given, the natural order is used, i.e. the sequence of rows in the table.

Note that if the required order is in fact the natural order of the table, it is better to leave this
value blank, since sorting is a potentially expensive step.

The value is a numeric algebraic expression based on column names as described in Section
10.

thickN = <pixels> (Integer)

SUN/256 248

Thickness of plotted line in pixels.

[Default: 1]

8.3.46 spheregrid

Plots a spherical grid around the origin of a 3-d plot. The radius of the sphere can be configured
explicitly, otherwise a suitable default value (that should make at least some of the grid visible) will
be chosen.

Usage Overview:

layerN=spheregrid radiusN=<number> gridcolorN=<rrggbb>|red|blue|...
thickN=<pixels> nlonN=<int-value> nlatN=<int-value>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2sphere legend=false xpix=350 ypix=350
layer1=mark in1=tgas_source.fits lon1=ra lat1=dec r1=1
shading1=transparent opaque1=850 color1=orange
layer2=spheregrid gridcolor2=green thick2=2

gridcolorN = <rrggbb>|red|blue|... (Color)
The color of the spherical grid, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to

SUN/256 249

list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: grey]

nlatN = <int-value> (Integer)
Number of latitude lines to plot both above and below the equator in the spherical grid. A
value of zero plots just the equator, and negative values plot no parallels at all.

[Default: 2]

nlonN = <int-value> (Integer)
Number of longitude great circles to plot in the spherical grid. Since each great circle joins the
poles in two hemispheres, this value is half the number of meridians to be drawn.

[Default: 3]

radiusN = <number> (Double)
Defines the radius of the spherical grid that is drawn around the origin. Positive values give the
radius in data units, negative values provide a multiplier for the default radius which is chosen
on the basis of the currently visible volume.

[Default: -1]

thickN = <pixels> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

8.3.47 yerror

Plots symmetric or asymmetric error bars in the Y direction.

Usage Overview:

layerN=yerror errorbarN=none|lines|capped_lines|caps|arrows
thickN=<int-value> shadingN=flat <shade-paramsN>
tN=<time-expr> ttypeN=DecYear|MJD|JD|Unix|Iso8601
yN=<num-expr> yerrhiN=<num-expr> yerrloN=<num-expr>
inN=<table> ifmtN=<in-format> istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 250

stilts plot2time in=ACE_data.vot t=epoch y=Bmag
layer1=yerror yerrhi1=sigma_B errorbar1=capped_lines
layer2=mark shape2=open_circle size2=3
layer3=line color3=a0a0a0
tmin=2001-08-17T07 tmax=2001-08-17T10 ypix=250

errorbarN = none|lines|capped_lines|caps|arrows (MultiPointShape)
How errorbars are represented.

The available options are:

• none

• lines

• capped_lines

• caps

• arrows

[Default: lines]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for

SUN/256 251

scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

shadingN = flat <shade-paramsN> (ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

• flat (Section 8.4.2)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: flat]

tN = <time-expr> (String)
Time coordinate.

The value is a Time value algebraic expression based on column names as described in Section
10.

thickN = <int-value> (Integer)
Controls the line thickness used when drawing shapes. Zero, the default value, means a
1-pixel-wide line is used. Larger values make drawn lines thicker, but note changing this value
will not affect all shapes, for instance filled rectangles contain no line drawings.

[Default: 0]

ttypeN = DecYear|MJD|JD|Unix|Iso8601 (TimeMapper)
Selects the form in which the Time value for parameter tN is supplied. Options are:

• DecYear: Years since 0 AD
• MJD: Modified Julian Date
• JD: Julian Day
• Unix: Seconds since midnight 1 Jan 1970
• Iso8601: ISO 8601 string

SUN/256 252

If left blank, a guess will be taken depending on the data type of the value supplied for the tN

value.

yN = <num-expr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrhiN = <num-expr> (String)
Error in the Y coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrloN = <num-expr> (String)
Error in the Y coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.48 spectrogram

Plots spectrograms. A spectrogram is a sequence of spectra plotted as vertical 1-d images, each one
plotted at a different horizontal coordinate.

This specialised layer is only available for time plots.

The way that data values are mapped to colours is usually controlled by options at the level of the
plot itself, rather than by per-layer configuration.

Usage Overview:

layerN=spectrogram scalespecN=true|false tN=<time-expr>
ttypeN=DecYear|MJD|JD|Unix|Iso8601 spectrumN=<array-expr>
twidthN=<num-expr> inN=<table> ifmtN=<in-format>
istreamN=true|false icmdN=<cmds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 253

stilts plot2time layer1=spectrogram in1=LRS_NPW_V010_20071101.cdf t1=epoch spectrum1=RX2
t2func=mjd t2label=MJD
auxfunc=linear auxmap=plasma auxclip=0,1
xpix=600 ypix=320
tmin=2007-11-01T00 tmax=2007-11-01T12
ylog=true ylabel=Frequency/Hz ymin=8e4 ymax=2e7

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter inN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this

SUN/256 254

way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

scalespecN = true|false (Boolean)
If true, an attempt will be made to plot the spectra on a vertical axis that represents their
physical values. This is only possible if the column or table metadata contains a suitable array
that gives bin extents or central wavelengths or similar. An ad hoc search is made of column
and table metadata to find an array that looks like it is intended for this purpose.

If this flag is set false, or if no suitable array can be found, the vertical axis just represents
channel indices and so is labelled from 0 to the number of channels per spectrum.

This configuration item is somewhat experimental; the details of how the spectral axis is
configured may change in future releases.

[Default: true]

spectrumN = <array-expr> (String)
Provides an array of spectral samples at each data point. The value must be a numeric array
(e.g. the value of an array-valued column).

The value is an array-valued algebraic expression based on column names as described in
Section 10. Some of the functions in the Arrays class may be useful here.

tN = <time-expr> (String)
Time coordinate.

The value is a Time value algebraic expression based on column names as described in Section
10.

ttypeN = DecYear|MJD|JD|Unix|Iso8601 (TimeMapper)
Selects the form in which the Time value for parameter tN is supplied. Options are:

• DecYear: Years since 0 AD
• MJD: Modified Julian Date
• JD: Julian Day
• Unix: Seconds since midnight 1 Jan 1970
• Iso8601: ISO 8601 string

If left blank, a guess will be taken depending on the data type of the value supplied for the tN

value.

twidthN = <num-expr> (String)
Range on the Time axis over which the spectrum is plotted. If no value is supplied, an attempt
will be made to determine it automatically by looking at the spacing of the Time coordinates
plotted in the spectrogram.

SUN/256 255

The value is a numeric algebraic expression based on column names as described in Section
10.

8.4 Shading Modes

Some plot layer types have an associated shading parameter which determines how plotted markers
are coloured. This is independent of the marker shapes (which may be points, vectors, ellipses, ...)
but may be affected by how many markers are plotted on top of each other, additional input table
values, selected colour maps etc. For the simplest shading types (e.g. flat) it's just a case of
choosing a colour, but the more complex ones have several associated parameters.

The various shading types and their usages are described in the following subsections.

8.4.1 auto

Paints isolated points in their selected colour but where multiple points in the same layer overlap it
adjusts the clour by darkening it. This means that for isolated points (most or all points in a
non-crowded plot, or outliers in a crowded plot) it behaves just like flat mode, but it's easy to see
where overdense regions lie.

This is like density mode, but with no user-configurable options.

Usage:

shadingN=auto colorN=<rrggbb>|red|blue|...

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 256

stilts plot2plane layer1=mark in1=dr5qso.fits
shading1=auto
x1=psfmag_g-psfmag_r y1=psfmag_u-psfmag_g size1=2
xmin=-0.5 xmax=2.5 ymin=-1 ymax=6

Associated parameters are as follows:

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

8.4.2 flat

Paints markers in a single fixed colour.

Usage:

shadingN=flat colorN=<rrggbb>|red|blue|...

SUN/256 257

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane layer1=mark in1=dr5qso.fits
shading1=flat
x1=psfmag_g-psfmag_r y1=psfmag_u-psfmag_g size1=2
xmin=-0.5 xmax=2.5 ymin=-1 ymax=6

Associated parameters are as follows:

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

8.4.3 translucent

Paints markers in a transparent version of their selected colour. The degree of transparency is
determined by how many points are plotted on top of each other and by the transparency level.

SUN/256 258

Unlike transparent mode, the transparency varies according to the average point density in the plot,
so leaving the setting the same as you zoom in and out usually has a sensible effect.

Usage:

shadingN=translucent colorN=<rrggbb>|red|blue|... translevelN=<number>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane layer1=mark in1=dr5qso.fits
shading1=translucent
x1=psfmag_g-psfmag_r y1=psfmag_u-psfmag_g size1=2
xmin=-0.5 xmax=2.5 ymin=-1 ymax=6

Associated parameters are as follows:

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

SUN/256 259

[Default: red]

translevelN = <number> (Double)
Sets the level of automatically controlled transparency. The higher this value the more
transparent points are. Exactly how transparent points are depends on how many are currently
being plotted on top of each other and the value of this parameter. The idea is that you can set
it to some fixed value, and then get something which looks similarly transparent while you
zoom in and out.

[Default: 0.1]

8.4.4 transparent

Paints markers in a transparent version of their selected colour. The degree of transparency is
determined by how many points are plotted on top of each other and by the opaque limit. The
opaque limit fixes how many points must be plotted on top of each other to completely obscure the
background. This is set to a fixed value, so a transparent level that works well for a crowded region
(or low magnification) may not work so well for a sparse region (or when zoomed in).

Usage:

shadingN=transparent colorN=<rrggbb>|red|blue|... opaqueN=<number>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane layer1=mark in1=dr5qso.fits
shading1=transparent
x1=psfmag_g-psfmag_r y1=psfmag_u-psfmag_g size1=2

SUN/256 260

xmin=-0.5 xmax=2.5 ymin=-1 ymax=6

Associated parameters are as follows:

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

opaqueN = <number> (Double)
The opacity of plotted points. The value is the number of points which have to be overplotted
before the background is fully obscured.

[Default: 4]

8.4.5 density

Paints markers using a configurable colour map to indicate how many points are plotted over each
other. Specifically, it colours each pixel according to how many times that pixel has has been
covered by one of the markers plotted by the layer in question. To put it another way, it generates a
false-colour density map with pixel granularity using a smoothing kernel of the form of the markers
plotted by the layer. The upshot is that you can see the plot density of points or other markers
plotted.

This is like auto mode, but with more user-configurable options.

Usage:

shadingN=density colorN=<rrggbb>|red|blue|...
densemapN=<map-name>|<color>-<color>[-<color>...]
denseclipN=<lo>,<hi> denseflipN=true|false
densequantN=<number> densesubN=<lo>,<hi>
densefuncN=log|linear|histogram|histolog|sqrt|square|acos|cos

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 261

stilts plot2plane layer1=mark in1=dr5qso.fits
shading1=density densemap1=viridis
x1=psfmag_g-psfmag_r y1=psfmag_u-psfmag_g size1=2
xmin=-0.5 xmax=2.5 ymin=-1 ymax=6

Associated parameters are as follows:

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

denseclipN = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Density shading. The value is specified as
a (low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or
all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white

SUN/256 262

background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

denseflipN = true|false (Boolean)
If true, the colour map on the Density axis will be reversed.

[Default: false]

densefuncN = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Density range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis
• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling
• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable (though it can be restricted using the densesub option) The Linear, Log, Square and
Sqrt options just apply the named function to the full data range. The histogram options on the
other hand use a scaling function that corresponds to the actual distribution of the data, so that
there are about the same number of points (or pixels, or whatever is being scaled) of each
colour. The histogram options are somewhat more expensive, but can be a good choice if you
are exploring data whose distribution is unknown or not well-behaved over its min-max range.
The Histogram and HistoLog options both assign the colours in the same way, but they
display the colour ramp with linear or logarithmic annotation respectively; the HistoLog

option also ignores non-positive values.

[Default: log]

densemapN = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Density axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: blacker, whiter, inferno,
magma, plasma, viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel,
cosmic, ember, gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon,
tropical, accent, gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn,
redshift, pride, rdbu, piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light,
greyscale, colour, standard, bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue,
intensity, rgb_red, rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v,
scale_hsv_s, scale_hsv_v, scale_yuv_y. Note: many of these, including rainbow-like ones,
are frowned upon by the visualisation community.

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

[Default: blacker]

densequantN = <number> (Double)
Allows the colour map used for the Density axis to be quantised. If an integer value N is
chosen then the colour map will be viewed as N discrete evenly-spaced levels, so that only N
different colours will appear in the plot. This can be used to generate a contour-like effect, and

SUN/256 263

may make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

densesubN = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the Density axis. The value may be
specified as a comma-separated pair of two numbers, giving the lower and upper bounds of the
range of of interest respectively. This sub-range is applied to the data range that would
otherwise be used, either automatically calculated or explicitly supplied; zero corresponds to
the lower bound and one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

[Default: 0,1]

8.4.6 aux

Paints markers in a colour determined by the value of an additional data coordinate. The marker
colours then represent an additional dimension of the plot. You can also adjust the transparency of
the colours used. The way that data values are mapped to colours is usually controlled by options at
the level of the plot itself, rather than by per-layer configuration.

Usage:

shadingN=aux auxN=<num-expr> auxnullcolorN=<rrggbb>|red|blue|...
opaqueN=<number>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

SUN/256 264

stilts plot2plane layer1=mark in1=dr5qso.fits
shading1=aux aux1=z auxmap=plasma
x1=psfmag_g-psfmag_r y1=psfmag_u-psfmag_g size1=2
xmin=-0.5 xmax=2.5 ymin=-1 ymax=6

Associated parameters are as follows:

auxN = <num-expr> (String)
Colour coordinate for Aux shading.

This parameter gives a column name, fixed value, or algebraic expression for the aux

coordinate for layer N. The value is a numeric algebraic expression based on column names as
described in Section 10.

auxnullcolorN = <rrggbb>|red|blue|... (Color)
The color of points with a null value of the Aux coordinate, given by name or as a hexadecimal
RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

If the value is null, then points with a null Aux value will not be plotted at all.

[Default: grey]

opaqueN = <number> (Double)
The opacity of points plotted in the Aux colour. The value is the number of points which have

SUN/256 265

to be overplotted before the background is fully obscured.

[Default: 1]

8.4.7 weighted

Paints markers like the Density mode, but with optional weighting by an additional coordinate. You
can configure how the weighted coordinates are combined to give the final weighted result. The
way that data values are mapped to colours is usually controlled by options at the level of the plot
itself, rather than by per-layer configuration.

Usage:

shadingN=weighted weightN=<num-expr> colorN=<rrggbb>|red|blue|...
combineN=sum|count|mean|median|...

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Example:

stilts plot2plane layer1=mark in1=dr5qso.fits
shading1=weighted weight1=z auxmap=plasma
x1=psfmag_g-psfmag_r y1=psfmag_u-psfmag_g size1=2
xmin=-0.5 xmax=2.5 ymin=-1 ymax=6

Associated parameters are as follows:

colorN = <rrggbb>|red|blue|... (Color)
The color of plotted data, given by name or as a hexadecimal RGB value.

SUN/256 266

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: red]

combineN = sum|count|mean|median|... (Combiner)
Defines how values contributing to the same pixel are combined together to produce the value
assigned to that pixel (and hence its colour).

When a weight is in use, mean or sum are typically sensible choices. If there is no weight (a
pure density map) then count is usually better, but in that case it may make more sense (it is
more efficient) to use one of the other shading modes instead.

The available options are:

• sum: the sum of all the combined values per bin
• count: the number of non-blank values per bin (weight is ignored)
• mean: the mean of the combined values
• median: the median
• q1: first quartile
• q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

[Default: mean]

weightN = <num-expr> (String)
Weight coordinate for weighted density shading.

This parameter gives a column name, fixed value, or algebraic expression for the weight

coordinate for layer N. The value is a numeric algebraic expression based on column names as
described in Section 10.

8.5 Output Modes

The plots generated by the plotting commands can be used in various different ways. One thing you
might want to do is to write the output to a file in a given graphics format (out); another is to
preview it directly on the screen (swing). By default one or other of these will happen depending on
whether you specify an output file. However there are other possibilities; these are listed in the
following subsections.

Except for display to the screen, these modes should work happily on a headless machine (one with
no graphics display, as may be the case for a web server). When running headless, you may find it
necessary to set the java system property "java.awt.headless" to true - see Section 3.3.

The default output mode is auto, which means that output is to a file if an output file is specified, or
to the screen if it is not. So in most cases you don't need to specify the omode parameter explicitly.

SUN/256 267

8.5.1 swing

Usage:
omode=swing

Plot will be displayed in a window on the screen. This plot is "live"; it can be resized and (except
for old-style plots) navigated around with mouse actions in the same way as plots in TOPCAT.

8.5.2 out

Usage:
omode=out out=<out-file> ofmt=png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip

Plot will be written to a file given by out using the graphics format given by ofmt.

8.5.3 cgi

Usage:
omode=cgi ofmt=png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip

Plot will be written in a way suitable for CGI use direct from a web server. The output is in the
graphics format given by ofmt, preceded by a suitable "Content-type" declaration.

8.5.4 discard

Usage:
omode=discard

Plot is drawn, but discarded. There is no output.

8.5.5 auto

Usage:
omode=auto [out=<out-file>]

Behaves as swing or out mode depending on presence of out parameter

8.6 Export Formats

Several of the plot output modes write the plot in some graphics format or other. When selecting an
output format it is important to understand the distinction between bitmapped and vector formats;
basically bitmapped formats represent the image as a grid of finite-sized pixels while vector formats
notionally draw smooth lines. Bitmapped formats are fine for a computer screen, but for high
quality paper printouts you will want a vector format. You can convert from vector to bitmapped
but not (usefully) in the other direction. There are a couple of subtleties to this distinction specific
to STILTS graphical output as discussed below.

The following formats are the available values for the ofmt parameter of the various plot
commands:

png

SUN/256 268

PNG format. This is a flexible bitmapped format providing transparency and an unlimited
number of colours with good lossless compression. It is widely supported by non-ancient
browsers and other image viewers, and is generally recommended for bitmapped output.

gif

GIF format. This is a bitmapped format providing transparency and lossless compression. The
number of colours is limited to 255 however, so if you are using auxiliary axes (colour
variation to represent higher dimensionality) or other plot features which use a wide range of
colours you may see image degradation. It has long been widely supported by browsers and
other image viewers.

jpeg

JPEG format. This is a bitmapped format with lossy compression intended primarily for
photographs. Transparency is not supported, and although there is no limit on the maximum
number of colours, its lossiness means that plots generated using it generally look a bit
smudged.

pdf

Portable Document Format. This is the format which can be read by Adobe's Acrobat Reader.
It is a widely portable vector format, and is suitable for printing at high resolution, either
standalone or imported into some other presentation format. However, there are a couple of
caveats when it comes to using it with STILTS plots.

1. If used to plot a very large number of points, the output PDF file can get quite large,
though it's much better than for eps output (see below).

2. For certain colour shading options (auto, density, and in some circumstances
transparency), the body of the plot will be drawn as a bitmap rather than vector graphics.
This is sometimes a blessing in disguise since with very large numbers of points a vector
PDF file could get unmanageably large in any case. In this case the interior of the plot
will be pixellated. The axes and annotations outside of the plot will still be drawn in
vector format however.

svg

Scalable Vector Graphics. This is an XML-based vector graphics format developed for display
in web pages, and defined by the W3C. This exporter can generate OutOfMemoryErrors if
asked to generate a large output file.

eps

Encapsulated Postscript. This is a vector format which is suitable for printing at high resolution
either standalone or imported into some other presentation format (you may need to convert it
via PDF depending on the intended destination). However, there are a couple of caveats when
it comes to using it with STILTS plots.

1. Unfortunately the postscript driver used by STILTS is not very efficient and can result in
large, sometimes very large, postscript output files. This is likely to be a problem for plots
with a large number of non-transparent points. For this reason eps-gzip or pdf may be a
better choice.

2. Postscript has no support for partial transparency, so if plots are drawn with partially
transparent points (common for very large data sets) the only way they can be rendered is
by drawing the body of the plot as a bitmap rather than as vector graphics. This is
sometimes a blessing in disguise since with very large numbers of points a vector
postscript file would likely be unmanageably large in any case. So if there is any
transparency in the plot, the interior of the plot will be pixellated. The axes and
annotations outside of the plot will still be drawn in vector format however.

eps-gzip

Just like the eps format above except that the output is automatically compressed using the
GZIP format as it is written. Postscript compresses well (typically a factor of 5-10).

SUN/256 269

8.7 Colour Maps

A number of colour maps are available, and used for instance with the shading modes density, aux
and weighted. Not all colour maps are suitable/available in all contexts, and in some cases the maps
are by default clipped at one end to avoid for instance white-on-white plotting, but the lists below
give an overview of which named colourmaps can be used. Note that custom colourmaps can also
be used by supplying a specification like "red-yellow-blue".

The absolute colour maps are listed below: these do not depend on the underlying colour of the
plotted symbols, so are suitable when only one dataset is being plotted.

Absolute colour maps

The non-absolute colour maps are listed below: these modify an underlying colour, so are suitable
for applying to several different datasets with different underlying colours. The representation here
shows how they affect several different colours; for each row of pixels the unmodified (value=0)
colour is at the left of the image and the most modified (value=1) is at the right.

Non-absolute colour maps

These colour maps have been derived from several sources, including SkyCat/GAIA, MatPlotLib
1.5, Gnuplot, Daniel Michalik, Paul Tol, CMasher, Color Brewer, HCL Wizard, Dave Green, xkcd,
and maybe some others I forgot.

SUN/256 270

SUN/256 271

9 Old-Style Plotting

This section describes deprecated commands. For recommended plotting commands, see Section 8.

From version 2.0 (October 2008), STILTS incorporated three table plotting commands:

• plot2d: Old-style 2D Scatter Plot
• plot3d: Old-style 3D Scatter Plot
• plothist: Old-style Histogram

These provided command-line access to some, though not all, of the plotting capabilities offered by
TOPCAT.

Since version 3.0 (October 2014), these commands are deprecated in favour of the more powerful
ones described in Section 8. The rest of this section describes some aspects of the deprecated
commands for the benefit of legacy code. The output modes and formats are the same in old- and
new-style plots, and are discussed in Section 8.5 and Section 8.6. The handling of parameters and
suffixes for these commands is not quite the same as for new-style plots, and is documented in the
next subsection.

As a simple example, if a file "cat.fits" contains the columns RMAG and BMAG for red and blue
magnitudes, you can draw a two-dimensional colour-magnitude scatter plot with the command:

stilts plot2d in=cat.fits xdata=BMAG-RMAG ydata=BMAG

Since an output file is not specified, the plot is shown on the screen for convenience. To send the
output to a PNG file, do instead:

stilts plot2d in=cat.fits xdata=BMAG-RMAG ydata=BMAG out=plot.png ofmt=png

in some cases (including the above), the ofmt parameter is not required since STILTS may be able
to guess the format from the output file name. Various other options for output and graphics formats
are described in Section 8.5 and Section 8.6

Some of the parameters use suffixes to define data sets and therefore behave a bit differently from
the parameters elsewhere in STILTS - a discussion of these is given in the following subsection.
Some other plotting-specific topics are also discussed below.

9.1 Parameter Suffixes

This section describes deprecated commands. For recommended plotting commands, see Section 8.

Some of the parameters for the plotting tasks behave a little bit differently to other parameters in
STILTS, in order to accommodate related sets of values. If you look at the usage of one of the
plotting commands, for instance in Appendix B.16.1, you will see that a number of the parameters
have the suffixes "N" or "NS". These suffixes can be substituted with any convenient string to
identify parameters which relate to the same input datasets or subsets. Specifically:

Suffix "N":
Denotes an input dataset. At least the inN parameter must be given to identify the source of the
data; any other parameters with the same value of the N suffix relate to that dataset. A dataset
here refers to a particular set of plot data from a table; in most cases each input table
corresponds to a different dataset, though two datasets may correspond to different sets of
columns from the same table.

Suffix "NS":
Denotes a particular subset of the rows in dataset N. At least the subsetNS parameter must be
given to identify the expression by which the subset is defined; any other parameters with the

SUN/256 272

same value of the NS suffix relate to that subset.

Some examples will help to illustrate. The following will generate a Cartesian plot of catalogue
position from a single dataset:

stilts plot2d in=gals.fits xdata=RA ydata=DEC

In this case the N suffix is present on each of the parameters in, xdata and ydata, but is equal to the
empty string, hence invisible. This is perfectly legal, and convenient when only a single table is in
use. If we wish to overplot two datasets however, the dataset suffixes (or one of them at least) have
to be made explicit so that different ones can be used, for instance:

stilts plot2d in1=gals.fits xdata1=RA ydata1=DEC
in2=stars.fits xdata2=RAJ2000 ydata2=DEJ2000

The suffix values "1" and "2" are quite arbitrary and can be chosen as convenient, so the following
would do exactly the same as the previous example:

stilts plot2d in_GAL=gals.fits xdata_GAL=RA ydata_GAL=DEC
in_STAR=stars.fits xdata_STAR=RAJ2000 ydata_STAR=DEJ2000

The other parameters which have the N suffix apply only to the matching dataset, so for instance the
following:

stilts plot2d in1=gals.fits xdata1=RA ydata1=DEC txtlabel1=NGC_ID
in2=stars.fits xdata2=RAJ2000 ydata2=DEJ2000

would draw text labels adjacent to the points from only the gals.fits file giving the contents of its
NGC_ID column.

The NS suffix identifies distinct row subsets within the same or different datasets. A subset is
defined by supplying a boolean inclusion expression (each row is included only if the expression
evaluates true for that row) as the value of a subsetNS parameter. If, as in all the examples we have
seen so far, no subsetNS parameter is supplied for a given dataset, then it is treated as a special
case, as if a single subset with a name equal to the empty string (S="") containing all rows has been
specified. So our earlier simple example:

stilts plot2d in=gals.fits xdata=RA ydata=DEC

is equivalent to

stilts plot2d in=gals.fits xdata=RA ydata=DEC subset=true

If we wish to split the plotted points into two sets based on their R-B colours, we can write
something like:

stilts plot2d in=gals.fits xdata=RA ydata=DEC
subsetX='RMAG-BMAG>0' subsetY='RMAG-BMAG<=0'

This will generate a plot with two subsets shown using different colours and/or plotting symbols.
These colours and symbols are selected automatically. More control over the appearance can be
exercised by setting values for some of the other parameters with NS suffixes, for instance

stilts plot2d in=gals.fits xdata=RA ydata=DEC
subset_A='RMAG-BMAG>0' colour_A=blue
subset_B='RMAG-BMAG<=0' colour_B=red

Again, the suffix strings can be chosen to have any value as convenient.

The dataset- and subset-specific parameters must be put together if there are multiple datasets with
multiple subsets to plot simultaneously, for instance:

SUN/256 273

stilts plot2d in_1=gals.fits xdata_1=RA ydata_1=DEC
subset_1_A='RMAG-BMAG>0' colour_1_A=blue
subset_1_B='RMAG-BMAG<=0' colour_1_B=red

in_2=stars.fits xdata_2=RAJ2000 ydata_2=DEJ2000
colour_2=green

Finally, it's not quite true that the suffixes chosen have no effect on the plot; they may influence the
order in which sets are plotted. Markers drawn for sets plotted earlier may be obscured by the
markers drawn for sets plotted later, so this can affect the appearance of the plot. If you want to
control this, use the sequence parameter. For instance, to ensure that star data appears on top of
galaxy data in the plot, do the following:

stilts plot2d in_GAL=gals.fits xdata_GAL=RA ydata_GAL=DEC
in_STAR=stars.fits xdata_STAR=RAJ2000 ydata_STAR=DEJ2000
sequence=_GAL,_STAR

More examples can be found in the Examples subsections of the individual plotting command
descriptions in Appendix B.

SUN/256 274

10 Algebraic Expression Syntax

Many of the STILTS commands allow you to use algebraic expressions based on table columns
when doing things like making row selections, defining new columns, selecting values to plot or
match, and so on. In these cases you are defining an expression which has a value in each row as a
function of the values in the existing columns in that row. This is a powerful feature which permits
you to manipulate and select table data in very flexible ways. The syntax for entering these
expressions is explained in this section.

What you write are actually expressions in the Java language, which are compiled into Java
bytecode before evaluation. However, this does not mean that you need to be a Java programmer to
write them. The syntax is pretty similar to C, but even if you've never programmed in C most
simple things, and many complicated ones, are quite intutitive.

The following explanation gives some guidance and examples for writing these expressions.
Unfortunately a complete tutorial on writing Java expressions is beyond the scope of this document,
but it should provide enough information for even a novice to write useful expressions.

The expressions that you can write are basically any function of all the column values which apply
to a given row; the function result can then be used where STILTS needs a per-row value, for
instance to define a new column. If the built-in operators and functions are not sufficient, or it's
unwieldy to express your function in one line of code, it is possible to add new functions by writing
your own classes - see Section 10.9.3.

Note that since these algebraic expressions often contain spaces, you may need to enclose them in
single or double quotes so that they don't get confused with other parts of the command string.

Note: if Java is running in an environment with certain security restrictions (a security manager
which does not permit creation of custom class loaders) then algebraic expressions won't work at
all. It's not particularly likely that security restrictions will be in place if you are running from the
command line though.

10.1 Referencing Column Values

To create a useful expression which can be evaluated for each row in a table, you will have to refer
to cells in different columns of that row. You can do this in several ways:

By Name
The Name of the column may be used if it is unique (no other column in the table has the same
name) and if it has a suitable form. This means that it must have the form of a Java variable -
basically starting with a letter and continuing with letters, numbers, underscores and currency
symbols. In particular it cannot contain spaces, commas, parentheses etc.

As a special case, if an expression contains just a single column name, rather than some more
complicated expression, then any column name may be used, even one containing
non-alphanumeric characters.

Column names are treated case-insensitively.

By $ID
The "$ID" identifier of the column may always be used to refer to it; this is a useful fallback if
the column name isn't suitable for some reason (for instance it contains spaces or is not
unique). This is just a "$" sign followed by the column index - the first column is $1.

By ucd$ specifier
If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form

SUN/256 275

ucd$<ucd-spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot.mag;em.opt.R", you should use the identifier "ucd$phot_mag_em_opt_r".
Matching is not case-sensitive. Futhermore, a trailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot_mag_". If multiple
columns have UCDs which match the given identifer, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested UCD, the
column value will be used.

By utype$ specifier
If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "utype$<utype-spec>".
Utypes can contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores ("_"). So to identify a column which has
the Utype "ssa:Access.Format", you should use the identifier "utype$ssa_Access_Format".
Matching is not case-sensitive. If multiple columns have Utypes which match the given
identifier, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested Utype, the
column value will be used.

Using value*() functions
You can use the special functions valueDouble, valueInt, valueLong, valueString and
valueObject to obtain the typed value of a column with a given name. The argument of the
function is a string giving the exact (case-sensitive) column name, for instance
valueDouble("b_E(BP-RP)") will yield the value of the column named "b_E(BP-RP)" as a
double-precision floating point value. These functions are not the generally recommended way
to get column values, since they are slower and provide less type-checking than the other
options listed above, and can occasionally lead to some other esoteric problems. However, if
you need to refer by name to strangely-named columns they are sometimes a convenient
option.

With the Object$ prefix
If a column is referenced with the prefix "Object$" before its identifier (e.g. "Object$BMAG"
for a column named BMAG) the result will be the column value as a java Object. Without that
prefix, numeric columns are evaluated as java primitives. In most cases, you don't want to do
this, since it means that you can't use the value in arithmetic expressions. However, if you need
the value to be passed to a (possibly user-defined) method, and you need that method to be
invoked even when the value is null, you have to do it like this. Null-valued primitives
otherwise cause expression evaluation to abort.

The value of the variables so referenced will be a primitive (boolean, byte, short, char, int, long,
float, double) if the column contains one of the corresponding types. Otherwise it will be an Object
of the type held by the column, for instance a String. In practice this means: you can write the name
of a column, and it will evaluate to the numeric (or string) value that that column contains in each
row. You can then use this in normal algebraic expressions such as "B_MAG-U_MAG" as you'd expect.

10.2 Referencing Parameter Values

Some tables have constant values associated with them; these may represent such things as the
epoch at which observations were taken, the name of the catalogue, an angular resolution associated
with all observations, or any number of other things. Such constants are known as table parameters
(not to be confused with parameters passed to STILTS commands) and can be thought of as extra

SUN/256 276

columns which have the same value for every row. The values of such parameters can be referenced
in STILTS algebraic expressions as follows:

param$name
If the parameter name has a suitable form (starting with a letter and continuing with letters or
numbers) it can be referenced by prefixing that name with the string param$.

ucd$ucd-spec
If the parameter has a Unified Content Descriptor it can be referenced by prefixing the UCD
specifier with the string ucd$. Any punctuation marks in the UCD should be replaced by
underscores, and a trailing underscore is interpreted as a wildcard. See Section 10.1 for more
discussion.

utype$utype-spec
If the parameter has a Utype, it can be referenced by prefixing the Utype specifier with the
string utype$. Any punctuation marks in the Utype should be replaced by underscores. See
Section 10.1 for more discussion.

Note that if a parameter has a name in an unsuitable form (e.g. containing spaces) and has no UCD
then it cannot be referenced in an expression. One possible workaround for that is to use the
fixcolnames filter.

10.3 Special Tokens

There are a few pseudo-variables which have special functions in the expression language. The
following specials are column-like, in that they have a different value for each row:

$index or $0
The value of this is the current row number (the first row is 1). Note that this value is a long

(8-byte integer); when using it in certain expressions you may find it necessary to convert it to
an int (4-byte integer) using the toInteger() function. The deprecated alias "INDEX" may
also be used.

$random (Deprecated)
Evaluates to a double-precision random number 0<=x<1. NOTE: this token is deprecated since
it can behave unpredictably (the same cell does not always yield the same result). Use instead
the random() function in class Maths (Section 10.7.14).

The following specials are parameter-like, in that their value is not sensitive to the row:

$ncol
The number of columns in the table.

$nrow
The number of rows in the table. Note in some cases this is not known (e.g. if the table is being
streamed), in which case the value of this variable is null. Note also that this value is a long

(8-byte integer); when using it in certain expressions you may find it necessary to convert it to
an int (4-byte integer) using the toInteger() function.

10.4 Null Values

When no special steps are taken, if a null value (blank cell) is encountered in evaluating an
expression (usually because one of the columns it relies on has a null value in the row in question)
then the result of the expression is also null.

It is possible to exercise more control than this, but it requires a little bit of care, because the
expressions work in terms of primitive values (numeric or boolean ones) which don't in general

SUN/256 277

have a defined null value. The name "null" in expressions gives you the java null reference, but
this cannot be matched against a primitive value or used as the return value of a primitive
expression.

For most purposes, the following two tips should enable you to work with null values:

Testing for null
To test whether a column contains a null value, prepend the string "NULL_" (use upper case) to
the column name or $ID. This will yield a boolean value which is true if the column contains a
blank or a floating point NaN (not-a-number) value, and false otherwise. Note that if combined
with other boolean expressions, this null test should come first, i.e. write "NULL_i || i==999"
rather than "i==999 || NULL_i", though this is only essential for integer or boolean variables.

Returning null
To return a null value from a numeric expression, use the name "NULL" (upper case). To return
a null value from a non-numeric expression (e.g. a String column) use the name "null" (lower
case).

Null values are often used in conjunction with the conditional operator, "? :"; the expression

test ? tval : fval

returns the value tval if the boolean expression test evaluates true, or fval if test evaluates false.
So for instance the following expression:

Vmag == -99 ? NULL : Vmag

can be used to define a new column which has the same value as the Vmag column for most values,
but if Vmag has the "magic" value -99 the new column will contain a blank. The opposite trick
(substituting a blank value with a magic one) can be done like this:

NULL_Vmag ? -99 : Vmag

Some more examples are given in Section 10.8.

Note that for floating point data, STILTS treats null and NaN (Not-a-Number) values somewhat
interchangeably. Blank values arising either from an input file format that can represent missing
values, or from processing that fails to provide a definite value, are in most cases represented
internally as null for integer-type values and NaN for floating point values. However in general
users should not rely on distinguishing between null and NaN.

10.5 Operators

The operators are pretty much the same as in the C language. The common ones are:

Arithmetic

+ (add)
- (subtract)
* (multiply)
/ (divide)
% (modulus)

Boolean

! (not)
&& (and)
|| (or)
^ (exclusive-or)

SUN/256 278

== (numeric identity)
!= (numeric non-identity)
< (less than)
> (greater than)
<= (less than or equal)
>= (greater than or equal)

Bitwise

& (and)
| (or)
^ (exclusive-or)
<< (left shift)
>> (right shift)
>>> (logical right shift)

Numeric Typecasts

(byte) (numeric -> signed byte)
(short) (numeric -> 2-byte integer)
(int) (numeric -> 4-byte integer)
(long) (numeric -> 8-byte integer)
(float) (numeric -> 4-type floating point)
(double) (numeric -> 8-byte floating point)

Note you may find the Maths (Section 10.7.14) conversion functions more convenient for
numeric conversions than these.

Other

+ (string concatenation)
[] (array dereferencing - first element is zero)
?: (conditional switch)
instanceof (class membership)

10.6 Strings and Quoting

Sometimes in an algebraic expression you will want to use a literal string value, for instance if you
want to test a string-valued column for equality with some fixed string. Literal strings must always
be delimited by double quote characters ("). This can be problematic, since (single or double) quote
characters are interpreted within STILTS parameter values as grouping text that may contain spaces
into a single token. And, depending how you are invoking STILTS, the shell may do a similar
thing: interpret (single or double) quote characters on the command line as grouping text that may
contain spaces or shell magic characters into a single string (such as a parameter value assignment)
to pass to STILTS. To complicate matters further, literals of the char type (single characters) in the
expression language are delimited using single-quote characters ('), though it's not very often
necessary to deal with char values in STILTS. And in a few cases specific parameters might have
their own requirements for quotes (like the adql parameter of tapquery; in ADQL string literals
need single quotes and double quotes delimit identifiers).

To summarise the common uses of quotes that you might have to make:

• Delimit a literal string in the expression language: double quote (")
• Delimit a space-containing string (e.g. a list of tokens) that forms part of a STILTS parameter

value assignment: single or double quote (' or ")
• Protect a STILTS parameter value assignment from the Unix shell (avoid breaking into

multiple words, ignore magic characters): single or double quote (' or ")

SUN/256 279

The last one only applies if you are running STILTS via a Unix-like shell; similar considerations
will apply from different OSs like MS Windows, but if you are running JyStilts or using the
expression language directly e.g. from a GUI application like TOPCAT, this one doesn't apply.

Unfortunately, all this can lead to a kind of quoting hell when trying to write STILTS commands,
especially if they have to contain String literals, for which the author apologises :-(. Working round
these requirements can be quite messy, but here are some tips:

• String literals in the expression language must always be delimited with double quotes.
• STILTS parameter values sometimes contain spaces or other characters that have meaning for

the shell, so it's often a good idea to quote them; ofmt=votable(format=BINARY) will fail
because the shell tries to interpret the parenthesis characters, but
ofmt='votable(format=BINARY)', or 'ofmt=votable(format=BINARY)', will succeed.

• If you can avoid spaces in arguments, you won't need so much quoting, so you can write e.g.
cmd='select rmag<12' instead of cmd='select "rmag < 12"'.

• You can use different types of quote for different purposes, e.g. cmd='keepcols "id ra dec"'

or cmd="keepcols 'id ra dec'". Note however that different types of quote have somewhat
different meanings to the shell (single quotes are generally safer).

• In a STILTS parameter value, as well in shell arguments, quotes can be escaped with a
preceding backslash (\) to prevent them being interpreted as grouping constructs. So although
cmd='select equals(release,"DR4")' fails (STILTS interprets the double quotes as
grouping characters rather than string literal delimiters), cmd='select

equals(release,\"DR4\")' succeeds.
• In a STILTS parameter value, as well as in shell arguments, spaces can be escaped with a

preceding backslash (\) to prevent them being interpreted as token separators. So
cmd='keepcols id\ ra\ dec' can be used to mean the same as cmd='keepcols "id ra

dec"'.

Armed with this information it is usually possible to phrase a STILTS command on the command
line that does what you want. In cases where that seems to be untrue or too painful, there are a
couple of ways to avoid use of the shell, removing one layer of quote (mis)interpretation:

• Filter (cmd-like) parameters can be specified using file indirection; cmd=@filename reads the
filter value(s) from the line(s) of the named file

• JyStilts allows you to use python syntax to construct arguments to pass to STILTS without
interference from the shell

The comments above concerning the Unix shell are in principle dependent on which shell is in use,
but they should apply to sh, bash and csh on any common Unix-like OS including MacOS.
Something similar probably applies to other OSes like MS Windows, but the details may be
different.

10.7 Functions

Many functions are available for use within your expressions, covering standard mathematical and
trigonometric functions, arithmetic utility functions, type conversions, and some more specialised
astronomical ones. You can use them in just the way you'd expect, by using the function name
(unlike column names, this is case-sensitive) followed by comma-separated arguments in brackets,
so

max(IMAG,JMAG)

will give you the larger of the values in the columns IMAG and JMAG, and so on.

The functions available for use by default are listed by class in the following subsections with their
arguments and short descriptions. The funcs command provides another way to browse these

SUN/256 280

function descriptions online.

10.7.1 Arithmetic

Standard arithmetic functions including things like rounding, sign manipulation, and
maximum/minimum functions. Phase folding operations, and a convenient form of the modulus
operation on which they are based, are also provided.

roundUp(x)

Rounds a value up to an integer value. Formally, returns the smallest (closest to negative
infinity) integer value that is not less than the argument.

• Parameters:

• x (floating point): a value.

• Return value

• (integer): x rounded up

roundDown(x)

Rounds a value down to an integer value. Formally, returns the largest (closest to positive
infinity) integer value that is not greater than the argument.

• Parameters:

• x (floating point): a value

• Return value

• (integer): x rounded down

round(x)

Rounds a value to the nearest integer. Formally, returns the integer that is closest in value to
the argument. If two integers are equally close, the result is the even one.

• Parameters:

• x (floating point): a floating point value.

• Return value

• (integer): x rounded to the nearest integer

roundDecimal(x, dp)

Rounds a value to a given number of decimal places. The result is a float (32-bit floating
point value), so this is only suitable for relatively low-precision values. It's intended for
truncating the number of apparent significant figures represented by a value which you know
has been obtained by combining other values of limited precision. For more control, see the
functions in the Formats class.

• Parameters:

• x (floating point): a floating point value
• dp (integer): number of decimal places (digits after the decimal point) to retain

• Return value

• (floating point): floating point value close to x but with a limited apparent precision

• Example:

SUN/256 281

• roundDecimal(PI,2) = 3.14f

abs(x)

Returns the absolute value of an integer value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned.

• Parameters:

• x (integer): the argument whose absolute value is to be determined

• Return value

• (integer): the absolute value of the argument.

abs(x)

Returns the absolute value of a floating point value. If the argument is not negative, the
argument is returned. If the argument is negative, the negation of the argument is returned.

• Parameters:

• x (floating point): the argument whose absolute value is to be determined

• Return value

• (floating point): the absolute value of the argument.

max(a, b)

Returns the greater of two integer values. If the arguments have the same value, the result is
that same value.

Multiple-argument maximum functions are also provided in the Arrays and Lists packages.

• Parameters:

• a (integer): an argument.
• b (integer): another argument.

• Return value

• (integer): the larger of a and b.

maxNaN(a, b)

Returns the greater of two floating point values. If the arguments have the same value, the
result is that same value. If either value is blank, then the result is blank.

• Parameters:

• a (floating point): an argument.
• b (floating point): another argument.

• Return value

• (floating point): the larger of a and b.

maxReal(a, b)

Returns the greater of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

Multiple-argument maximum functions are also provided in the Arrays and Lists packages.

SUN/256 282

• Parameters:

• a (floating point): an argument
• b (floating point): another argument

• Return value

• (floating point): the larger non-blank value of a and b

min(a, b)

Returns the smaller of two integer values. If the arguments have the same value, the result is
that same value.

Multiple-argument minimum functions are also provided in the Arrays and Lists packages.

• Parameters:

• a (integer): an argument.
• b (integer): another argument.

• Return value

• (integer): the smaller of a and b.

minNaN(a, b)

Returns the smaller of two floating point values. If the arguments have the same value, the
result is that same value. If either value is blank, then the result is blank.

• Parameters:

• a (floating point): an argument.
• b (floating point): another argument.

• Return value

• (floating point): the smaller of a and b.

minReal(a, b)

Returns the smaller of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

Multiple-argument minimum functions are also provided in the Arrays and Lists packages.

• Parameters:

• a (floating point): an argument
• b (floating point): another argument

• Return value

• (floating point): the larger non-blank value of a and b

mod(a, b)

Returns the non-negative remainder of a/b. This is a modulo operation, but differs from the
expression a%b in that the answer is always >=0 (as long as b is not zero).

• Parameters:

• a (floating point): dividend
• b (floating point): divisor

• Return value

SUN/256 283

• (floating point): non-negative remainder when dividing a by b

• Examples:

• modulo(14, 5) = 4

• modulo(-14, 5) = 1

• modulo(2.75, 0.5) = 0.25

phase(t, period)

Returns the phase of a value within a period.

For positive period, the returned value is in the range [0,1).

• Parameters:

• t (floating point): value
• period (floating point): folding period

• Return value

• (floating point): mod(t,period)/period

• Examples:

• phase(7, 4) = 0.75

• phase(-1000.5, 2.5) = 0.8

• phase(-3300, 33) = 0

phase(t, period, t0)

Returns the phase of an offset value within a period. The reference value t0 corresponds to
phase zero.

For positive period, the returned value is in the range [0,1).

• Parameters:

• t (floating point): value
• period (floating point): folding period
• t0 (floating point): reference value, corresponding to phase zero

• Return value

• (floating point): phase(t-t0, period)

• Examples:

• phase(5003,100,0) = 0.03

• phase(5003,100,2) = 0.01

• phase(5003,100,4) = 0.99

phase(t, period, t0, phase0)

Returns the offset phase of an offset value within a period. The reference value t0 corresponds
to integer phase value, and the phase offset phase0 determines the starting value for the phase
range.

For positive period, the returned value is in the range [phase0,phase0+1).

• Parameters:

• t (floating point): value
• period (floating point): folding period
• t0 (floating point): reference value, corresponding to phase zero
• phase0 (floating point): offset for phase

SUN/256 284

• Return value

• (floating point): offset phase

• Examples:

• phase(23,10,1,99) = 99.2

• phase(8.6125,0.2,0.0125,-0.3) = 0

• phase(8.6125,0.2,0.1125,-0.7) = -0.5

10.7.2 Arrays

Functions which operate on array-valued cells. The array parameters of these functions can only be
used on values which are already arrays (usually, numeric arrays). In most cases that means on
values in table columns which are declared as array-valued. FITS and VOTable tables can have
columns which contain array values, but other formats such as CSV cannot.

If you want to calculate aggregating functions like sum, min, max etc on multiple values which are
not part of an array, it's easier to use the functions from the Lists class.

Note that none of these functions will calculate statistical functions over a whole column of a table.

The functions fall into a number of categories:

• Aggregating operations, which map an array value to a scalar, including size, count,
countTrue, maximum, minimum, sum, mean, median, quantile, stdev, variance, join.

• Operations on one or more arrays which produce array results, including add, subtract,
multiply, divide, reciprocal, condition, slice, pick. Mostly these work on any numeric
array type and return floating point (double precision) values, but some of them (slice, pick)
have variants for different array types.

• The function array, which lets you assemble a floating point array value from a list of scalar
numbers. There are variants (intArray, stringArray) for some different array types.

sum(array)

Returns the sum of all the non-blank elements in the array. If array is not a numeric array,
null is returned.

• Parameters:

• array (Object): array of numbers

• Return value

• (floating point): sum of all the numeric values in array

mean(array)

Returns the mean of all the non-blank elements in the array. If array is not a numeric array,
null is returned.

• Parameters:

• array (Object): array of numbers

• Return value

• (floating point): mean of all the numeric values in array

SUN/256 285

variance(array)

Returns the population variance of all the non-blank elements in the array. If array is not a
numeric array, null is returned.

• Parameters:

• array (Object): array of numbers

• Return value

• (floating point): variance of the numeric values in array

stdev(array)

Returns the population standard deviation of all the non-blank elements in the array. If array
is not a numeric array, null is returned.

• Parameters:

• array (Object): array of numbers

• Return value

• (floating point): standard deviation of the numeric values in array

minimum(array)

Returns the smallest of the non-blank elements in the array. If array is not a numeric array,
null is returned.

• Parameters:

• array (Object): array of numbers

• Return value

• (floating point): minimum of the numeric values in array

maximum(array)

Returns the largest of the non-blank elements in the array. If array is not a numeric array,
null is returned.

• Parameters:

• array (Object): array of numbers

• Return value

• (floating point): maximum of the numeric values in array

median(array)

Returns the median of the non-blank elements in the array. If array is not a numeric array,
null is returned.

• Parameters:

• array (Object): array of numbers

• Return value

• (floating point): median of the numeric values in array

quantile(array, quant)

Returns a quantile value of the non-blank elements in the array. Which quantile is determined

SUN/256 286

by the quant value; values of 0, 0.5 and 1 give the minimum, median and maximum
respectively. A value of 0.99 would give the 99th percentile.

• Parameters:

• array (Object): array of numbers
• quant (floating point): number in the range 0-1 deterining which quantile to

calculate

• Return value

• (floating point): quantile corresponding to quant

size(array)

Returns the number of elements in the array. If array is not an array, zero is returned.

• Parameters:

• array (Object): array

• Return value

• (integer): size of array

count(array)

Returns the number of non-blank elements in the array. If array is not an array, zero is
returned.

• Parameters:

• array (Object): array (may or may not be numeric)

• Return value

• (integer): number of non-blank elements in array

countTrue(array)

Returns the number of true elements in an array of boolean values.

• Parameters:

• array (array of boolean): array of true/false values

• Return value

• (integer): number of true values in array

join(array, joiner)

Returns a string composed of concatenating all the elements of an array, separated by a joiner
string. If array is not an array, null is returned.

• Parameters:

• array (Object): array of numbers or strings
• joiner (String): text string to interpose between adjacent elements

• Return value

• (String): string composed of array elements separated by joiner strings

• Example:

• join(array(1.5,2.1,-3.9), "; ") = "1.5; 2.1; -3.9"

SUN/256 287

dotProduct(array1, array2)

Returns the dot (scalar) product of two numeric arrays. If either argument is not an array, or if
the arrays are not of the same length, a blank value is returned.

• Parameters:

• array1 (Object): first array
• array2 (Object): second array

• Return value

• (floating point): sum of element-wise products of input arrays

• Example:

• dotProduct(array(3,4,5), array(1,2,3)) = 26

add(arrayOrScalar1, arrayOrScalar2)

Returns the element-by-element result of adding either two numeric arrays of the same length,
or an array and a scalar considered as if an array of the right length.

If the arguments are not as expected (e.g. arrays of different lengths, both scalars, not numeric)
then null is returned.

• Parameters:

• arrayOrScalar1 (Object): first numeric array/scalar
• arrayOrScalar2 (Object): second numeric array/scalar

• Return value

• (array of floating point): element-by-element result of arrayOrScalar1 +

arrayOrScalar2, the same length as the input array(s)

• Examples:

• add(array(1,2,3), array(0.1,0.2,0.3)) = [1.1, 2.2, 3.3]

• add(array(1,2,3), 10) = [11,12,13]

subtract(arrayOrScalar1, arrayOrScalar2)

Returns the element-by-element result of subtracting either two numeric arrays of the same
length, or an array and a scalar considered as if an array of the right length.

If the arguments are not as expected (e.g. arrays of different lengths, both scalars, not numeric)
then null is returned.

• Parameters:

• arrayOrScalar1 (Object): first numeric array/scalar
• arrayOrScalar2 (Object): second numeric array/scalar

• Return value

• (array of floating point): element-by-element result of arrayOrScalar1 -

arrayOrScalar2, the same length as the input array(s)

• Examples:

• subtract(array(1,2,3), array(0.1,0.2,0.3)) = [0.9, 1.8, 2.7]

• subtract(array(1,2,3), 1.0) = [0, 1, 2]

multiply(arrayOrScalar1, arrayOrScalar2)

Returns the element-by-element result of multiplying either two numeric arrays of the same

SUN/256 288

length, or an array and a scalar considered as if an array of the right length.

If the arguments are not as expected (e.g. arrays of different lengths, both scalars, not numeric)
then null is returned.

• Parameters:

• arrayOrScalar1 (Object): first numeric array/scalar
• arrayOrScalar2 (Object): second numeric array/scalar

• Return value

• (array of floating point): element-by-element result of arrayOrScalar1 *

arrayOrScalar2, the same length as the input array(s)

• Examples:

• multiply(array(1,2,3), array(2,4,6)) = [2, 8, 18]

• multiply(2, array(1,2,3)) = [2, 4, 6]

divide(arrayOrScalar1, arrayOrScalar2)

Returns the element-by-element result of dividing either two numeric arrays of the same
length, or an array and a scalar considered as if an array of the right length.

If the arguments are not as expected (e.g. arrays of different lengths, both scalars, not numeric)
then null is returned.

• Parameters:

• arrayOrScalar1 (Object): first numeric array/scalar
• arrayOrScalar2 (Object): second numeric array/scalar

• Return value

• (array of floating point): element-by-element result of arrayOrScalar1 /

arrayOrScalar2, the same length as the input array(s)

• Examples:

• divide(array(0,9,4), array(1,3,8)) = [0, 3, 0.5]

• divide(array(50,60,70), 10) = [5, 6, 7]

reciprocal(array)

Returns the result of taking the reciprocal of every element of a numeric array. If the supplied
array argument is not a numeric array, null is returned.

• Parameters:

• array (Object): array input

• Return value

• (array of floating point): array output, the same length as the array parameter

• Example:

• reciprocal(array(1,2,0.25) = [1, 0.5, 4]

condition(flagArray, trueValue, falseValue)

Maps a boolean array to a numeric array by using supplied numeric values to represent true
and false values from the input array.

This has the same effect as applying the expression outArray[i] = flagArray[i] ?

trueValue : falseValue.

SUN/256 289

• Parameters:

• flagArray (array of boolean): array of boolean values
• trueValue (floating point): output value corresponding to an input true value
• falseValue (floating point): output value corresponding to an input false value

• Return value

• (array of floating point): output numeric array, same length as flagArray

• Example:

• condition([true, false, true], 1, 0) = [1, 0, 1]

constant(n, value)

Returns a fixed-size array filled with a given constant value.

Note: This documents the double-precision version of the routine. Corresponding routines
exist for other data types (float, long, int, short, byte).

• Parameters:

• n (integer): size of output array
• value (floating point): value of every element in the output array

• Return value

• (array of floating point): n-element array with every element set to value

• Example:

• constant(5, 23.5) = [23.5, 23.5, 23.5, 23.5, 23.5]

slice(array, i0, i1)

Returns a sub-sequence of values from a given array.

The semantics are like python array slicing, though both limits have to be specified: the output
array contains the sequence of elements in the input array from i0 (inclusive) to i1 (exclusive).
If a negative value is given in either case, it is added to the length of the input array, so that -1
indicates the last element of the input array. The indices are capped at 0 and the input array
length respectively, so a large positive value may be used to indicate the end of the array. If the
end index is less than or equal to the start index, a zero-length array is returned.

Note: This documents the double-precision version of the routine. Corresponding routines
exist for other data types (float, long, int, short, byte, String, Object).

• Parameters:

• array (array of floating point): input array
• i0 (integer): index of first element, inclusive (may be negative to count back from

the end)
• i1 (integer): index of the last element, exclusive (may be negative to count back

from the end)

• Return value

• (array of floating point): array giving the sequence of elements specified by i0 and
i1

• Examples:

• slice(array(10,11,12,13), 0, 3) = [10, 11, 12]

• slice(array(10,11,12,13), -2, 999) = [12, 13]

SUN/256 290

pick(array, indices, ...)

Returns a selection of elements from a given array.

The output array consists of one element selected from the input array for each of the supplied
index values. If a negative value is supplied for an index value, it is added to the input array
length, so that -1 indicates the last element of the input array. If the input array is null, null is
returned. If any of the index values is out of the range of the extent of the input array, an error
results.

Note: This documents the double-precision version of the routine. Corresponding routines
exist for other data types (float, long, int, short, byte, String, Object).

• Parameters:

• array (array of floating point): input array
• indices (integer, one or more): one or more index into the input array (may be

negative to count back from the end)

• Return value

• (array of floating point): array giving the elements specified by indices

• Examples:

• pick(array(10,11,12,13), 0, 3) = [10, 13]

• pick(array(10,11,12,13), -1, -2, -3) = [13, 12, 11]

arrayFunc(expr, inArray)

Returns a floating-point array resulting from applying a given function expression
element-by-element to an input array. The output array is the same length as the input array.

The supplied expression can use the variable "x" to refer to the corresponding element of the
input array, and "i" to refer to its (zero-based) index. The various functions and operators from
the expression language can all be used, but it is currently not possible to reference other table
column values.

If there is an error in the expression, a blank value (not an array) will be returned.

• Parameters:

• expr (String): expression mapping input to output array values
• inArray (Object): input array

• Return value

• (array of floating point): floating point array with the same number of elements as
inArray, or null for a bad expr

• Examples:

• arrayFunc("3*x",array(0,1,2,3,NaN)) = [0, 3, 6, 9, NaN]

• arrayFunc("pow(2,i)+x", array(0.5,0.5,0.5,0.5)) = [1.5, 2.5, 4.5, 8.5]

intArrayFunc(expr, inArray)

Returns an integer array resulting from applying a given function expression
element-by-element to an input array. The output array is the same length as the input array.

The supplied expression can use the variable "x" to refer to the corresponding element of the
input array, and "i" to refer to its (zero-based) index. The various functions and operators from
the expression language can all be used, but it is currently not possible to reference other table
column values.

SUN/256 291

If there is an error in the expression, a blank value (not an array) will be returned.

• Parameters:

• expr (String): expression mapping input to output array values
• inArray (Object): input array

• Return value

• (array of integer): floating point array with the same number of elements as
inArray, or null for a bad expr

• Example:

• intArrayFunc("-x",sequence(5)) = [0, -1, -2, -3, -4]

indexOf(array, item)

Returns the position in a supplied array at which a given item appears. The result is
zero-based, so if the supplied item is the first entry in the array, the return value will be zero.

If the item does not appear in the array, -1 is returned. If it appears multiple times, the index of
its first appearance is returned.

If indexOf(array, item)==n, then array[n] is equal to item.

Note: This documents the Object version of the routine. Corresponding routines exist for other
data types (double, float, long, int, short).

• Parameters:

• array (array of Object): array which may contain the supplied item
• item (Object): entry to look for in the array

• Return value

• (integer): the index of item in array, or -1

• Examples:

• indexOf(stringArray("QSO", "BCG", "SNR"), "BCG") = 1

• indexOf(stringArray("QSO", "BCG", "SNR"), "TLA") = -1

sequence(n)

Returns an integer array of a given length with the values 0, 1, 2,

See also the loop functions, which provide similar functionality.

• Parameters:

• n (integer): length of array

• Return value

• (array of integer): n-element array, (0, 1, 2, ... n-1)

• Example:

• sequence(4) = (0, 1, 2, 3)

sequence(n, start, step)

Returns a floating point array of a given length with values starting at a given value and
increasing with a given increment.

See also the loop functions, which provide similar functionality.

SUN/256 292

• Parameters:

• n (integer): length of array
• start (floating point): value of first element
• step (floating point): increment to apply to each element

• Return value

• (array of floating point): n-element array, (start, start+step, start+2*step, ...
start+(n-1)*step)

• Example:

• sequence(4, 100, 0.1) = (100.0, 100.1, 100.2, 100.3)

loop(start, end)

Returns an integer array like the values taken in a for-loop with given start and end elements
and a step of 1. The notional loop corresponds to:

for (int x = start; x < end; x++)

If you want a floating point array, or one with a non-unit step, you can use the three-parameter
version of the loop function. See also the sequence functions.

• Parameters:

• start (integer): value for first element of output array
• end (integer): value one greater than last element of output array

• Return value

• (array of integer): array with end-start (or 0) elements (start, start+1,

start+2, ..., end-1)

• Examples:

• loop(0, 5) = (0, 1, 2, 3, 4)

• loop(5, 0) = ()

loop(start, end, step)

Returns a floating point array like the values taken in a for-loop with given start, end, and step
arguments. For a positive step, the notional loop corresponds to:

for (double x = start; x < end; x += step)

Note that numerical precision issues may result in the output array differing from its expected
length by 1 (it is generally risky to rely on exact comparison of floating point values). If you
want to be sure of the number of elements you can use the sequence function instead.

• Parameters:

• start (floating point): value for first element of output array
• end (floating point): first value beyond last element of output array
• step (floating point): increment between output array values; may not be zero

• Return value

• (array of floating point): array with approximately (end-start)/step (or 0)
elements

• Examples:

SUN/256 293

• loop(10, 12, 0.5) = (10.0, 10.5, 11.0, 11.5)

• loop(0, 10, 3) = (0., 3., 6., 9.)

• loop(5, 0, -1) = (5., 4., 3., 2., 1.)

array(values, ...)

Returns a floating point numeric array built from the given arguments.

• Parameters:

• values (floating point, one or more): one or more array elements

• Return value

• (array of floating point): array

intArray(values, ...)

Returns an integer numeric array built from the given arguments.

• Parameters:

• values (integer, one or more): one or more array elements

• Return value

• (array of integer): array

stringArray(values, ...)

Returns a String array built from the given arguments.

• Parameters:

• values (String, one or more): one or more array elements

• Return value

• (array of String): array

10.7.3 Bits

Bit manipulation functions.

Note that for bitwise AND, OR, XOR of integer values etc you can use the java bitwise operators
"&", "|", "^".

hasBit(value, bitIndex)

Determines whether a given integer has a certain bit set to 1.

• Parameters:

• value (long integer): integer whose bits are to be tested
• bitIndex (integer): index of bit to be tested in range 0..63, where 0 is the least

significant bit

• Return value

• (boolean): true if bit is set; more or less equivalent to (value & 1L<<bitIndex) !=

0

• Examples:

SUN/256 294

• hasBit(64, 6) = true

• hasBit(63, 6) = false

bitCount(i)

Returns the number of set bits in the 64-bit two's complement representation of the integer
argument.

• Parameters:

• i (long integer): integer value

• Return value

• (integer): number of "1" bits in the binary representation of i

• Examples:

• bitCount(64) = 1

• bitCount(3) = 2

toBinary(value)

Converts the integer argument to a binary string consisting only of 1s and 0s.

• Parameters:

• value (long integer): integer value

• Return value

• (String): binary representation of value

• Examples:

• toBinary(42) = "101010"

• toBinary(255^7) = "11111000"

fromBinary(binVal)

Converts a string representing a binary number to its integer value.

• Parameters:

• binVal (String): binary representation of value

• Return value

• (integer): integer value represented by binary string binVal

• Example:

• fromBinary("101010") = 42

10.7.4 Conversions

Functions for converting between strings and numeric values.

toString(fpVal)

Turns a numeric value into a string.

• Parameters:

• fpVal (floating point): floating point numeric value

SUN/256 295

• Return value

• (String): a string representation of fpVal

toString(intVal)

Turns an integer numeric value into a string.

• Parameters:

• intVal (long integer): integer numeric value

• Return value

• (String): a string representation of intVal

toString(charVal)

Turns a single character value into a string.

• Parameters:

• charVal (char): character numeric value

• Return value

• (String): a string representation of charVal

toString(byteVal)

Turns a byte value into a string.

• Parameters:

• byteVal (byte): byte numeric value

• Return value

• (String): a string representation of byteVal

toString(booleanVal)

Turns a boolean value into a string.

• Parameters:

• booleanVal (boolean): boolean value (true or false)

• Return value

• (String): a string representation of booleanVal ("true" or "false")

toString(objVal)

Turns any object value into a string. As applied to existing string values this isn't really useful,
but it means that you can apply toString to any object value without knowing its type and get
a useful return from it.

• Parameters:

• objVal (Object): non-primitive value

• Return value

• (String): a string representation of objVal

parseByte(str)

SUN/256 296

Attempts to interpret a string as a byte (8-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• Parameters:

• str (String): string containing numeric representation

• Return value

• (byte): byte value of str

parseShort(str)

Attempts to interpret a string as a short (16-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• Parameters:

• str (String): string containing numeric representation

• Return value

• (short integer): byte value of str

parseInt(str)

Attempts to interpret a string as an int (32-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• Parameters:

• str (String): string containing numeric representation

• Return value

• (integer): byte value of str

parseLong(str)

Attempts to interpret a string as a long (64-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• Parameters:

• str (String): string containing numeric representation

• Return value

• (long integer): byte value of str

parseFloat(str)

Attempts to interpret a string as a float (32-bit floating point) value. If the input string can't be
interpreted in this way, a blank value will result.

• Parameters:

• str (String): string containing numeric representation

• Return value

• (floating point): byte value of str

parseDouble(str)

Attempts to interpret a string as a double (64-bit signed integer) value. If the input string can't
be interpreted in this way, a blank value will result.

SUN/256 297

• Parameters:

• str (String): string containing numeric representation

• Return value

• (floating point): byte value of str

parseBigInteger(str)

Attempts to interpret a string as a "BigInteger" value. This can be used for working with string
representations of integers that can't be stored as an unsigned 64-bit value.

The result is a BigInteger object, which can't be used in normal numeric expressions, but has
a number of methods defined on it for comparison, arithmetic, bit manipulation etc. See the
java.math.BigInteger (https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html)
javadocs for details.

• Parameters:

• str (String): string containing numeric representation

• Return value

• (BigInteger): BigInteger value of str

• Examples:

• parseBigInteger("-20000000000000000023").doubleValue() = -2e19

• parseBigInteger("18446744073709551616").testBit(64) = true

parseBigDecimal(str)

Attempts to interpret a string as a "BigDecimal" value. This can be used for working with
string representations of non-integer values that require more precision or range than is
possible in a 64-bit IEEE-754 double precision variable.

The result is a BigDecimal object, which can't be used in normal numeric expressions, but has
a number of methods defined on it for comparison, arithmetic, bit manipulation etc. See the
java.math.BigDecimal (https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html)
javadocs for details.

• Parameters:

• str (String): string contining numeric representation

• Return value

• (BigDecimal): BigDecimal value of str

• Example:

• parseBigDecimal("101").compareTo(parseBigDecimal("102")) = -1

parseInts(str)

Attempts to interpret a string as an array of integer values. An ad-hoc algorithm is used that
tries to extract a list of integers from a string; a comma- or space-separated list of integer
values will work, and other formats may or may not.

The details of this function's behaviour may change in future releases.

• Parameters:

• str (String): string containing a list of integer values

• Return value

SUN/256 298

• (array of integer): array of integer values

• Examples:

• parseInts("9 8 -23") = [9, 8, -23]

• parseInts("tiddly-pom") = []

parseDoubles(str)

Attempts to interpret a string as an array of floating point values. An ad-hoc algorithm is used
that tries to extract a list of numeric values from a string; a comma- or space-separated list of
floating point values will work, and other formats may or may not.

This function can be used as a hacky way to extract the numeric values from an STC-S (for
instance ObsCore/EPNcore s_region) string.

The details of this function's behaviour may change in future releases.

• Parameters:

• str (String): string containing a list of floating point values

• Return value

• (array of floating point): array of floating point values

• Examples:

• parseDoubles("1.3, 99e1, NaN, -23") = [1.3, 990.0, NaN, -23.0]

• parseDoubles("Polygon ICRS 0.8 2.1 9.0 2.1 6.2 8.6") = [0.8, 2.1, 9.0,

2.1, 6.2, 8.6]

• parseDoubles("La la la") = []

toByte(value)

Attempts to convert the numeric argument to a byte (8-bit signed integer) result. If it is out of
range, a blank value will result.

• Parameters:

• value (floating point): numeric value for conversion

• Return value

• (byte): value converted to type byte

toShort(value)

Attempts to convert the numeric argument to a short (16-bit signed integer) result. If it is out of
range, a blank value will result.

• Parameters:

• value (floating point): numeric value for conversion

• Return value

• (short integer): value converted to type short

toInteger(value)

Attempts to convert the numeric argument to an int (32-bit signed integer) result. If it is out of
range, a blank value will result.

• Parameters:

• value (floating point): numeric value for conversion

SUN/256 299

• Return value

• (integer): value converted to type int

toLong(value)

Attempts to convert the numeric argument to a long (64-bit signed integer) result. If it is out of
range, a blank value will result.

• Parameters:

• value (floating point): numeric value for conversion

• Return value

• (long integer): value converted to type long

toFloat(value)

Attempts to convert the numeric argument to a float (32-bit floating point) result. If it is out of
range, a blank value will result.

• Parameters:

• value (floating point): numeric value for conversion

• Return value

• (floating point): value converted to type float

toDouble(value)

Converts the numeric argument to a double (64-bit signed integer) result.

• Parameters:

• value (floating point): numeric value for conversion

• Return value

• (floating point): value converted to type double

toHex(value)

Converts the integer argument to hexadecimal form.

• Parameters:

• value (long integer): integer value

• Return value

• (String): hexadecimal representation of value

• Example:

• toHex(42) = "2a"

fromHex(hexVal)

Converts a string representing a hexadecimal number to its integer value.

• Parameters:

• hexVal (String): hexadecimal representation of value

• Return value

• (integer): integer value represented by hexVal

SUN/256 300

• Example:

• fromHex("2a") = 42

10.7.5 CoordsDegrees

Functions for angle transformations and manipulations, with angles generally in degrees. In
particular, methods for translating between degrees and HH:MM:SS.S or DDD:MM:SS.S type
sexagesimal representations are provided.

degreesToDms(deg)

Converts an angle in degrees to a formatted degrees:minutes:seconds string. No fractional part
of the seconds field is given.

• Parameters:

• deg (floating point): angle in degrees

• Return value

• (String): DMS-format string representing deg

degreesToDms(deg, secFig)

Converts an angle in degrees to a formatted degrees:minutes:seconds string with a given
number of decimal places in the seconds field.

• Parameters:

• deg (floating point): angle in degrees
• secFig (integer): number of decimal places in the seconds field

• Return value

• (String): DMS-format string representing deg

degreesToHms(deg)

Converts an angle in degrees to a formatted hours:minutes:seconds string. No fractional part of
the seconds field is given.

• Parameters:

• deg (floating point): angle in degrees

• Return value

• (String): HMS-format string representing deg

degreesToHms(deg, secFig)

Converts an angle in degrees to a formatted hours:minutes:seconds string with a given number
of decimal places in the seconds field.

• Parameters:

• deg (floating point): angle in degrees
• secFig (integer): number of decimal places in the seconds field

• Return value

• (String): HMS-format string representing deg

SUN/256 301

dmsToDegrees(dms)

Converts a formatted degrees:minutes:seconds string to an angle in degrees. Delimiters may be
colon, space, characters dm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• Parameters:

• dms (String): formatted DMS string

• Return value

• (floating point): angle in degrees specified by dms

hmsToDegrees(hms)

Converts a formatted hours:minutes:seconds string to an angle in degrees. Delimiters may be
colon, space, characters hm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• Parameters:

• hms (String): formatted HMS string

• Return value

• (floating point): angle in degrees specified by hms

dmsToDegrees(deg, min, sec)

Converts degrees, minutes, seconds to an angle in degrees.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values). It is illegal for the min or sec arguments to be negative.

• Parameters:

• deg (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle

• Return value

• (floating point): specified angle in degrees

hmsToDegrees(hour, min, sec)

Converts hours, minutes, seconds to an angle in degrees.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values).

• Parameters:

• hour (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle

• Return value

• (floating point): specified angle in degrees

SUN/256 302

skyDistanceDegrees(ra1, dec1, ra2, dec2)

Calculates the separation (distance around a great circle) of two points on the sky in degrees.

• Parameters:

• ra1 (floating point): right ascension of point 1 in degrees
• dec1 (floating point): declination of point 1 in degrees
• ra2 (floating point): right ascension of point 2 in degrees
• dec2 (floating point): declination of point 2 in degrees

• Return value

• (floating point): angular distance between point 1 and point 2 in degrees

posAngDegrees(ra1, dec1, ra2, dec2)

Calculates the position angle between two points on the sky in degrees. The result is in the
range +/-180. If point 2 is due east of point 1, the result is +90. Zero is returned if the points
are coincident.

• Parameters:

• ra1 (floating point): right ascension of point 1 in degrees
• dec1 (floating point): declination of point 1 in degrees
• ra2 (floating point): right ascension of point 2 in degrees
• dec2 (floating point): declination of point 2 in degrees

• Return value

• (floating point): bearing in degrees of point 2 from point 1.

polarDistanceDegrees(ra1, dec1, radius1, ra2, dec2, radius2)

Calculates the distance in three dimensional space between two points specified in spherical
polar coordinates.

• Parameters:

• ra1 (floating point): right ascension of point 1 in degrees
• dec1 (floating point): declination of point1 in degrees
• radius1 (floating point): distance from origin of point1
• ra2 (floating point): right ascension of point 2 in degrees
• dec2 (floating point): declination of point2 in degrees
• radius2 (floating point): distance from origin of point2

• Return value

• (floating point): the linear distance between point1 and point2; units are as for
radius1 and radius2

10.7.6 CoordsRadians

Functions for angle transformations and manipulations, based on radians rather than degrees. In
particular, methods for translating between radians and HH:MM:SS.S or DDD:MM:SS.S type
sexagesimal representations are provided.

radiansToDms(rad)

Converts an angle in radians to a formatted degrees:minutes:seconds string. No fractional part

SUN/256 303

of the seconds field is given.

• Parameters:

• rad (floating point): angle in radians

• Return value

• (String): DMS-format string representing rad

radiansToDms(rad, secFig)

Converts an angle in radians to a formatted degrees:minutes:seconds string with a given
number of decimal places in the seconds field.

• Parameters:

• rad (floating point): angle in radians
• secFig (integer): number of decimal places in the seconds field

• Return value

• (String): DMS-format string representing rad

radiansToHms(rad)

Converts an angle in radians to a formatted hours:minutes:seconds string. No fractional part of
the seconds field is given.

• Parameters:

• rad (floating point): angle in radians

• Return value

• (String): HMS-format string representing rad

radiansToHms(rad, secFig)

Converts an angle in radians to a formatted hours:minutes:seconds string with a given number
of decimal places in the seconds field.

• Parameters:

• rad (floating point): angle in radians
• secFig (integer): number of decimal places in the seconds field

• Return value

• (String): HMS-format string representing rad

dmsToRadians(dms)

Converts a formatted degrees:minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters dm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• Parameters:

• dms (String): formatted DMS string

• Return value

• (floating point): angle in radians specified by dms

hmsToRadians(hms)

SUN/256 304

Converts a formatted hours:minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters hm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• Parameters:

• hms (String): formatted HMS string

• Return value

• (floating point): angle in radians specified by hms

dmsToRadians(deg, min, sec)

Converts degrees, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values). It is illegal for the min or sec arguments to be negative.

• Parameters:

• deg (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle

• Return value

• (floating point): specified angle in radians

hmsToRadians(hour, min, sec)

Converts hours, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values).

• Parameters:

• hour (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle

• Return value

• (floating point): specified angle in radians

skyDistanceRadians(ra1, dec1, ra2, dec2)

Calculates the separation (distance around a great circle) of two points on the sky in radians.

• Parameters:

• ra1 (floating point): right ascension of point 1 in radians
• dec1 (floating point): declination of point 1 in radians
• ra2 (floating point): right ascension of point 2 in radians
• dec2 (floating point): declination of point 2 in radians

• Return value

• (floating point): angular distance between point 1 and point 2 in radians

SUN/256 305

posAngRadians(ra1, dec1, ra2, dec2)

Calculates the position angle between two points on the sky in radians. The result is in the
range +/-pi. If point 2 is due east of point 1, the result is +pi/2. Zero is returned if the points are
coincident.

• Parameters:

• ra1 (floating point): right ascension of point 1 in radians
• dec1 (floating point): declination of point 1 in radians
• ra2 (floating point): right ascension of point 2 in radians
• dec2 (floating point): declination of point 2 in radians

• Return value

• (floating point): bearing in radians of point 2 from point 1

polarDistanceRadians(ra1, dec1, radius1, ra2, dec2, radius2)

Calculates the distance in three dimensional space between two points specified in spherical
polar coordinates.

• Parameters:

• ra1 (floating point): right ascension of point 1 in radians
• dec1 (floating point): declination of point1 in radians
• radius1 (floating point): distance from origin of point1
• ra2 (floating point): right ascension of point 2 in radians
• dec2 (floating point): declination of point2 in radians
• radius2 (floating point): distance from origin of point2

• Return value

• (floating point): the linear distance between point1 and point2; units are as for
radius1 and radius2

hoursToRadians(hours)

Converts hours to radians.

• Parameters:

• hours (floating point): angle in hours

• Return value

• (floating point): angle in radians

degreesToRadians(deg)

Converts degrees to radians.

• Parameters:

• deg (floating point): angle in degrees

• Return value

• (floating point): angle in radians

radiansToDegrees(rad)

Converts radians to degrees.

• Parameters:

SUN/256 306

• rad (floating point): angle in radians

• Return value

• (floating point): angle in degrees

raFK4toFK5radians(raFK4, decFK4)

Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Right
Ascension. This assumes zero proper motion in the FK5 frame.

• Parameters:

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)

• Return value

• (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4toFK5radians(raFK4, decFK4)

Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Declination
This assumes zero proper motion in the FK5 frame.

• Parameters:

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)

• Return value

• (floating point): declination in J2000.0 FK5 system (radians)

raFK5toFK4radians(raFK5, decFK5)

Converts a J2000.0 FK5 position to B1950.0 FK4 at an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

• Parameters:

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)

• Return value

• (floating point): right ascension in the FK4 system (radians)

decFK5toFK4radians(raFK5, decFK5)

Converts a J2000.0 FK5 position to B1950.0 FK4 at an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

• Parameters:

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)

• Return value

• (floating point): right ascension in the FK4 system (radians)

raFK4toFK5Radians(raFK4, decFK4, bepoch)

Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Right Ascension. This assumes
zero proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position

SUN/256 307

in the FK4 frame was determined.

• Parameters:

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)
• bepoch (floating point): Besselian epoch

• Return value

• (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4toFK5Radians(raFK4, decFK4, bepoch)

Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Declination. This assumes zero
proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position in
the FK4 frame was determined.

• Parameters:

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)
• bepoch (floating point): Besselian epoch

• Return value

• (floating point): declination in J2000.0 FK5 system (radians)

raFK5toFK4Radians(raFK5, decFK5, bepoch)

Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

• Parameters:

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)
• bepoch (floating point): Besselian epoch

• Return value

• (floating point): right ascension in the FK4 system (radians)

decFK5toFK4Radians(raFK5, decFK5, bepoch)

Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

• Parameters:

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)
• bepoch (floating point): Besselian epoch

• Return value

• (floating point): right ascension in the FK4 system (radians)

DEGREE_RADIANS

The size of one degree in radians.

HOUR_RADIANS

The size of one hour of right ascension in radians.

SUN/256 308

ARC_MINUTE_RADIANS

The size of one arcminute in radians.

ARC_SECOND_RADIANS

The size of one arcsecond in radians.

10.7.7 Coverage

Functions related to coverage and footprints.

One coverage standard is Multi-Order Coverage maps, described at
http://www.ivoa.net/Documents/MOC/ (http://www.ivoa.net/Documents/MOC/). MOC positions
are always defined in ICRS equatorial coordinates.

MOCs may be specified using a string argument of the functions in one of the following ways:

• The filename of a MOC FITS file
• The URL of a MOC FITS file
• The identifier of a VizieR table, for instance "V/139/sdss9" (SDSS DR9)
• An ASCII MOC string, for instance "1/1 2 4 2/12-14 21 23 25 8/"

A list of all the MOCs available from VizieR can currently be found at
http://alasky.u-strasbg.fr/footprints/tables/vizier/ (http://alasky.u-strasbg.fr/footprints/tables/vizier/).
You can search for VizieR table identifiers from the VizieR web page (http://vizier.u-strasbg.fr/
(http://vizier.u-strasbg.fr/)); note you must use the table identifier (like "V/139/sdss9") and not the
catalogue identifier (like "V/139").

inMoc(moc, ra, dec)

Indicates whether a given sky position falls strictly within a given MOC (Multi-Order
Coverage map). If the given moc value does not represent a MOC (for instance no file exists or
the file/string is not in MOC format) a warning will be issued the first time it's referenced, and
the result will be false.

• Parameters:

• moc (String): a MOC identifier; a filename, a URL, a VizieR table name, or an ASCII
MOC string

• ra (floating point): ICRS right ascension in degrees
• dec (floating point): ICRS declination in degrees

• Return value

• (boolean): true iff the given position falls within the given MOC

nearMoc(moc, ra, dec, distanceDeg)

Indicates whether a given sky position either falls within, or is within a certain distance of the
edge of, a given MOC (Multi-Order Coverage map). If the given moc value does not represent
a MOC (for instance no file exists or the file/string is not in MOC format) a warning will be
issued the first time it's referenced, and the result will be false.

• Parameters:

SUN/256 309

• moc (String): a MOC identifier; a filename, a URL, a VizieR table name, or an ASCII
MOC string

• ra (floating point): ICRS right ascension in degrees
• dec (floating point): ICRS declination in degrees
• distanceDeg (floating point): permitted distance from MOC boundary in degrees

• Return value

• (boolean): true iff the given position is within distance degrees of the given MOC

10.7.8 Distances

Functions for converting between different measures of cosmological distance.

The following parameters are used:

• z: redshift
• H0: Hubble constant in km/sec/Mpc (example value ~70)
• omegaM: Density ratio of the universe (example value 0.3)
• omegaLambda: Normalised cosmological constant (example value 0.7)

For a flat universe, omegaM+omegaLambda=1

The terms and formulae used here are taken from the paper by D.W.Hogg, Distance measures in
cosmology, astro-ph/9905116 (http://arxiv.org/abs/astro-ph/9905116) v4 (2000).

MpcToM(distMpc)

Converts from MegaParsecs to metres.

• Parameters:

• distMpc (floating point): distance in Mpc

• Return value

• (floating point): distance in m

mToMpc(distM)

Converts from metres to MegaParsecs.

• Parameters:

• distM (floating point): distance in m

• Return value

• (floating point): distance in Mpc

zToDist(z)

Quick and dirty function for converting from redshift to distance.

Warning: this makes some reasonable assumptions about the cosmology and returns the
luminosity distance. It is only intended for approximate use. If you care about the details, use
one of the more specific functions here.

• Parameters:

• z (floating point): redshift

SUN/256 310

• Return value

• (floating point): some distance measure in Mpc

zToAge(z)

Quick and dirty function for converting from redshift to time.

Warning: this makes some reasonable assumptions about the cosmology. It is only intended
for approximate use. If you care about the details use one of the more specific functions here.

• Parameters:

• z (floating point): redshift

• Return value

• (floating point): 'age' of photons from redshift z in Gyr

comovingDistanceL(z, H0, omegaM, omegaLambda)

Line-of-sight comoving distance.

• Parameters:

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant

• Return value

• (floating point): line-of-sight comoving distance in Mpc

comovingDistanceT(z, H0, omegaM, omegaLambda)

Transverse comoving distance.

• Parameters:

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant

• Return value

• (floating point): transverse comoving distance in Mpc

angularDiameterDistance(z, H0, omegaM, omegaLambda)

Angular diameter distance.

• Parameters:

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant

• Return value

• (floating point): angular diameter distance in Mpc

luminosityDistance(z, H0, omegaM, omegaLambda)

SUN/256 311

Luminosity distance.

• Parameters:

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant

• Return value

• (floating point): luminosity distance in Mpc

lookbackTime(z, H0, omegaM, omegaLambda)

Lookback time. This returns the difference between the age of the universe at time of
observation (now) and the age of the universe at the time when photons of redshift z were
emitted.

• Parameters:

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant

• Return value

• (floating point): lookback time in Gyr

comovingVolume(z, H0, omegaM, omegaLambda)

Comoving volume. This returns the all-sky total comoving volume out to a given redshift z.

• Parameters:

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant

• Return value

• (floating point): comoving volume in Gpc3

SPEED_OF_LIGHT

Speed of light in m/s.

METRE_PER_PARSEC

Number of metres in a parsec.

SEC_PER_YEAR

Number of seconds in a year.

10.7.9 Fluxes

Functions for conversion between flux and magnitude values. Functions are provided for

SUN/256 312

conversion between flux in Janskys and AB magnitudes.

Some constants for approximate conversions between different magnitude scales are also provided:

• Constants JOHNSON_AB_*, for Johnson <-> AB magnitude conversions, from Frei and Gunn,
Astronomical Journal 108, 1476 (1994), Table 2 (1994AJ....108.1476F
(http://adsabs.harvard.edu/abs/1994AJ....108.1476F)).

• Constants VEGA_AB_*, for Vega <-> AB magnitude conversions, from Blanton et al.,
Astronomical Journal 129, 2562 (2005), Eqs. (5) (2005AJ....129.2562B
(http://adsabs.harvard.edu/abs/2005AJ....129.2562B)).

abToJansky(magAB)

Converts AB magnitude to flux in Jansky.

F/Jy=10(23-(AB+48.6)/2.5)

• Parameters:

• magAB (floating point): AB magnitude value

• Return value

• (floating point): equivalent flux in Jansky

janskyToAb(fluxJansky)

Converts flux in Jansky to AB magnitude.

AB=2.5*(23-log
10

(F/Jy))-48.6

• Parameters:

• fluxJansky (floating point): flux in Jansky

• Return value

• (floating point): equivalent AB magnitude

luminosityToFlux(lumin, dist)

Converts luminosity to flux given a luminosity distance.

F=lumin/(4 x Pi x dist2)

• Parameters:

• lumin (floating point): luminosity
• dist (floating point): luminosity distance

• Return value

• (floating point): equivalent flux

fluxToLuminosity(flux, dist)

Converts flux to luminosity given a luminosity distance.

lumin=(4 x Pi x dist2) F

• Parameters:

• flux (floating point): flux
• dist (floating point): luminosity distance

• Return value

SUN/256 313

• (floating point): equivalent luminosity

JOHNSON_AB_V

Approximate offset between Johnson and AB magnitudes in V band.
V

J
~=V

AB
+JOHNSON_AB_V.

JOHNSON_AB_B

Approximate offset between Johnson and AB magnitudes in B band.
B

J
~=B

AB
+JOHNSON_AB_B.

JOHNSON_AB_Bj

Approximate offset between Johnson and AB magnitudes in Bj band.
Bj

J
~=Bj

AB
+JOHNSON_AB_Bj.

JOHNSON_AB_R

Approximate offset between Johnson and AB magnitudes in R band.
R

J
~=R

AB
+JOHNSON_AB_R.

JOHNSON_AB_I

Approximate offset between Johnson and AB magnitudes in I band. I
J
~=I

AB
+JOHNSON_AB_I.

JOHNSON_AB_g

Approximate offset between Johnson and AB magnitudes in g band. g
J
~=g

AB
+JOHNSON_AB_g.

JOHNSON_AB_r

Approximate offset between Johnson and AB magnitudes in r band. r
J
~=r

AB
+JOHNSON_AB_r.

JOHNSON_AB_i

Approximate offset between Johnson and AB magnitudes in i band. i
J
~=i

AB
+JOHNSON_AB_i.

JOHNSON_AB_Rc

Approximate offset between Johnson and AB magnitudes in Rc band.
Rc

J
~=Rc

AB
+JOHNSON_AB_Rc.

JOHNSON_AB_Ic

Approximate offset between Johnson and AB magnitudes in Ic band.
Ic

J
~=Ic

AB
+JOHNSON_AB_Ic.

JOHNSON_AB_uPrime

Offset between Johnson and AB magnitudes in u' band (zero).
u'

J
=u'

AB
+JOHNSON_AB_uPrime=u'

AB
.

JOHNSON_AB_gPrime

Offset between Johnson and AB magnitudes in g' band (zero).
g'

J
=g'

AB
+JOHNSON_AB_gPrime=g'

AB
.

SUN/256 314

JOHNSON_AB_rPrime

Offset between Johnson and AB magnitudes in r' band (zero).
r'

J
=r'

AB
+JOHNSON_AB_rPrime=r'AB.

JOHNSON_AB_iPrime

Offset between Johnson and AB magnitudes in i' band (zero).
i'

J
=i'

AB
+JOHNSON_AB_iPrime=i'AB.

JOHNSON_AB_zPrime

Offset between Johnson and AB magnitudes in z' band (zero).
z'

J
=z'

AB
+JOHNSON_AB_zPrime=z'

AB
.

VEGA_AB_J

Approximate offset between Vega (as in 2MASS) and AB magnitudes in J band.
J
Vega

~=J
AB

+VEGA_AB_J.

VEGA_AB_H

Approximate offset between Vega (as in 2MASS) and AB magnitudes in H band.
H

Vega
~=HAB+VEGA_AB_H.

VEGA_AB_K

Approximate offset between Vega (as in 2MASS) and AB magnitudes in K band.
K

Vega
~=KAB+VEGA_AB_K.

10.7.10 Formats

Functions for formatting numeric values.

formatDecimal(value, dp)

Turns a floating point value into a string with a given number of decimal places using standard
settings.

• Parameters:

• value (floating point): value to format
• dp (integer): number of decimal places (digits after the decmal point)

• Return value

• (String): formatted string

• Examples:

• formatDecimal(PI,0) = "3."

• formatDecimal(0,10) = ".0000000000"

• formatDecimal(E*10,3) = "27.183"

formatDecimalLocal(value, dp)

Turns a floating point value into a string using current locale settings. For instance if language

SUN/256 315

is set to French, decimal points will be represented as a comma "," instead of a full stop ".".
Otherwise behaves the same as the corresponding formatDecimal function.

• Parameters:

• value (floating point): value to format
• dp (integer): number of decimal places (digits after the decmal point)

• Return value

• (String): formatted string

• Examples:

• formatDecimal(PI,0) = "3,"

• formatDecimal(0,10) = ",0000000000"

• formatDecimal(E*10,3) = "27,183"

formatDecimal(value, format)

Turns a floating point value into a formatted string using standard settings. The format string
is as defined by Java's java.text.DecimalFormat

(http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html) class.

• Parameters:

• value (floating point): value to format
• format (String): format specifier

• Return value

• (String): formatted string

• Examples:

• formatDecimal(99, "#.000") = "99.000"

• formatDecimal(PI, "+0.##;-0.##") = "+3.14"

formatDecimalLocal(value, format)

Turns a floating point value into a formatted string using current locale settings. For instance if
language is set to French, decimal points will be represented as a comma "," instead of a full
stop ".". Otherwise behaves the same as the corresponding formatDecimal function.

• Parameters:

• value (floating point): value to format
• format (String): format specifier

• Return value

• (String): formatted string

• Examples:

• formatDecimal(99, "#.000") = "99,000"

• formatDecimal(PI, "+0.##;-0.##") = "+3,14"

10.7.11 Gaia

Functions related to astrometry suitable for use with data from the Gaia astrometry mission.

The methods here are not specific to the Gaia mission, but the parameters of the functions and their

SUN/256 316

units are specified in a form that is convenient for use with Gaia data, in particular the gaia_source

catalogue available from http://gea.esac.esa.int/archive/ (http://gea.esac.esa.int/archive/) and copies
or mirrors.

There are currently three main sets of functions here:

• position and velocity vector calculation and manipulation
• distance estimation from parallaxes
• astrometry propagation to different epochs

Position and velocity vectors

Functions are provided for converting the astrometric parameters contained in the Gaia catalogue to
ICRS Cartesian position (XYZ) and velocity (UVW) vectors. Functions are also provided to
convert these vectors between ICRS and Galactic or Ecliptic coordinates. The calculations are fairly
straightforward, and follow the equations laid out in section 1.5.6 of The Hipparcos and Tycho
Catalogues, ESA SP-1200 (https://www.cosmos.esa.int/web/hipparcos/catalogues) (1997) and also
section 3.1.7 of the Gaia DR2 documentation
(http://gea.esac.esa.int/archive/documentation/GDR2/) (2018).

These functions will often be combined; for instance to calculate the position and velocity in
galactic coordinates from Gaia catalogue values, the following expressions may be useful:

xyz_gal = icrsToGal(astromXYZ(ra,dec,parallax))
uvw_gal = icrsToGal(astromUVW(array(ra,dec,parallax,pmra,pmdec,radial_velocity)))

though note that these particular examples simply invert parallax to provide distance estimates,
which is not generally valid. Note also that these functions do not attempt to correct for solar
motion. Such adjustments should be carried out by hand on the results of these functions if they are
required.

Functions for calculating errors on the Cartesian components based on the error and correlation
quantities from the Gaia catalogue are not currently provided. They would require fairly
complicated invocations. If there is demand they may be implemented in the future.

Distance estimation

Gaia measures parallaxes, but some scientific use cases require the radial distance instead. While
distance in parsec is in principle the reciprocal of parallax in arcsec, in the presence of
non-negligable errors on measured parallax, this inversion does not give a good estimate of
distance. A thorough discussion of this topic and approaches to estimating distances for Gaia-like
data can be found in the papers

• C.A.L.Bailer-Jones, "Estimating distances from parallaxes", PASP 127, p994 (2015)
2015PASP..127..994B (http://adsabs.harvard.edu/abs/2015PASP..127..994B)

• T.L.Astraatmadja and C.A.L.Bailer-Jones, "Estimating Distances from Parallaxes. II.
Performance of Bayesian Distance Estimators on a Gaia-like Catalogue", ApJ 832, a137
(2016) 2016ApJ...832..137A (http://adsabs.harvard.edu/abs/2016ApJ...832..137A)

• X.Luri et al., "Gaia Data Release 2: Using Gaia Parallaxes", A&A in press (2018)
arXiv:1804.09376 (https://arxiv.org/abs/1804.09376)

The functions provided here correspond to calculations from Astraatmadja & Bailer-Jones,
"Estimating Distances from Parallaxes. III. Distances of Two Million Stars in the Gaia DR1
Catalogue", ApJ 833, a119 (2016) 2016ApJ...833..119A
(http://adsabs.harvard.edu/abs/2016ApJ...833..119A) based on the Exponentially Decreasing
Space Density prior defined therein. This implementation was written with reference to the Java

SUN/256 317

implementation by Enrique Utrilla (DPAC).

These functions are parameterised by a length scale L that defines the exponential decay (the mode
of the prior PDF is at r=2L). Some value for this length scale, specified in parsec, must be supplied
to the functions as the lpc parameter.

Note that the values provided by these functions do not match those from the paper Bailer-Jones et
al. "Estimating Distances from Parallaxes IV: Distances to 1.33 Billion stars in Gaia Data Release
2", accepted for AJ (2018) arXiv:1804.10121 (https://arxiv.org/abs/1804.10121). The calculations
of that paper differ from the ones presented here in several ways: it uses a galactic model for the
direction-dependent length scale not currently available here, it pre-applies a parallax correction of
-0.029mas, and it uses different uncertainty measures and in some cases (bimodal PDF) a different
best distance estimator.

Epoch Propagation

The Gaia source catalogue provides, for at least some sources, the six-parameter astrometric
solution (Right Ascension, Declination, Parallax, Proper motion in RA and Dec, and Radial
Velocity), along with errors on these values and correlations between these errors. While a crude
estimate of the position at an earlier or later epoch than that of the measurement can be made by
multiplying the proper motion components by epoch difference and adding to the measured
position, a more careful treatment is required for accurate propagation between epochs of the
astrometric parameters, and if required their errors and correlations. The expressions for this are set
out in section 1.5.5 (Volume 1) of The Hipparcos and Tycho Catalogues, ESA SP-1200
(https://www.cosmos.esa.int/web/hipparcos/catalogues) (1997) (but see below), and the code is
based on an implementation by Alexey Butkevich and Daniel Michalik (DPAC). A correction is
applied to the SP-1200 treatment of radial velocity uncertainty following Michalik et al. 2014
2014A&A...571A..85M (http://ukads.nottingham.ac.uk/abs/2014A%26A...571A..85M) because of
their better handling of small radial velocities or parallaxes.

The calculations give the same results, though not exactly in the same form, as the epoch
propagation functions available in the Gaia archive service.

polarXYZ(phi, theta, r)

Converts from spherical polar to Cartesian coordinates.

• Parameters:

• phi (floating point): longitude in degrees
• theta (floating point): latitude in degrees
• r (floating point): radial distance

• Return value

• (array of floating point): 3-element vector giving Cartesian coordinates

• Examples:

• polarXYZ(ra, dec, distance_estimate)

• polarXYZ(l, b, 3262./parallax) - calculates vector components in units of light
year in the galactic system, on the assumption that distance is the inverse of parallax

astromXYZ(ra, dec, parallax)

Calculates Cartesian components of position from RA, Declination and parallax. This is a
convenience function, equivalent to:

polarXYZ(ra, dec, 1000./parallax)

SUN/256 318

Note that this performs distance scaling using a simple inversion of parallax, which is not in
general reliable for parallaxes with non-negligable errors. Use at your own risk.

• Parameters:

• ra (floating point): Right Ascension in degrees
• dec (floating point): Declination in degrees
• parallax (floating point): parallax in mas

• Return value

• (array of floating point): 3-element vector giving equatorial space coordinates in
parsec

• Examples:

• astromXYZ(ra, dec, parallax)

• icrsToGal(astromXYZ(ra, dec, parallax))

icrsToGal(xyz)

Converts a 3-element vector representing ICRS (equatorial) coordinates to galactic
coordinates. This can be used with position or velocity vectors.

The input vector is multiplied by the matrix AG', given in Eq. 3.61 of the Gaia DR2
documentation, following Eq. 1.5.13 of the Hipparcos catalogue.

The output coordinate system is right-handed, with the three components positive in the
directions of the Galactic center, Galactic rotation, and the North Galactic Pole respectively.

• Parameters:

• xyz (array of floating point): 3-element vector giving ICRS Cartesian components

• Return value

• (array of floating point): 3-element vector giving Galactic Cartesian components

• Example:

• icrsToGal(polarXYZ(ra, dec, distance))

galToIcrs(xyz)

Converts a 3-element vector representing galactic coordinates to ICRS (equatorial)
coordinates. This can be used with position or velocity vectors.

The input vector is multiplied by the matrix AG , given in Eq. 3.61 of the Gaia DR2
documentation, following Eq. 1.5.13 of the Hipparcos catalogue.

The input coordinate system is right-handed, with the three components positive in the
directions of the Galactic center, Galactic rotation, and the North Galactic Pole respectively.

• Parameters:

• xyz (array of floating point): 3-element vector giving Galactic Cartesian components

• Return value

• (array of floating point): 3-element vector giving ICRS Cartesian components

• Example:

• galToIcrs(polarXYZ(l, b, distance))

icrsToEcl(xyz)

SUN/256 319

Converts a 3-element vector representing ICRS (equatorial) coordinates to ecliptic coordinates.
This can be used with position or velocity vectors.

The transformation corresponds to that between the coordinates (ra,dec) and
(ecl_lon,ecl_lat) in the Gaia source catalogue (DR2).

• Parameters:

• xyz (array of floating point): 3-element vector giving ICRS Cartesian components

• Return value

• (array of floating point): 3-element vector giving ecliptic Cartesian components

• Example:

• icrsToEcl(polarXYZ(ra, dec, distance))

eclToIcrs(xyz)

Converts a 3-element vector representing ecliptic coordinates to ICRS (equatorial) coordinates.
This can be used with position or velocity vectors.

The transformation corresponds to that between the coordinates (ecl_lon,ecl_lat) and
(ra,dec) in the Gaia source catalogue (DR2).

• Parameters:

• xyz (array of floating point): 3-element vector giving ecliptic Cartesian coordinates

• Return value

• (array of floating point): 3-element vector giving ICRS Cartesian coordinates

• Example:

• eclToIcrs(polarXYZ(ecl_lon, ecl_lat, distance))

astromUVW(astrom6)

Calculates Cartesian components of velocity from quantities available in the Gaia source
catalogue. The output is in the same coordinate system as the inputs, that is ICRS for the
correspondingly-named Gaia quantities.

The input astrometry parameters are represented by a 6-element array, with the following
elements:

index gaia_source name unit description
----- ---------------- ---- -----------
0: ra deg right ascension
1: dec deg declination
2: parallax mas parallax
3: pmra mas/yr proper motion in ra * cos(dec)
4: pmdec mas/yr proper motion in dec
5: radial_velocity km/s barycentric radial velocity

The units used by this function are the units used in the gaia_source table.

This convenience function just invokes the 7-argument astromUVW function using the inverted
parallax for the radial distance, and without invoking the Doppler correction. It is exactly
equivalent to:

astromUVW(a[0], a[1], a[3], a[4], a[5], 1000./a[2], false)

Note this naive inversion of parallax to estimate distance is not in general reliable for
parallaxes with non-negligable errors.

SUN/256 320

• Parameters:

• astrom6 (array of floating point): vector of 6 astrometric parameters as provided by
the Gaia source catalogue

• Return value

• (array of floating point): 3-element vector giving equatorial velocity components in
km/s

• Examples:

• astromUVW(array(ra, dec, parallax, pmra, pmdec, radial_velocity))

• icrsToGal(astromUVW(array(ra, dec, parallax, pmra, pmdec,

radial_velocity)))

astromUVW(ra, dec, pmra, pmdec, radial_velocity, r_parsec, useDoppler)

Calculates Cartesian components of velocity from the observed position and proper motion,
radial velocity and radial distance, with optional light-time correction. The output is in the
same coordinate system as the inputs, that is ICRS for the correspondingly-named Gaia
quantities.

The radial distance must be supplied using the r_parsec parameter. A naive estimate from
quantities in the Gaia source catalogue may be made with the expression 1000./parallax,
though note that this simple inversion of parallax is not in general reliable for parallaxes with
non-negligable errors.

The calculations are fairly straightforward, following Eq. 1.5.74 from the Hipparcos catalogue.
A (usually small) Doppler factor accounting for light-time effects can also optionally be
applied. The effect of this is to multiply the returned vector by a factor of
1/(1-radial_velocity/c), as discussed in Eq. 1.2.21 of the Hipparcos catalogue.

Note that no attempt is made to adjust for solar motion.

• Parameters:

• ra (floating point): Right Ascension in degrees
• dec (floating point): Declination in degrees
• pmra (floating point): proper motion in RA * cos(dec) in mas/yr
• pmdec (floating point): proper motion in declination in mas/yr
• radial_velocity (floating point): radial velocity in km/s
• r_parsec (floating point): radial distance in parsec
• useDoppler (boolean): whether to apply the Doppler factor to account for light-time

effects

• Return value

• (array of floating point): 3-element vector giving equatorial velocity components in
km/s

• Examples:

• astromUVW(ra, dec, pmra, pmdec, radial_velocity, dist, true)

• icrsToGal(astromUVW(ra, dec, pmra, pmdec, radial_velocity,

1000./parallax, false))

epochProp(tYr, astrom6)

Propagates the astrometry parameters, supplied as a 6-element array, to a different epoch.

The input and output astrometry parameters are each represented by a 6-element array, with
the following elements:

SUN/256 321

index gaia_source name unit description
----- ---------------- ---- -----------
0: ra deg right ascension
1: dec deg declination
2: parallax mas parallax
3: pmra mas/yr proper motion in ra * cos(dec)
4: pmdec mas/yr proper motion in dec
5: radial_velocity km/s barycentric radial velocity

The units used by this function are the units used in the gaia_source table.

• Parameters:

• tYr (floating point): epoch difference in years
• astrom6 (array of floating point): astrometry at time t0, represented by a 6-element

array as above (a 5-element array is also permitted where radial velocity is zero or
unknown)

• Return value

• (array of floating point): astrometry at time t0+tYr, represented by a 6-element array
as above

• Example:

• epochProp(-15.5, array(ra,dec,parallax,pmra,pmdec,radial_velocity)) -
calculates the astrometry at 2000.0 of gaia_source values that were observed at
2015.5

epochPropErr(tYr, astrom22)

Propagates the astrometry parameters and their associated errors and correlations, supplied as a
22-element array, to a different epoch.

The input and output astrometry parameters with associated error and correlation information
are each represented by a 22-element array, with the following elements:

index gaia_source name unit description
----- ---------------- ---- -----------
0: ra deg right ascension
1: dec deg declination
2: parallax mas parallax
3: pmra mas/yr proper motion in RA * cos(dec)
4: pmdec mas/yr proper motion in Declination
5: radial_velocity km/s barycentric radial velocity
6: ra_error mas error in right ascension
7: dec_error mas error in declination
8: parallax_error mas error in parallax
9: pmra_error mas/yr error in RA proper motion * cos(dec)

10: pmdec_error mas/yr error in Declination proper motion
11: radial_velocity_error km/s error in barycentric radial velocity
12: ra_dec_corr correlation between ra and dec
13: ra_parallax_corr correlation between ra and parallax
14: ra_pmra_corr correlation between ra and pmra
15: ra_pmdec_corr correlation between ra and pmdec
16: dec_parallax_corr correlation between dec and parallax
17: dec_pmra_corr correlation between dec and pmra
18: dec_pmdec_corr correlation between dec and pmdec
19: parallax_pmra_corr correlation between parallax and pmra
20: parallax_pmdec_corr correlation between parallax and pmdec
21: pmra_pmdec_corr correlation between pmra and pmdec

Note the correlation coefficients, always in the range -1..1, are dimensionless.

This is clearly an unwieldy function to invoke, but if you are using it with the gaia_source
catalogue itself, or other similar catalogues with the same column names and units, you can
invoke it by just copying and pasting the example shown in this documentation.

SUN/256 322

This transformation is only applicable for radial velocities determined independently of the
astrometry, such as those obtained with a spectrometer. It is not applicable for the
back-transformation of data already propagated to another epoch.

• Parameters:

• tYr (floating point): epoch difference in years
• astrom22 (array of floating point): astrometry at time t0, represented by a

22-element array as above

• Return value

• (array of floating point): astrometry at time t0+tYr, represented by a 22-element
array as above

• Example:

• epochPropErr(-15.5, array(ra,dec,parallax,pmra,pmdec,radial_velocity,

ra_error,dec_error,parallax_error,pmra_error,pmdec_error,radial_velocity_error,

ra_dec_corr,ra_parallax_corr,ra_pmra_corr,ra_pmdec_corr,

dec_parallax_corr,dec_pmra_corr,dec_pmdec_corr,

parallax_pmra_corr,parallax_pmdec_corr, pmra_pmdec_corr)) - calculates the
astrometry with all errors and correlations at 2000.0 for gaia_source values that were
observed at 2015.5.

rvMasyrToKms(rvMasyr, plxMas)

Converts from normalised radial velocity in mas/year to unnormalised radial velocity in km/s.

The output is calculated as AU_YRKMS * rvMasyr / plxMas, where AU_YRKMS=4.740470446 is
one Astronomical Unit in km.yr/sec.

• Parameters:

• rvMasyr (floating point): normalised radial velocity, in mas/year
• plxMas (floating point): parallax in mas

• Return value

• (floating point): radial velocity in km/s

rvKmsToMasyr(rvKms, plxMas)

Converts from unnormalised radial velocity in km/s to normalised radial velocity in mas/year.

The output is calculated as rvKms * plxMas / AU_YRKMS, where AU_YRKMS=4.740470446 is
one Astronomical Unit in km.yr/sec.

• Parameters:

• rvKms (floating point): unnormalised radial velocity, in mas/year
• plxMas (floating point): parallax in mas

• Return value

• (floating point): radial velocity in mas/year

distanceEstimateEdsd(plxMas, plxErrorMas, lPc)

Best estimate of distance using the Exponentially Decreasing Space Density prior. This
estimate is provided by the mode of the PDF.

• Parameters:

• plxMas (floating point): parallax in mas

SUN/256 323

• plxErrorMas (floating point): parallax error in mas
• lPc (floating point): length scale in parsec

• Return value

• (floating point): best distance estimate in parsec

distanceBoundsEdsd(plxMas, plxErrorMas, lPc)

Calculates the 5th and 95th percentile confidence intervals on the distance estimate using the
Exponentially Decreasing Space Density prior.

Note this function has to numerically integrate the PDF to determine quantile values, so it is
relatively slow.

• Parameters:

• plxMas (floating point): parallax in mas
• plxErrorMas (floating point): parallax error in mas
• lPc (floating point): length scale in parsec

• Return value

• (array of floating point): 2-element array giving the 5th and 95th percentiles in
parsec of the EDSD distance PDF

distanceQuantilesEdsd(plxMas, plxErrorMas, lPc, qpoints, ...)

Calculates arbitrary quantiles for the distance estimate using the Exponentially Decreasing
Space Density prior.

Note this function has to numerically integrate the PDF to determine quantile values, so it is
relatively slow.

• Parameters:

• plxMas (floating point): parallax in mas
• plxErrorMas (floating point): parallax error in mas
• lPc (floating point): length scale in parsec
• qpoints (floating point, one or more): one or more required quantile cut points, each

in the range 0..1

• Return value

• (array of floating point): array with one element for each of the supplied qpoints

giving the corresponding distance in parsec

• Examples:

• distanceQuantilesEdsd(parallax, parallax_error, 1350, 0.5)[0] calculates
the median of the EDSD distance PDF using a length scale of 1.35kpc

• distanceQuantilesEdsd(parallax, parallax_error, 3000, 0.01, 0.99)

returns a 2-element array giving the 1st and 99th percentile of the distance estimate
using a length scale of 3kpc

distanceToModulus(distPc)

Converts a distance in parsec to a distance modulus. The formula is 5*log10(distPc)-5.

• Parameters:

• distPc (floating point): distance in parsec

• Return value

SUN/256 324

• (floating point): distance modulus in magnitudes

modulusToDistance(distmod)

Converts a distance modulus to a distance in parsec. The formula is 10^(1+distmod/5).

• Parameters:

• distmod (floating point): distance modulus in magnitudes

• Return value

• (floating point): distance in parsec

AU_YRKMS

This quantity is A_v, the Astronomical Unit expressed in km.yr/sec. See the Hipparcos
catalogue (ESA SP-1200) table 1.2.2 and Eq. 1.5.24.

PC_AU

Parsec in Astronomical Units, equal to 648000/PI.

PC_YRKMS

Parsec in units of km.yr/sec.

C_KMS

The speed of light in km/s (exact).

10.7.12 KCorrections

Functions for calculating K-corrections.

kCorr(filter, redshift, colorType, colorValue)

Calculates K-corrections. This allows you to determine K-corrections for a galaxy, given its
redshift and a colour. Filters for GALEX, SDSS, UKIDSS, Johnson, Cousins and 2MASS are
covered.

To define the calculation you must choose both a filter, specified as a KCF_* constant, and a
colour (filter pair) specified as a KCC_* constant. For each available filter, only certain colours
are available, as described in the documentation of the relevant KCF_* constant.

The algorithm used is described at http://kcor.sai.msu.ru/ (http://kcor.sai.msu.ru/). This is
based on the paper "Analytical Approximations of K-corrections in Optical and Near-Infrared
Bands" by I.Chilingarian, A.-L.Melchior and I.Zolotukhin (2010MNRAS.405.1409C
(http://adsabs.harvard.edu/abs/2010MNRAS.405.1409C)), but extended to include GALEX
UV bands and with redshift coverage up to 0.5 as described in "Universal UV-optical
Colour-Colour-Magnitude Relation of Galaxies" by I.Chilingarian and I.Zolotukhin
(2012MNRAS.419.1727C (http://adsabs.harvard.edu/abs/2012MNRAS.419.1727C)).

• Parameters:

• filter (KFilter): KCF_* constant defining the filter for which you want to calculate
the K-correction

• redshift (floating point): galaxy redshift; this should be in the range 0-0.5
• colorType (KColor): KCC_* constant defining the filter pair for the calculation;

SUN/256 325

check the KCF_* constant documentation to see which ones are permitted for a given
filter

• colorValue (floating point): the value of the colour

• Return value

• (floating point): K correction

• Examples:

• kCorr(KCF_g, 0.16, KCC_gr, -0.8) = 3.593

• kCorr(KCF_FUV, 0.48, KCC_FUVu, 0.31) = -0.170

KCF_FUV

GALEX FUV filter (AB). Use with KCC_FUVNUV or KCC_FUVu.

KCF_NUV

GALEX NUV filter (AB). Use with KCC_NUVg or KCC_NUVr.

KCF_u

SDSS u filter (AB). Use with KCC_ur, KCC_ui or KCC_uz.

KCF_g

SDSS g filter (AB). Use with KCC_gr, KCC_gi or KCC_gz.

KCF_r

SDSS r filter (AB). Use with KCC_gr or KCC_ur.

KCF_i

SDSS i filter (AB). Use with KCC_gi or KCC_ui.

KCF_z

SDSS z filter (AB). Use with KCC_rz, KCC_gz or KCC_uz.

KCF_Y

UKIDSS Y filter (AB). Use with KCC_YH or KCC_YK.

KCF_J

UKIDSS J filter (AB). Use with KCC_JK or KCC_JH.

KCF_H

UKIDSS H filter (AB). Use with KCC_HK or KCC_JH.

KCF_K

UKIDSS K filter (AB). Use with KCC_JK or KCC_HK.

KCF_U

Johnson U filter (Vega). Use with KCC_URc.

SUN/256 326

KCF_B

Johnson B filter (Vega). Use with KCC_BRc or KCC_BIc.

KCF_V

Johnson V filter (Vega). Use with KCC_VIc or KCC_VRc.

KCF_Rc

Cousins Rc filter (Vega). Use with KCC_BRc or KCC_VRc.

KCF_Ic

Cousins Ic filter (Vega). Use with KCC_VIc.

KCF_J2

2MASS J filter (Vega). Use with KCC_J2Ks2 or KCC_J2H2.

KCF_H2

2MASS H filter (Vega). Use with KCC_H2Ks2 or KCC_J2H2.

KCF_Ks2

2MASS Ks filter (Vega). Use with KCC_J2Ks2 or KCC_H2Ks2.

KCC_BIc

Johnson B - Cousins Ic colour.

KCC_BRc

Johnson B - Cousins Rc colour.

KCC_FUVNUV

GALEX FUV - NUV colour.

KCC_FUVu

GALEX FUV - SDSS u colour.

KCC_gi

SDSS g - i colour.

KCC_gr

SDSS g - r colour.

KCC_gz

SDSS g - z colour.

SUN/256 327

KCC_H2Ks2

2MASS H - Ks colour.

KCC_HK

UKIDSS H - K colour.

KCC_J2H2

2MASS J - H colour.

KCC_J2Ks2

2MASS J - Ks colour.

KCC_JH

UKIDSS J - H colour.

KCC_JK

UKIDSS J - K colour.

KCC_NUVg

GALEX NUV - SDSS g colour.

KCC_NUVr

GALEX NUV - SDSS r colour.

KCC_rz

SDSS r - SDSS z colour.

KCC_ui

SDSS u - SDSS i colour.

KCC_URc

Johnson U - Cousins Rc colour.

KCC_ur

SDSS u - r colour.

KCC_uz

SDSS u - z colour.

KCC_VIc

Johnson V - Cousins Ic colour.

KCC_VRc

Johnson V - Cousins Rc colour.

SUN/256 328

KCC_YH

UKIDSS Y - H colour.

KCC_YK

UKIDSS Y - K colour.

10.7.13 Lists

Functions which operate on lists of values.

Some of these resemble similar functions in the Arrays class, and in some cases are
interchangeable, but these are easier to use on non-array values because you don't have to explicitly
wrap up lists of arguments as an array. However, for implementation reasons, most of the functions
defined here can be used on values which are already double[] arrays (for instance array-valued
columns) rather than as comma-separated lists of floating point values.

sum(values, ...)

Returns the sum of all the non-blank supplied arguments.

• Parameters:

• values (floating point, one or more): one or more numeric values

• Return value

• (floating point): sum of values

• Examples:

• sum(1, 3, 99) = 103

• sum(1, 3, NaN) = 4

mean(values, ...)

Returns the mean of all the non-blank supplied arguments.

• Parameters:

• values (floating point, one or more): one or more numeric values

• Return value

• (floating point): mean of values

• Examples:

• mean(2, 4, 6, 8) = 5

• mean(100.5, 99.5, NaN) = 100

variance(values, ...)

Returns the population variance of the non-blank supplied arguments.

• Parameters:

• values (floating point, one or more): one or more numeric values

• Return value

SUN/256 329

• (floating point): population variance of values

• Examples:

• variance(0, 3, 4, 3, 0) = 2.8

• variance(0, 3, NaN, 3, NaN) = 2

stdev(values, ...)

Returns the population standard deviation of the non-blank supplied arguments.

• Parameters:

• values (floating point, one or more): one or more numeric values

• Return value

• (floating point): population standard deviation of values

• Example:

• stdev(-3, -2, 0, 0, 1, 2, 3, 4, 5, 6) = 2.8

min(values, ...)

Returns the minimum of all the non-blank supplied arguments.

• Parameters:

• values (floating point, one or more): one or more numeric values

• Return value

• (floating point): minimum of values

• Example:

• min(20, 25, -50, NaN, 101) = -50

max(values, ...)

Returns the maximum of all the non-blank supplied arguments.

• Parameters:

• values (floating point, one or more): one or more numeric values

• Return value

• (floating point): maximum of values

• Example:

• max(20, 25, -50, NaN, 101) = 101

median(values, ...)

Returns the median of all the non-blank supplied arguments.

• Parameters:

• values (floating point, one or more): one or more numeric values

• Return value

• (floating point): median of values

• Example:

• median(-100000, 5, 6, 7, 8) = 6

SUN/256 330

countTrue(values, ...)

Returns the number of true values in a list of boolean arguments. Note if any of the values are
blank, the result may be blank as well.

• Parameters:

• values (boolean, one or more): one or more true/false values

• Return value

• (integer): number of elements of values that are true

• Example:

• countTrue(false, false, true, false, true) = 2

10.7.14 Maths

Standard mathematical and trigonometric functions. Trigonometric functions work with angles in
radians.

sin(theta)

Sine of an angle.

• Parameters:

• theta (floating point): an angle, in radians.

• Return value

• (floating point): the sine of the argument.

cos(theta)

Cosine of an angle.

• Parameters:

• theta (floating point): an angle, in radians.

• Return value

• (floating point): the cosine of the argument.

tan(theta)

Tangent of an angle.

• Parameters:

• theta (floating point): an angle, in radians.

• Return value

• (floating point): the tangent of the argument.

asin(x)

Arc sine of an angle. The result is in the range of -pi/2 through pi/2.

• Parameters:

SUN/256 331

• x (floating point): the value whose arc sine is to be returned.

• Return value

• (floating point): the arc sine of the argument (radians)

acos(x)

Arc cosine of an angle. The result is in the range of 0.0 through pi.

• Parameters:

• x (floating point): the value whose arc cosine is to be returned.

• Return value

• (floating point): the arc cosine of the argument (radians)

atan(x)

Arc tangent of an angle. The result is in the range of -pi/2 through pi/2.

• Parameters:

• x (floating point): the value whose arc tangent is to be returned.

• Return value

• (floating point): the arc tangent of the argument (radians)

ln(x)

Natural logarithm.

• Parameters:

• x (floating point): argument

• Return value

• (floating point): log
e
(x)

exp(x)

Euler's number e raised to a power.

• Parameters:

• x (floating point): the exponent to raise e to.

• Return value

• (floating point): the value e x, where e is the base of the natural logarithms.

log10(x)

Logarithm to base 10.

• Parameters:

• x (floating point): argument

• Return value

• (floating point): log
10

(x)

exp10(x)

Power of 10. This convenience function is identical to pow(10,x).

SUN/256 332

• Parameters:

• x (floating point): argument

• Return value

• (floating point): 10x

sqrt(x)

Square root. The result is correctly rounded and positive.

• Parameters:

• x (floating point): a value.

• Return value

• (floating point): the positive square root of x. If the argument is NaN or less than
zero, the result is NaN.

square(x)

Raise to the power 2.

• Parameters:

• x (floating point): a value

• Return value

• (floating point): x * x

hypot(xs, ...)

Returns the square root of the sum of squares of its arguments. In the 2-argument case, doing it
like this may avoid intermediate overflow or underflow.

• Parameters:

• xs (floating point, one or more): one or more numeric values

• Return value

• (floating point): sqare root of sum of squares of arguments

• Examples:

• hypot(3,4) = 5

• hypot(2,2,2,2) = 4

atan2(y, x)

Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
theta by computing an arc tangent of y/x in the range of -pi to pi.

• Parameters:

• y (floating point): the ordinate coordinate
• x (floating point): the abscissa coordinate

• Return value

• (floating point): the theta component (radians) of the point (r,theta) in polar
coordinates that corresponds to the point (x,y) in Cartesian coordinates.

SUN/256 333

pow(a, b)

Exponentiation. The result is the value of the first argument raised to the power of the second
argument.

• Parameters:

• a (floating point): the base.
• b (floating point): the exponent.

• Return value

• (floating point): the value a
b .

sinh(x)

Hyperbolic sine.

• Parameters:

• x (floating point): parameter

• Return value

• (floating point): result

cosh(x)

Hyperbolic cosine.

• Parameters:

• x (floating point): parameter

• Return value

• (floating point): result

tanh(x)

Hyperbolic tangent.

• Parameters:

• x (floating point): parameter

• Return value

• (floating point): result

asinh(x)

Inverse hyperbolic sine.

• Parameters:

• x (floating point): parameter

• Return value

• (floating point): result

acosh(x)

Inverse hyperbolic cosine.

• Parameters:

• x (floating point): parameter

SUN/256 334

• Return value

• (floating point): result

atanh(x)

Inverse hyperbolic tangent.

• Parameters:

• x (floating point): parameter

• Return value

• (floating point): result

E

Euler's number e, the base of natural logarithms.

PI

Pi, the ratio of the circumference of a circle to its diameter.

Infinity

Positive infinite floating point value.

NaN

Not-a-Number floating point value. Use with care; arithmetic and logical operations behave in
strange ways near NaN (for instance, NaN!=NaN). For most purposes this is equivalent to the
blank value.

10.7.15 Randoms

Functions concerned with random number generation.

There are two flavours of functions here: index-based (random*) and sequential (nextRandom*).
Briefly, the index-based ones are safer to use, but provide poorer random statistics, while the
sequential ones provide decent randomness but are not suitable for use in some/most contexts. They
are documented separately below.

Index-based functions

The functions named random* all take an index parameter which determines the value of the result;
the same index always leads to the same output, but there is not supposed to be any obvious
relationship between index and output. An explicit index is required to ensure that a given cell
always has the same value, since cell values are in general calculated on demand. The quality of the
randomness for these functions may not be that good.

In most cases, the table row index, available as the special token $0, is a suitable value for the index

parameter.

If several different random values are required in the same table row, one way is to supply a
different row-based index value for each one, e.g. random(2*$0) and random(2*$0+1). However,
this tends to introduce a correlation between the random values in the same row, so a better (though

SUN/256 335

in some cases slower) solution is to use one of the array-generating functions, e.g.
randomArray($0,2)[0] and randomArray($0,2)[1].

The output is deterministic, in the sense that the same invocation will always generate the same
"random" number, even across different machines. However, in view of the comments in the
implementation note below, the output may be subject to change in the future if some improved
algorithm can be found, so this guarantee does not necessarily hold across software versions.

Implementation Note: The requirement for mapping a given input index deterministically to a
pseudo-random number constrains the way that the random number generation is done; most
well-studied RNGs generate sequences of random numbers, but that approach cannot be used here,
since these sequences do not admit of random-access. What we do instead is to scramble the input
index somewhat and use that as the seed for an instance of Java's Random class, which is then used
to produce one or more random numbers per input index. Some thought and experimentation has
gone into the current implementation (I bought a copy of Knuth Vol. 2 specially!) and an eyeball
check of the results doesn't look all that bad, but it's still probably not very good, and is not likely to
pass random number quality tests (though I haven't tried). A more respectable approach might be to
use a cryptographic-grade hash function on the supplied index, but that's likely to be much slower.
If there is demand, something like that could be added as an alternative option. In the mean time,
beware if you use these random numbers for scientifically sensitive output.

Sequential functions

The functions named nextRandom* have no arguments, and supply the next value in a global
sequence when they are evaluated. These can be used if scanning through a table once (for instance
when writing a table using STILTS), but they are not suitable for contexts that should supply a
fixed value. For instance if you use them to define the value of a table cell in TOPCAT, that cell
may have a different value every time you look at it, which may have disconcerting results. These
use the java.util.Random class in a more standard way than the index-based functions and should
provide random numbers of reasonable quality.

random(index)

Generates a pseudo-random number sampled from a uniform distribution between 0 and 1.

Note: The randomness may not be very high quality.

• Parameters:

• index (long integer): input value, typically row index "$0"

• Return value

• (floating point): random number between 0 and 1

randomGaussian(index)

Generates a pseudo-random number sampled from a Gaussian distribution with mean of 0.0
and standard deviation of 1.0.

Note: The randomness may not be very high quality.

• Parameters:

• index (long integer): input value, typically row index "$0"

• Return value

• (floating point): random number

randomArray(index, n)

SUN/256 336

Generates an array of pseudo-random numbers sampled from a uniform distribution between 0
and 1.

Note: The randomness may not be very high quality.

• Parameters:

• index (long integer): input value, typically row index "$0"
• n (integer): size of output array

• Return value

• (array of floating point): n-element array of random numbers between 0 and 1

randomGaussianArray(index, n)

Generates an array of pseudo-random numbers sampled from a Gaussian distribution with
mean of 0.0 and standard deviation of 1.0.

Note: The randomness may not be very high quality.

• Parameters:

• index (long integer): input value, typically row index "$0"
• n (integer): size of output array

• Return value

• (array of floating point): n-element array of random numbers

nextRandom()

Returns the next value in a random sequence, sampled from a uniform distribution between 0
and 1.

This function will give a different result every time, hence it is not suitable for use in an
expression which should have a fixed value, for instance to define a TOPCAT column.

• Return value

• (floating point): random number between 0 and 1

nextRandomGaussian()

Returns the next value in a random sequence, sampled from a Gaussian distribution with mean
of 0.0 and standard deviation of 1.0.

This function will give a different result every time, hence it is not suitable for use in an
expression which should have a fixed value, for instance to define a TOPCAT column.

• Return value

• (floating point): random number

10.7.16 Shapes

Functions useful for working with shapes in the (X, Y) plane.

polyLine(x, xys, ...)

Function of x defined by straight line segments between a specified list of vertices. The
vertices are specified as a sequence of X

i
, Y

i
pairs, for which the X

i
values must be monotonic.

SUN/256 337

The line segment at each end of the specified point sequence is considered to be extended to
infinity. If only two points are specified, this is the equation of a straight line between those
points. As a special case, if only one point is specified, the line is considered to be a horizontal
line (equal to the sole specified Y

i
coordinate for all x).

By reversing the X
i

and Y
i

values, this function can equally be used to represent a function
X(y) rather than Y(x).

If the number of coordinates is odd, or the X
i

values are not monotonic, behaviour is
undefined.

• Parameters:

• x (floating point): X value at which function is to be evaluated
• xys (floating point, one or more): 2N arguments (x1, y1, x2, y2, ..., xN, yN) giving

vertices of an N-point line with monotonically increasing or decreasing X values

• Return value

• (floating point): Y coordinate of poly-line for specified x

• Example:

• polyLine(5, 0,0, 2,2) = 5

isInside(x, y, xys, ...)

Indicates whether a given test point is inside a polygon defined by specified list of vertices.
The vertices are specified as a sequence of X

i
, Y

i
pairs.

If the number of coordinates is odd, the behaviour is not defined.

• Parameters:

• x (floating point): X coordinate of test point
• y (floating point): Y coordinate of test point
• xys (floating point, one or more): 2N arguments (x1, y1, x2, y2, ..., xN, yN) giving

vertices of an N-sided polygon

• Return value

• (boolean): true iff test point is inside, or on the border of, the polygon

• Examples:

• isInside(0.5,0.5, 0,0, 0,1, 1,1, 1,0) = true

• isInside(0,0, array(10,20, 20,20, 20,10)) = false

10.7.17 Sky

Functions useful for working with shapes on a sphere. All angles are expressed in degrees.

skyDistance(lon1, lat1, lon2, lat2)

Calculates the separation (distance around a great circle) of two points on the sky in degrees.

This function is identical to skyDistanceDegrees in class CoordsDegrees.

• Parameters:

• lon1 (floating point): point 1 longitude in degrees
• lat1 (floating point): point 1 latitude in degrees
• lon2 (floating point): point 2 longitude in degrees

SUN/256 338

• lat2 (floating point): point 2 latitude in degrees

• Return value

• (floating point): angular distance between point 1 and point 2 in degrees

midLon(lon1, lon2)

Determines the longitude mid-way between two given longitudes. In most cases this is just the
mean of the two values, but this function copes correctly with the case where the given values
straddle the lon=0 line.

• Parameters:

• lon1 (floating point): first longitude in degrees
• lon2 (floating point): second longitude in degrees

• Return value

• (floating point): longitude midway between the given values

• Examples:

• midLon(204.0, 203.5) = 203.75

• midLon(2, 359) = 0.5

midLat(lat1, lat2)

Determines the latitude midway between two given latitudes. This simply returns the mean of
the two values, but is supplied for convenience to use alongside the midLon function.

• Parameters:

• lat1 (floating point): first latitude in degrees
• lat2 (floating point): second latitude in degrees

• Return value

• (floating point): latitude midway between the given values

• Example:

• midLat(23.5, 24.0) = 23.75

inSkyEllipse(lon0, lat0, lonCenter, latCenter, rA, rB, posAng)

Tests whether a given sky position is inside a given ellipse.

• Parameters:

• lon0 (floating point): test point longitude in degrees
• lat0 (floating point): test point latitude in degrees
• lonCenter (floating point): ellipse center longitude in degrees
• latCenter (floating point): ellipse center latitude in degrees
• rA (floating point): ellipse first principal radius in degrees
• rB (floating point): ellipse second principal radius in degrees
• posAng (floating point): position angle in degrees from the North pole to the primary

axis of the ellipse in the direction of increasing longitude

• Return value

• (boolean): true iff test point is inside, or on the border of, the ellipse

inSkyPolygon(lon0, lat0, lonLats, ...)

Tests whether a given sky position is inside the polygon defined by a given set of vertices. The

SUN/256 339

bounding lines of the polygon are the minor arcs of great circles between adjacent vertices,
with an extra line assumed between the first and last supplied vertex. The interior of the
polygon is defined to be the smaller of the two regions separated by the boundary. The vertices
are specified as a sequence of lon

i
, lat

i
pairs.

The implementation of this point-in-polygon function is mostly correct, but may not be
bulletproof. It ought to work for relatively small regions anywhere on the sky, but for instance
it may get the sense wrong for regions that extend to cover both poles.

• Parameters:

• lon0 (floating point): test point latitude in degrees
• lat0 (floating point): test point longitude in degrees
• lonLats (floating point, one or more): 2N arguments (lon1, lat1, lon2, lat2, ...,

lonN, latN) giving (longitude, latitude) vertices of an N-sided polygon in degrees

• Return value

• (boolean): true iff test point is inside, or on the border of, the polygon

10.7.18 Strings

String manipulation and query functions.

concat(strings, ...)

Concatenates multiple values into a string. In some cases the same effect can be achieved by
writing s1+s2+..., but this method makes sure that values are converted to strings, with the
blank value invisible.

• Parameters:

• strings (Object, one or more): one or more strings

• Return value

• (String): concatenation of input strings, without separators

• Examples:

• concat("blue", "moon") = "bluemoon"

• concat("1", 2, 3, "4") = "1234"

• concat("Astro", null, "Physics") = "AstroPhysics"

join(separator, words, ...)

Joins multiple values into a string, with a given separator between each pair.

• Parameters:

• separator (String): string to insert between adjacent words
• words (Object, one or more): one or more values to join

• Return value

• (String): input values joined together with separator

• Examples:

• join("<->", "alpha", "beta", "gamma") = "alpha<->beta<->gamma"

• join(" ", 1, "brown", "mouse") = "1 brown mouse"

SUN/256 340

equals(s1, s2)

Determines whether two strings are equal. Note you should use this function instead of s1==s2,
which can (for technical reasons) return false even if the strings are the same.

• Parameters:

• s1 (String): first string
• s2 (String): second string

• Return value

• (boolean): true if s1 and s2 are both blank, or have the same content

equalsIgnoreCase(s1, s2)

Determines whether two strings are equal apart from possible upper/lower case distinctions.

• Parameters:

• s1 (String): first string
• s2 (String): second string

• Return value

• (boolean): true if s1 and s2 are both blank, or have the same content apart from case
folding

• Examples:

• equalsIgnoreCase("Cygnus", "CYGNUS") = true

• equalsIgnoreCase("Cygnus", "Andromeda") = false

startsWith(whole, start)

Determines whether a string starts with a certain substring.

• Parameters:

• whole (String): the string to test
• start (String): the sequence that may appear at the start of whole

• Return value

• (boolean): true if the first few characters of whole are the same as start

• Example:

• startsWith("CYGNUS X-1", "CYG") = true

endsWith(whole, end)

Determines whether a string ends with a certain substring.

• Parameters:

• whole (String): the string to test
• end (String): the sequence that may appear at the end of whole

• Return value

• (boolean): true if the last few characters of whole are the same as end

• Example:

• endsWith("M32", "32") = true

SUN/256 341

contains(whole, sub)

Determines whether a string contains a given substring.

• Parameters:

• whole (String): the string to test
• sub (String): the sequence that may appear within whole

• Return value

• (boolean): true if the sequence sub appears within whole

• Example:

• contains("Vizier", "izi") = true

length(str)

Returns the length of a string in characters.

• Parameters:

• str (String): string

• Return value

• (integer): number of characters in str

• Example:

• length("M34") = 3

split(words)

Splits a string into an array of space-separated words. One or more spaces separates each word
from the next. Leading and trailing spaces are ignored.

The result is an array of strings, and if you want to use the individual elements you need to use
square-bracket indexing, with [0] representing the first object

• Parameters:

• words (String): string with embedded spaces delimiting the words

• Return value

• (array of String): array of the separate words; you can extract the individual words
from the result using square bracket indexing

• Examples:

• split("211:54:01 +29:33:41") gives a 2-element array, first element is
"211:54:01" and second element is "+29:33:41".

• split(" cat dog cow ")[1] = "dog"

split(words, regex)

Splits a string into an array of words separated by a given regular expression.

The result is an array of strings, and if you want to use the individual elements you need to use
square-bracket indexing, with [0] representing the first object

• Parameters:

• words (String): string with multiple parts
• regex (String): regular expression delimiting the different words in the words

parameter

SUN/256 342

• Return value

• (array of String): array of the separate words; you can extract the individual words
from the result using square bracket indexing

• Examples:

• split("cat, dog, cow", ", *") gives a 3-element string array.
• split("23.0, 45.92", ", ")[0] = "23.0"

• parseDouble(split("23.0, 45.92", ", ")[0]) = 23

matches(str, regex)

Tests whether a string matches a given regular expression.

• Parameters:

• str (String): string to test
• regex (String): regular expression string

• Return value

• (boolean): true if regex matches str anywhere

• Example:

• matches("Hubble", "ub") = true

matchGroup(str, regex)

Returns the first grouped expression matched in a string defined by a regular expression. A
grouped expression is one enclosed in parentheses.

• Parameters:

• str (String): string to match against
• regex (String): regular expression containing a grouped section

• Return value

• (String): contents of the matched group (or null, if regex didn't match str)

• Example:

• matchGroup("NGC28948b","NGC([0-9]*)") = "28948"

replaceFirst(str, regex, replacement)

Replaces the first occurrence of a regular expression in a string with a different substring
value.

• Parameters:

• str (String): string to manipulate
• regex (String): regular expression to match in str

• replacement (String): replacement string

• Return value

• (String): same as str, but with the first match (if any) of regex replaced by
replacement

• Example:

• replaceFirst("Messier 61", "Messier ", "M-") = "M-61"

replaceAll(str, regex, replacement)

SUN/256 343

Replaces all occurrences of a regular expression in a string with a different substring value.

• Parameters:

• str (String): string to manipulate
• regex (String): regular expression to match in str

• replacement (String): replacement string

• Return value

• (String): same as str, but with all matches of regex replaced by replacement

• Example:

• replaceAll("1-2--3---4","--*","x") = "1x2x3x4"

substring(str, startIndex)

Returns the last part of a given string. The substring begins with the character at the specified
index and extends to the end of this string.

• Parameters:

• str (String): the input string
• startIndex (integer): the beginning index, inclusive

• Return value

• (String): last part of str, omitting the first startIndex characters

• Example:

• substring("Galaxy", 2) = "laxy"

substring(str, startIndex, endIndex)

Returns a substring of a given string. The substring begins with the character at startIndex
and continues to the character at index endIndex-1 Thus the length of the substring is
endIndex-startIndex.

• Parameters:

• str (String): the input string
• startIndex (integer): the beginning index, inclusive
• endIndex (integer): the end index, inclusive

• Return value

• (String): substring of str

• Example:

• substring("Galaxy", 2, 5) = "lax"

toUpperCase(str)

Returns an uppercased version of a string.

• Parameters:

• str (String): input string

• Return value

• (String): uppercased version of str

• Example:

SUN/256 344

• toUpperCase("Universe") = "UNIVERSE"

toLowerCase(str)

Returns an lowercased version of a string.

• Parameters:

• str (String): input string

• Return value

• (String): lowercased version of str

• Example:

• toLowerCase("Universe") = "universe"

trim(str)

Trims whitespace from both ends of a string.

• Parameters:

• str (String): input string

• Return value

• (String): str with any spaces trimmed from start and finish

• Examples:

• trim(" some text ") = "some text"

• trim("some text") = "some text"

padWithZeros(value, ndigit)

Takes an integer argument and returns a string representing the same numeric value but
padded with leading zeros to a specified length.

• Parameters:

• value (long integer): numeric value to pad
• ndigit (integer): the number of digits in the resulting string

• Return value

• (String): a string evaluating to the same as value with at least ndigit characters

• Example:

• padWithZeros(23,5) = "00023"

desigToRa(designation)

Attempts to determine the ICRS Right Ascension from an IAU-style designation such as
"2MASS J04355524+1630331" following the specifications in the document
https://cdsweb.u-strasbg.fr/Dic/iau-spec.html (https://cdsweb.u-strasbg.fr/Dic/iau-spec.html).

Note: this function should be used with considerable care. Such designators are intended for
object identification and not for communicating sky positions, so that the resulting positions
are likely to lack precision, and may be inaccurate. If positional information is available from
other sources, it should almost certainly be used instead. But if there's no other choice, this
may be used as a fallback.

Note also that a designator with no coordsystem-specific flag character (a leading "J", "B" or
"G") is considered to be B1950, not J2000.

SUN/256 345

• Parameters:

• designation (String): designation string in IAU format

• Return value

• (floating point): ICRS right ascension in degreees, or blank if no position can be
decoded

• Examples:

• desigToRa("2MASS J04355524+1630331") = 60.98016

• desigToRa("PSR J120000.0+450000.0") = 180

• desigToDec("PSR B120000.0+450000.0") = 180.639096

• desigToRa("PN G001.2-00.3") = 267.403

• desigToRa("NGC 4993") = NaN

desigToDec(designation)

Attempts to determine the ICRS Declination from an IAU-style designation such as "2MASS
J04355524+1630331" following the specifications in the document
https://cdsweb.u-strasbg.fr/Dic/iau-spec.html (https://cdsweb.u-strasbg.fr/Dic/iau-spec.html).

Note: this function should be used with considerable care. Such designators are intended for
object identification and not for communicating sky positions, so that the resulting positions
are likely to lack precision, and may be inaccurate. If positional information is available from
other sources, it should almost certainly be used instead. But if there's no other choice, this
may be used as a fallback.

Note also that a designator with no coordsystem-specific flag character (a leading "J", "B" or
"G") is considered to be B1950, not J2000.

• Parameters:

• designation (String): designation string in IAU format

• Return value

• (floating point): ICRS declination in degrees, or blank if no position can be decoded

• Examples:

• desigToDec("2MASS J04355524+1630331") = 16.50919

• desigToDec("PSR J120000.0+450000.0") = 45

• desigToDec("PSR B120000.0+450000.0") = 44.72167

• desigToDec("PN G001.2-00.3") = -28.06457

• desigToDec("NGC 4993") = NaN

desigToIcrs(designation)

Attempts to decode an IAU-style designation such as "2MASS J04355524+1630331" to
determine its sky position, following the specifications in the document
https://cdsweb.u-strasbg.fr/Dic/iau-spec.html (https://cdsweb.u-strasbg.fr/Dic/iau-spec.html).

Obviously, this only works where the sequence part of the designation takes one of the family
of coordinate-based forms.

Note: this function should be used with considerable care. Such designators are intended for
object identification and not for communicating sky positions, so that the resulting positions
are likely to lack precision, and may be inaccurate. If positional information is available from
other sources, it should almost certainly be used instead. But if there's no other choice, this
may be used as a fallback.

Note also that a designator with no coordsystem-specific flag character (a leading "J", "B" or

SUN/256 346

G") is considered to be B1950, not J2000.

• Parameters:

• designation (String): designation string in IAU format

• Return value

• (array of floating point): 2-element array giving ICRS (RA,Dec) in degrees, or null
if no position can be decoded

10.7.19 Tilings

Pixel tiling functions for the celestial sphere.

The k parameter for the HEALPix functions is the HEALPix order, which can be in the range
0<=k<=29. This is the logarithm to base 2 of the HEALPix NSIDE parameter. At order k, there are
12*4^k pixels on the sphere.

htmIndex(level, lon, lat)

Gives the HTM (Hierachical Triangular Mesh) pixel index for a given sky position.

• Parameters:

• level (integer): HTM level
• lon (floating point): longitude in degrees
• lat (floating point): latitude in degrees

• Return value

• (long integer): pixel index

• See Also:

• HTM web site

healpixNestIndex(k, lon, lat)

Gives the pixel index for a given sky position in the HEALPix NEST scheme.

• Parameters:

• k (integer): HEALPix order (0..29)
• lon (floating point): longitude in degrees
• lat (floating point): latitude in degrees

• Return value

• (long integer): pixel index

• See Also:

• HEALPix web site

healpixRingIndex(k, lon, lat)

Gives the pixel index for a given sky position in the HEALPix RING scheme.

• Parameters:

• k (integer): HEALPix order (0..29)
• lon (floating point): longitude in degrees

SUN/256 347

• lat (floating point): latitude in degrees

• Return value

• (long integer): pixel index

• See Also:

• HEALPix web site

healpixNestLon(k, index)

Returns the longitude of the approximate center of the tile with a given index in the HEALPix
NEST scheme.

Note: the index parameter is 0-based, unlike the table row index special token $index (a.k.a.
$0), which is 1-based. So if the HEALpix index is implicitly determined by the table row, the
value $index-1 should be used.

• Parameters:

• k (integer): HEALPix order (0..29)
• index (long integer): healpix index

• Return value

• (floating point): longitude in degrees

• See Also:

• HEALPix web site

healpixNestLat(k, index)

Returns the latitude of the approximate center of the tile with a given index in the HEALPix
NEST scheme.

Note: the index parameter is 0-based, unlike the table row index special token $index (a.k.a.
$0), which is 1-based. So if the HEALpix index is implicitly determined by the table row, the
value $index-1 should be used.

• Parameters:

• k (integer): HEALPix order (0..29)
• index (long integer): healpix index

• Return value

• (floating point): latitude in degrees

• See Also:

• HEALPix web site

healpixRingLon(k, index)

Returns the longitude of the approximate center of the tile with a given index in the HEALPix
RING scheme.

Note: the index parameter is 0-based, unlike the table row index special token $index (a.k.a.
$0), which is 1-based. So if the HEALpix index is implicitly determined by the table row, the
value $index-1 should be used.

• Parameters:

• k (integer): HEALPix order (0..29)
• index (long integer): healpix index

SUN/256 348

• Return value

• (floating point): longitude in degrees

• See Also:

• HEALPix web site

healpixRingLat(k, index)

Returns the latitude of the approximate center of the tile with a given index in the HEALPix
RING scheme.

Note: the index parameter is 0-based, unlike the table row index special token $index (a.k.a.
$0), which is 1-based. So if the HEALpix index is implicitly determined by the table row, the
value $index-1 should be used.

• Parameters:

• k (integer): HEALPix order (0..29)
• index (long integer): healpix index

• Return value

• (floating point): latitude in degrees

• See Also:

• HEALPix web site

healpixNestToRing(k, nestIndex)

Converts a healpix tile index from the NEST to the RING scheme at a given order.

Note: the nestIndex parameter is 0-based, unlike the table row index special token $index

(a.k.a. $0), which is 1-based. So if the HEALpix index is implicitly determined by the table
row, the value $index-1 should be used.

• Parameters:

• k (integer): HEALPix order (0..29)
• nestIndex (long integer): pixel index in NEST scheme

• Return value

• (long integer): pixel index in RING scheme

• See Also:

• HEALPix web site

healpixRingToNest(k, ringIndex)

Converts a healpix tile index from the RING to the NEST scheme at a given order.

Note: the ringIndex parameter is 0-based, unlike the table row index special token $index

(a.k.a. $0), which is 1-based. So if the HEALpix index is implicitly determined by the table
row, the value $index-1 should be used.

• Parameters:

• k (integer): HEALPix order (0..29)
• ringIndex (long integer): pixel index in RING scheme

• Return value

• (long integer): pixel index in NEST scheme

SUN/256 349

• See Also:

• HEALPix web site

healpixK(pixelsize)

Gives the HEALPix resolution parameter suitable for a given pixel size. This k value (also
variously known as order, level, depth) is the logarithm to base 2 of the Nside parameter.

• Parameters:

• pixelsize (floating point): pixel size in degrees

• Return value

• (integer): HEALPix order k

• See Also:

• HEALPix web site

healpixResolution(k)

Gives the approximate resolution in degrees for a given HEALPix resolution parameter k This
k value is the logarithm to base 2 of the Nside parameter.

• Parameters:

• k (integer): HEALPix order (0..29)

• Return value

• (floating point): approximate angular resolution in degrees

healpixSteradians(k)

Returns the solid angle in steradians of each HEALPix pixel at a given order.

• Parameters:

• k (integer): HEALPix order (0..29)

• Return value

• (floating point): pixel size in steradians

• Examples:

• healpixSteradians(5) = 0.0010226538585904274

• 4*PI/healpixSteradians(0) = 12.0

healpixSqdeg(k)

Returns the solid angle in square degrees of each HEALPix pixel at a given order.

• Parameters:

• k (integer): HEALPix order (0..29)

• Return value

• (floating point): pixel size in steradians

• Examples:

• healpixSqdeg(5) = 3.357174580844667

• round(12 * healpixSqdeg(0)) = 41253

SUN/256 350

steradiansToSqdeg(sr)

Converts a solid angle from steradians to square degrees.

The unit sphere is 4*PI steradians = 360*360/PI square degrees.

• Parameters:

• sr (floating point): quantity in steradians

• Return value

• (floating point): quantity in sqare degrees

• Example:

• round(steradiansToSqdeg(4*PI)) = 41253

sqdegToSteradians(sqdeg)

Converts a solid angle from square degrees to steradians.

The unit sphere is 4*PI steradians = 360*360/PI square degrees.

• Parameters:

• sqdeg (floating point): quantity in square degrees

• Return value

• (floating point): quantity in steradians

• Example:

• round(sqdegToSteradians(41253)/PI) = 4

htmLevel(pixelsize)

Gives the HTM level parameter suitable for a given pixel size.

• Parameters:

• pixelsize (floating point): required resolution in degrees

• Return value

• (integer): HTM level parameter

htmResolution(level)

Gives the approximate resolution in degrees for a given HTM depth level.

• Parameters:

• level (integer): HTM depth

• Return value

• (floating point): approximate angular resolution in degrees

SQDEG

Solid angle in steradians corresponding to 1 square degree.

10.7.20 Times

SUN/256 351

Functions for conversion of time values between various forms. The forms used are

Modified Julian Date (MJD)
A continuous measure in days since midnight at the start of 17 November 1858. Based on
UTC.

Julian Day (JD)
MJD plus a fixed offset of 2400000.5. The number of days since the notional creation of the
universe, midday on 1 Jan 4713 BC.

ISO 8601
A string representation of the form yyyy-mm-ddThh:mm:ss.s, where the T is a literal character
(a space character may be used instead). Based on UTC.

Julian Epoch
A continuous measure based on a Julian year of exactly 365.25 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a 'J'; J2000.0 is defined as 2000 January 1.5 in the TT
timescale.

Besselian Epoch
A continuous measure based on a tropical year of about 365.2422 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a 'B'.

Decimal Year
Fractional number of years AD represented by the date. 2000.0, or equivalently
1999.99recurring, is midnight at the start of the first of January 2000. Because of leap years,
the size of a unit depends on what year it is in.

Therefore midday on the 25th of October 2004 is 2004-10-25T12:00:00 in ISO 8601 format,
53303.5 as an MJD value, 2004.81588 as a Julian Epoch and 2004.81726 as a Besselian Epoch.

Currently this implementation cannot be relied upon to better than a millisecond.

isoToMjd(isoDate)

Converts an ISO8601 date string to Modified Julian Date. The basic format of the isoDate

argument is yyyy-mm-ddThh:mm:ss.s, though some deviations from this form are permitted:

• The 'T' which separates date from time can be replaced by a space
• The seconds, minutes and/or hours can be omitted
• The decimal part of the seconds can be any length, and is optional
• The 'mm-dd' part may be replaced by a 3-digit day of year 'ddd'
• A 'Z' (which indicates UTC) may be appended to the time

Some legal examples are therefore: "1994-12-21T14:18:23.2", "1968-01-14", "2112-05-25
16:45Z", and "1987-172T22:12".

• Parameters:

• isoDate (String): date in ISO 8601 format

• Return value

• (floating point): modified Julian date corresponding to isoDate

• Examples:

• isoToMjd("2004-10-25T18:00:00") = 53303.75

• isoToMjd("1970-01-01") = 40587.0

SUN/256 352

dateToMjd(year, month, day, hour, min, sec)

Converts a calendar date and time to Modified Julian Date.

• Parameters:

• year (integer): year AD
• month (integer): index of month; January is 1, December is 12
• day (integer): day of month (the first day is 1)
• hour (integer): hour (0-23)
• min (integer): minute (0-59)
• sec (floating point): second (0<=sec<60)

• Return value

• (floating point): modified Julian date corresponding to arguments

• Example:

• dateToMjd(1999, 12, 31, 23, 59, 59.) = 51543.99998

dateToMjd(year, month, day)

Converts a calendar date to Modified Julian Date.

• Parameters:

• year (integer): year AD
• month (integer): index of month; January is 1, December is 12
• day (integer): day of month (the first day is 1)

• Return value

• (floating point): modified Julian date corresponding to 00:00:00 of the date specified
by the arguments

• Example:

• dateToMjd(1999, 12, 31) = 51543.0

decYearToMjd(decYear)

Converts a Decimal Year to a Modified Julian Date.

• Parameters:

• decYear (floating point): decimal year

• Return value

• (floating point): modified Julian Date

• Example:

• decYearToMjd(2000.0) = 51544.0

isoToUnixSec(isoDate)

Converts an ISO8601 date string to seconds since 1970-01-01. The basic format of the
isoDate argument is yyyy-mm-ddThh:mm:ss.s, though some deviations from this form are
permitted:

• The 'T' which separates date from time can be replaced by a space
• The seconds, minutes and/or hours can be omitted
• The decimal part of the seconds can be any length, and is optional
• The 'mm-dd' part may be replaced by a 3-digit day of year 'ddd'

SUN/256 353

• A 'Z' (which indicates UTC) may be appended to the time

Some legal examples are therefore: "1994-12-21T14:18:23.2", "1968-01-14", "2112-05-25
16:45Z and "1987-172T22:12".

• Parameters:

• isoDate (String): date in ISO 8601 format

• Return value

• (floating point): seconds since the Unix epoch

• Examples:

• isoToUnixSec("2004-10-25T18:00:00") = 1098727200

• isoToUnixSec("1970-01-01") = 0

decYearToUnixSec(decYear)

Converts a Decimal Year to seconds since 1970-01-01.

• Parameters:

• decYear (floating point): decimal year

• Return value

• (floating point): seconds since the Unix epoch

• Examples:

• decYearToUnixSec(2000.0) = 946684800

• decYearToUnixSec(1970) = 0

mjdToUnixSec(mjd)

Converts a Modified Julian Date to seconds since 1970-01-01.

• Parameters:

• mjd (floating point): modified Julian date

• Return value

• (floating point): seconds since the Unix epoch

jdToUnixSec(jd)

Converts a Julian day to seconds since 1970-01-01.

• Parameters:

• jd (floating point): Julian day

• Return value

• (floating point): seconds since the Unix epoch

mjdToIso(mjd)

Converts a Modified Julian Date value to an ISO 8601-format date-time string. The output
format is yyyy-mm-ddThh:mm:ss. If the result predates the Common Era, the string "(BCE)" is
prepended.

• Parameters:

• mjd (floating point): modified Julian date

SUN/256 354

• Return value

• (String): ISO 8601 format date corresponding to mjd

• Example:

• mjdToIso(53551.72917) = "2005-06-30T17:30:00"

mjdToDate(mjd)

Converts a Modified Julian Date value to an ISO 8601-format date string. The output format is
yyyy-mm-dd. If the result predates the Common Era, the string "(BCE)" is prepended.

• Parameters:

• mjd (floating point): modified Julian date

• Return value

• (String): ISO 8601 format date corresponding to mjd

• Example:

• mjdToDate(53551.72917) = "2005-06-30"

mjdToTime(mjd)

Converts a Modified Julian Date value to an ISO 8601-format time-only string. The output
format is hh:mm:ss.

• Parameters:

• mjd (floating point): modified Julian date

• Return value

• (String): ISO 8601 format time corresponding to mjd

• Example:

• mjdToTime(53551.72917) = "17:30:00"

mjdToDecYear(mjd)

Converts a Modified Julian Date to Decimal Year.

• Parameters:

• mjd (floating point): modified Julian Date

• Return value

• (floating point): decimal year

• Example:

• mjdToDecYear(0.0) = 1858.87671

formatMjd(mjd, format)

Converts a Modified Julian Date value to a date using a customisable date format. The format
is as defined by the java.text.SimpleDateFormat

(http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html) class. The default
output corresponds to the string "yyyy-MM-dd'T'HH:mm:ss"

Note that the output from certain formatting characters (such as MMM for month, EEE for day of
week) is dependent on your locale (system language settings). The output time zone however
always corresponds to UTC.

SUN/256 355

• Parameters:

• mjd (floating point): modified Julian date
• format (String): formatting patttern

• Return value

• (String): custom formatted time corresponding to mjd

• Examples:

• formatMjd(50000.3, "EEE dd, MMM, yy") = "Tue 10 Oct, 95"

• formatMjd(50000.1234, "'time 'H:mm:ss.SSS") = "time 2:57:41.760"

jdToMjd(jd)

Converts a Julian Day to Modified Julian Date. The calculation is simply jd-2400000.5.

• Parameters:

• jd (floating point): Julian day number

• Return value

• (floating point): MJD value

mjdToJd(mjd)

Converts a Modified Julian Date to Julian Day. The calculation is simply jd+2400000.5.

• Parameters:

• mjd (floating point): MJD value

• Return value

• (floating point): Julian day number

mjdToJulian(mjd)

Converts a Modified Julian Date to Julian Epoch. For approximate purposes, the result of this
routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

• Parameters:

• mjd (floating point): modified Julian date

• Return value

• (floating point): Julian epoch

• Example:

• mjdToJulian(0.0) = 1858.87885

julianToMjd(julianEpoch)

Converts a Julian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

• Parameters:

• julianEpoch (floating point): Julian epoch

SUN/256 356

• Return value

• (floating point): modified Julian date

• Example:

• julianToMjd(2000.0) = 51544.5

mjdToBesselian(mjd)

Converts Modified Julian Date to Besselian Epoch. For approximate purposes, the result of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

• Parameters:

• mjd (floating point): modified Julian date

• Return value

• (floating point): Besselian epoch

• Example:

• mjdToBesselian(0.0) = 1858.87711

besselianToMjd(besselianEpoch)

Converts Besselian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

• Parameters:

• besselianEpoch (floating point): Besselian epoch

• Return value

• (floating point): modified Julian date

• Example:

• besselianToMjd(1950.0) = 33281.92346

unixMillisToMjd(unixMillis)

Converts from milliseconds since the Unix epoch (1970-01-01T00:00:00) to a modified Julian
date value

• Parameters:

• unixMillis (long integer): milliseconds since the Unix epoch

• Return value

• (floating point): modified Julian date

mjdToUnixMillis(mjd)

Converts from modified Julian date to milliseconds since the Unix epoch
(1970-01-01T00:00:00).

• Parameters:

• mjd (floating point): modified Julian date

SUN/256 357

• Return value

• (long integer): milliseconds since the Unix epoch

MJD_OFFSET

JD value for MJD = 0 (=2400000.5).

10.7.21 TrigDegrees

Standard trigonometric functions with angles in degrees.

sinDeg(theta)

Sine of an angle.

• Parameters:

• theta (floating point): an angle, in degrees

• Return value

• (floating point): the sine of the argument

cosDeg(theta)

Cosine of an angle.

• Parameters:

• theta (floating point): an angle, in degrees

• Return value

• (floating point): the cosine of the argument

tanDeg(theta)

Tangent of an angle.

• Parameters:

• theta (floating point): an angle, in degrees

• Return value

• (floating point): the tangent of the argument.

asinDeg(x)

Arc sine. The result is in the range of -90 through 90.

• Parameters:

• x (floating point): the value whose arc sine is to be returned.

• Return value

• (floating point): the arc sine of the argument in degrees

acosDeg(x)

Arc cosine. The result is in the range of 0.0 through 180.

SUN/256 358

• Parameters:

• x (floating point): the value whose arc cosine is to be returned.

• Return value

• (floating point): the arc cosine of the argument in degrees

atanDeg(x)

Arc tangent. The result is in the range of -90 through 90.

• Parameters:

• x (floating point): the value whose arc tangent is to be returned.

• Return value

• (floating point): the arc tangent of the argument in degrees

atan2Deg(y, x)

Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
theta by computing an arc tangent of y/x in the range of -180 to 180.

• Parameters:

• y (floating point): the ordinate coordinate
• x (floating point): the abscissa coordinate

• Return value

• (floating point): the theta component in degrees of the point (r,theta) in polar
coordinates that corresponds to the point (x,y) in Cartesian coordinates.

10.7.22 URLs

Functions that construct URLs for external services. Most of the functions here just do string
manipulation to build up URL strings, using knowledge of the parameters required for various
services.

urlEncode(txt)

Performs necessary quoting of a string for it to be included safely in the data part of a URL.
Alphanumeric characters and the characters underscore ("_"), minus sign ("-"), period (".")
and tilde ("~") are passed through unchanged, and any other 7-bit ASCII character is
represented by a percent sign ("%") followed by its 2-digit hexadecimal code. Characters with
values of 128 or greater are simply dropped.

• Parameters:

• txt (String): input (unencoded) string

• Return value

• (String): output (encoded) string

• Example:

• urlEncode("RR Lyr") = "RR%20Lyr"

• See Also:

SUN/256 359

• RFC 3986

urlDecode(txt)

Reverses the quoting performed by urlEncode. Percent-encoded sequences (%xx) are replaced
by the ASCII character with the hexadecimal code xx.

• Parameters:

• txt (String): input (encoded) string

• Return value

• (String): output (unencoded) string

• Example:

• urlDecode("RR%20Lyr") = "RR Lyr"

• See Also:

• RFC 3986

paramsUrl(baseUrl, nameValuePairs, ...)

Builds a query-type URL string given a base URL and a list of name, value pairs.

The parameters are encoded on the command line according to the
"application/x-www-form-urlencoded" convention, which appends a "?" to the base URL,
and then adds name=value pairs separated by "&" characters, with percent-encoding of
non-URL-friendly characters. This format is used by many services that require a list of
parameters to be conveyed on the URL.

• Parameters:

• baseUrl (String): basic URL (may or may not already contain a "?")
• nameValuePairs (String, one or more): an even number of arguments (or an

even-length string array) giving parameter
name1,value1,name2,value2,...nameN,valueN

• Return value

• (String): form-encoded URL

• Example:

• paramsUrl("http://x.org/", "a", "1", "b", "two", "c", "3&4") =

"http://x.org/?a=1&b=two&c=3%264"

bibcodeUrl(bibcode)

Maps a bibcode to the URL that will display the relevant entry in ADS
(https://ui.adsabs.harvard.edu/). If the supplied string does not appear to be a bibcode, null will
be returned.

If the supplied string appears to be a bibcode, it just prepends the string
"https://ui.adsabs.harvard.edu/abs/" and performs any character escaping that is
required.

• Parameters:

• bibcode (String): ADS-style bibcode string

• Return value

• (String): display URL pointing at bibcode record, or null if it doesn't look like a
bibcode

SUN/256 360

• Example:

• bibcodeUrl("2018A&A...616A...2L") =

"https://ui.adsabs.harvard.edu/abs/2018A%26A...616A...2L"

• See Also:

• http://adsabs.harvard.edu/abs_doc/help_pages/data.html

doiUrl(doi)

Maps a DOI (Digital Object Identifier) to its dislay URL. If the supplied string does not appear
to be a DOI, null will be returned.

If the supplied string appears to be a DOI, it strips any "doi:" prefix if present, prepends the
string "https://doi.org/", and performs any character escaping that is required.

• Parameters:

• doi (String): DOI string, with or without "doi:" prefix

• Return value

• (String): display URL pointing at DOI content, or null if it doesn't look like a DOI

• Example:

• doiUrl("10.3390/informatics4030018") =

"https://doi.org/10.3390/informatics4030018"

• See Also:

• https://www.doi.org/

arxivUrl(arxivId)

Maps an arXiv identifier to the URL that will display its arXiv (https://arxiv.org/) web page. If
the supplied string does not appear to be an arXiv identifier, null will be returned.

If the supplied string appears to be an arXiv identifier, it strips any "arXiv: prefix and
prepends the string "https://arxiv.org/abs/".

• Parameters:

• arxivId (String): arXiv identifier, with or without "arXiv:" prefix

• Return value

• (String): display URL pointing at bibcode record, or null if it doesn't look like a
bibcode

• Example:

• arxivUrl("arXiv:1804.09379") = "https://arxiv.org/abs/1804.09381"

• See Also:

• https://arxiv.org/help/arxiv_identifier

simbadUrl(sourceId)

Maps a source identifier to the URL of its SIMBAD (http://simbad.u-strasbg.fr/simbad/) web
page. SIMBAD is the astronomical source information service run by the Centre de Données
astronomiques de Strasbourg.

The string "http://simbad.u-strasbg.fr/simbad/sim-id?Ident=" is prepended to the given
id string, and any necessary character escaping is applied. No attempt is made to validate
whether the supplied string is a real source identifier, so there is no guarantee that the returned

SUN/256 361

URL will contain actual results.

• Parameters:

• sourceId (String): free text assumed to represent a source identifier known by
SIMBAD

• Return value

• (String): URL of the Simbad web page describing the identified source

• Example:

• simbadUrl("Beta Pictoris") =

"http://simbad.u-strasbg.fr/simbad/sim-id?Ident=Beta%20Pictoris"

nedUrl(sourceId)

Maps a source identifier to the URL of its NED (http://ned.ipac.caltech.edu/) web page. NED
is the NASA/IPAC Extragalactic Database.

The string "http://ned.ipac.caltech.edu/byname?objname=" is prepended to the given id
string, and any necessary character escaping is applied. No attempt is made to validate whether
the supplied string is a real source identifier, so there is no guarantee that the returned URL
will contain actual results.

• Parameters:

• sourceId (String): free text assumed to represent a source identifier known by NED

• Return value

• (String): URL of the NED web page describing the identified source

• Example:

• nedUrl("NGC 3952") =

"http://ned.ipac.caltech.edu/byname?objname=NGC%203952"

hips2fitsUrl(hipsId, fmt, raDeg, decDeg, fovDeg, npix)

Returns the URL of a cutout from the Hips2Fits service operated by CDS. The result will be
the URL of a FITS or image file resampled to order from one of the HiPS surveys available at
CDS.

This function requests a square cutout using the SIN projection, which is suitable for small
cutouts. If the details of this function don't suit your purposes, you can construct the URL
yourself.

• Parameters:

• hipsId (String): identifier or partial identifier for the HiPS survey
• fmt (String): required output format, for instance "fits", "png", "jpg"
• raDeg (floating point): central Right Ascension (longitude) in degrees
• decDeg (floating point): central Declination (latitude) in degrees
• fovDeg (floating point): field of view; extent of the cutout in degrees
• npix (integer): extent of the cutout in pixels (width=height=npix)

• Return value

• (String): URL of the required cutout

• See Also:

• http://alasky.u-strasbg.fr/hips-image-services/hips2fits

SUN/256 362

10.7.23 VO

Virtual Observatory-specific functions. Some of these are for rather technical purposes.

The UCD parsing functions are based on Grégory Mantelet's library Ucidy
(https://github.com/gmantele/ucidy) corresponding to UCD1+ 1.5
(https://www.ivoa.net/documents/UCD1+/20210616/), and the VOUnit parsing functions are based
on Norman Gray's library Unity (https://purl.org/nxg/dist/unity) corresponding to VOUnits 1.0
(https://www.ivoa.net/documents/VOUnits/20140523/).

TFCat refers to the Time-Frequency Radio Catalogues format, TFCat 1.0
(https://doi.org/10.25935/6068-8528).

ucdStatus(ucd)

Returns a token string giving the category of UCD compliance. UCD1+, UCD1 and SIAv1
("VOX:")-style UCDs are recognised.

Possible return values are currently:

• "OK": conforms to UCD1+ standard
• "UCD1": looks like a UCD1
• "VOX": is in VOX: namespace introduced by SIAv1
• "BAD_SYNTAX": not a UCD1 and cannot be parsed according to UCD1+
• "BAD_SEQUENCE": UCD words violate UCD1+ sequence rules
• "UNKNOWN_WORD": follows UCD1+ syntax rules but contains non-UCD1+ atom
• "NAMESPACE": follows UCD1+ syntax but contains atoms in non-standard namespace
• "DEPRECATED": contains deprecated UCD1+ words

In the case of non-compliant values, more information can be found using the ucdMessage

function.

• Parameters:

• ucd (String): UCD string

• Return value

• (String): "OK" for conformant UCD1+, otherwise some other value

ucdMessage(ucd)

Returns a human-readable message associated with the parsing of a UCD. This is expected to
be empty for a fully compliant UCD, and may contain error messages or advice otherwise.

• Parameters:

• ucd (String): UCD value

• Return value

• (String): message text

vounitStatus(unit)

Returns a token string giving the category of VOUnits compliance.

Possible return values are currently:

• "OK": conforms to VOUnits syntax

SUN/256 363

• "UNKNOWN_UNIT": parsed as VOUnit but contains unknown base unit(s)
• "GUESSED_UNIT": parsed as VOUnit but contains unknown, though guessable, base

unit(s)
• "BAD_SYNTAX": cannot be parsed as VOUnit syntax
• "PARSE_ERROR": unexpected error during parsing
• "USAGE": violates VOUnit usage constraints
• "WHITESPACE": legal VOUnit except that it contains whitespace, which is not allowed

by VOUnits

In the case of non-compliant values, more information can be found using the vounitMessage

function.

• Parameters:

• unit (String): unit string

• Return value

• (String): "OK" for conformant VOUnits, otherwise some other value

vounitMessage(unit)

Returns a human-readable message associated with the parsing of a unit string. This is
expected to be empty for a string fully compliant with VOUnits, and may contain error
messages or additional information otherwise.

• Parameters:

• unit (String): unit string

• Return value

• (String): message text

tfcatStatus(tfcat)

Returns a token string giving the category of TFCat compliance.

Possible return values are currently:

• "OK": conforms to TFCat syntax
• "ERROR": parsed as TFCat, but with one or more errors
• "FAIL": could not be parsed as a TFCat object

For non-OK values, more information can be found using the tfcatMessage function.

• Parameters:

• tfcat (String): JSON string giving TFCat text

• Return value

• (String): "OK" for conformant TFCat, otherwise some other value

tfcatMessage(tfcat)

Returns a human-readable message associated with the parsing of a TFCat text. This will be
empty for a string fully compliant with the TFCat standard, but will contain error messages
otherwise.

• Parameters:

• tfcat (String): JSON string giving TFCat text

• Return value

SUN/256 364

• (String): message text

10.8 Examples

Here are some examples for defining new columns; the expressions below could appear as the
<expr> in a tpipe addcol or sortexpr command).

Average

(first + second) * 0.5

Square root

sqrt(variance)

Angle conversion

radiansToDegrees(DEC_radians)
degreesToRadians(RA_degrees)

Conversion from string to number

parseInt($12)
parseDouble(ident)

Conversion from number to string

toString(index)

Conversion between numeric types

toShort(obs_type)
toDouble(range)

or

(short) obs_type
(double) range

Conversion from sexagesimal to degrees

hmsToDegrees(RA1950)
dmsToDegrees(decDeg,decMin,decSec)

Conversion from degrees to sexagesimal

degreesToDms($3)
degreesToHms(RA,2)

Outlier clipping

min(1000, max(value, 0))

Converting a magic value to null

jmag == 9999 ? NULL : jmag

Converting a null value to a magic one

SUN/256 365

NULL_jmag ? 9999 : jmag

Taking the third scalar element from an array-valued column

psfCounts[2]

Converting spectral type to numeric value (e.g. "L3.5" -> 23.5, "M7" -> 17)

"MLT".indexOf(spType.charAt(0)) * 10 + parseDouble(substring(spType,1)) + 10

Note this uses a couple of Java String instance methods (Section 10.9.2) which are not
explicitly documented in this section.

Here are some examples of boolean expressions that could be used for row selection (appearing in a
tpipe select command)

Within a numeric range

RA > 100 && RA < 120 && Dec > 75 && Dec < 85

Within a circle

$2*$2 + $3*$3 < 1
skyDistanceDegrees(ra0,dec0,hmsToDegrees(RA),dmsToDegrees(DEC))<15./3600.

First 100 rows

index <= 100

(though you could use tpipe cmd='head 100' instead)

Every tenth row

index % 10 == 0

(though you could use tpipe cmd='every 10' instead)

String equality/matching

equals(SECTOR, "ZZ9 Plural Z Alpha")
equalsIgnoreCase(SECTOR, "zz9 plural z alpha")
startsWith(SECTOR, "ZZ")
contains(ph_qual, "U")

String regular expression matching

matches(SECTOR, "[XYZ] Alpha")

Test for non-blank value

! NULL_ellipticity

10.9 Advanced Topics

This section contains some notes on getting the most out of the algebraic expressions facility. If
you're not a Java programmer, some of the following may be a bit daunting - read on at your own
risk!

10.9.1 Expression evaluation

SUN/256 366

This note provides a bit more detail for Java programmers on what is going on here; it describes
how the use of functions in STILTS algebraic expressions relates to normal Java code.

The expressions which you write are compiled to Java bytecode when you enter them (if there is a
'compilation error' it will be reported straight away). The functions listed in the previous
subsections are all the public static methods of the classes which are made available by default.
The classes listed are all in the package uk.ac.starlink.ttools.func. However, the public static
methods are all imported into an anonymous namespace for bytecode compilation, so that you write
(sqrt(x,y) and not Maths.sqrt(x,y). The same happens to other classes that are imported (which
can be in any package or none) - their public static methods all go into the anonymous namespace.
Thus, method name clashes are a possibility.

This cleverness is all made possible by the rather wonderful JEL
(http://www.gnu.org/software/jel/).

10.9.2 Instance Methods

There is another category of functions which can be used apart from those listed in Section 10.7.
These are called, in Java/object-oriented parlance, "instance methods" and represent functions that
can be executed on an object.

It is possible to invoke any of its public instance methods on any object (though not on primitive
values - numeric and boolean ones). The syntax is that you place a "." followed by the method
invocation after the object you want to invoke the method on, hence NAME.substring(3) instead of
substring(NAME,3). If you know what you're doing, feel free to go ahead and do this. However,
most of the instance methods you're likely to want to use have equivalents in the normal functions
listed in the previous section, so unless you're a Java programmer or feeling adventurous, you may
be best off ignoring this feature.

10.9.3 Adding User-Defined Functions

The functions provided by default for use with algebraic expressions, while powerful, may not
provide all the operations you need. For this reason, it is possible to write your own extensions to
the expression language. In this way you can specify abritrarily complicated functions. Note
however that this will only allow you to define new columns or subsets where each cell is a
function only of the other cells in the same row - it will not allow values in one row to be functions
of values in another.

In order to do this, you have to write and compile a (probably short) program in the Java language.
A full discussion of how to go about this is beyond the scope of this document, so if you are new to
Java and/or programming you may need to find a friendly local programmer to assist (or mail the
author). The following explanation is aimed at Java programmers, but may not be incomprehensible
to non-specialists.

The steps you need to follow are:

1. Write and compile a class containing one or more static public methods representing the
function(s) required

2. Make this class available on the application's classpath at runtime as described in Section 3.1
3. Specify the class's name to the application, as the value of the jel.classes system property

(colon-separated if there are several) as described in Section 3.3

Any public static methods defined in the classes thus specified will then be available for use. They
should be defined to take and return the relevant primitive or Object types for the function required.
For instance a class written as follows would define a three-value average:

SUN/256 367

public class AuxFuncs {
public static double average3(double x, double y, double z) {

return (x + y + z) / 3.0;
}

}

and the command

stilts tpipe cmd='addcol AVERAGE "average3($1,$2,$3)"'

would add a new column named AVERAGE giving the average of the first three existing columns.
Exactly how you would build this is dependent on your system, but it might involve doing
something like the following:

1. Writing a file named AuxFuncs.java containing the above code
2. Compiling it using a command like "javac AuxFuncs.java"
3. Running tpipe using the flags "stilts -classpath . -Djel.classes=AuxFuncs tpipe"

Note that (in versions later than STILTS 3.0-6) variable-length argument lists are supported where
the final declared argument is an array, so for instance a method declared like:

public static double sum(double[] values) {
double total = 0;
for (int i = 0; i < values.length; i++) {

total += values[i];
}
return total;

}

can be invoked like "sum(UMAG,GMAG,RMAG,IMAG,ZMAG)". The alternative form "double...
values" can be used in the declaration with identical effect.

SUN/256 368

11 Server Mode

STILTS is generally run by issuing commands from some kind of command line. However,
facilities are also included to run it as a service, accepting commands via HTTP. The basic
implementation of this is in the form of some Servlet implementations that can be run in a servlet
container. At present the following servlets are provided:

• PlotServlet

• TaskServlet

• FormServlet

In order to run them there are a few options:

STILTS server command
The simplest is to use the STILTS server command. If you run this, the services will start up
immediately and print information about the base URL. Some configuration of available
functions and data access is offered by the command line parameters. This command is a thin
wrapper around the Jetty servlet engine which is included in the STILTS distribution.

Deploy in a servlet container
For more control you can deploy the servlet or servlets you want to run in a servlet container
of your choice, for instance Tomcat. The servlets can be configured by setting context
parameters in a web.xml file in the usual way; look at the StiltsContext class to see the
available configuration parameters.

Docker
In the case of the plot server, a Docker container has been provided for convenience. At time
of writing this is available, with some more discussion about how to deploy it, at
https://hub.docker.com/r/mbtaylor/plotserv.

In all cases, look at the base URL of the running service for more information and usage examples.
For instance if the server is running at the default base URL, then pointing your browser at

http://localhost:2112/stilts/

will show you links to documentation for the available services.

The different services are described further in the following subsections.

Note: The server command and associated servlet code are somewhat experimental. If you have
requirements which are not currently provided, please contact the author for discussion.

11.1 Plot Service

The plot server supports interactive plots that can be viewed and navigated using HTTP requests. A
plot is specified with a URL, corresponding to an invocation of one of the plot2* commands, that
specifies a plot, and uses a service API that can be used by client-side javascript to display and
update a plot image in response to user navigation actions such as mouse drag and wheel gestures.
The effect is of an interactive plot in a web browser that can be navigated with the mouse in exactly
the same way as a STILTS or TOPCAT interactive plot.

To see this in action, run

% stilts server

point your browser at the URL displayed and follow the links to see some interactive plots.

SUN/256 369

The following subsections give some more details about how this works and how it can be used.

11.1.1 Usage

The best way to see how the plot service can be used is to run the service (most simply by executing
stilts server), and look at the running plot examples, along with their HTML source code,
served from the server endpoint.

However this section gives a brief independent overview of how the service can be used. The
PlotServlet itself exposes a RESTful API as described in Section 11.1.2. This offers the services
required for client HTML/JavaScript code running in a browser to set up a plot based on server-side
(or at least server-accessible) table data, and to make updates to it following user activity like
mouse gestures.

A basic client JavaScript library named plot2Lib.js, that facilitates this plot setup is included with
STILTS; it can be found in the stilts.jar file at uk/ac/starlink/ttools/server/plot2Lib.js,
and is available from the running server at <plot-service-base>/plot2Lib.js. It exports some
variables in the plot2 namespace; see comments in the file itself for documentation of how to use
it. A minimal web page using this to present an interactive plot might look like:

<html>
<script src="plot2Lib.js"></script>
<script>

var serverUrl = "http://localhost:2112/stilts/plot/";
onload = function() {

var plotTxt = plot2.wordsToPlotTxt([
"plot2sky",
"layer1=mark",
"in1=/data/catalogue.fits",
"lon1=RA",
"lat1=DEC"

]);
var plotNode = plot2.createPlotNode(serverUrl, plotTxt);
document.getElementsByTagName("body")[0].appendChild(plotNode);

};
</script>
</html>

In this case the data file "/data/catalogue.fits" has to be available to the servlet; how this is
arranged depends on the way the service is deployed.

JavaScript clients don't have to use the plot2Lib.js library; it's also possible to write custom code
that talks to the RESTful API described in Section 11.1.2.

11.1.2 RESTful API

This section details the endpoints supported by the plot servlet; it is not required reading for those
who want to use the supplied plot2Lib.js JavaScript library, but may be of interest to those who
want to write their own JavaScript clients.

General URL Syntax

The plot service accepts URLs of the form

<base-url>/<action-type>/<plot-spec>[?<session-id>&<arg-list>]

These parts are expanded as follows:

<action-type>

The action type string determines the kind of request, and is one of the strings "html", "state",

SUN/256 370

"imgsrc", "position", "count", "row"; see below for details.

<plot-spec>

The plot specification is an ampersand-separated STILTS plot command string; the form is
"<command-name>&<arg-name>=<value>&<arg-name>=<value>..." for instance
"plot2sky&layer1=mark&in1=stars.vot&lon1=ra&lat1=dec". See STILTS plotting
documentation in Section 8 for command syntax. Note that although this part contains
&-separated name=value pairs which are syntactically application/x-www-form-urlencoded

it is part of the URI path and not a URI query string since it does not come after a question
mark ('?') and it cannot be supplied by POSTing parameters.

<session-id>

The session identifier is of the form "sessionId=<unique-string>" and it serves to maintain
the state of the plot between requests (so that for instance a navigation action starts from where
the last one left off). The <unique-string> string is chosen by the client; any string value is
permitted, but it's up to the client to pick something that is unlikely to be chosen by other
unrelated clients on the same or different machines. Incorporating a high-resolution timestamp
is a good bet. In case of a collision, confusing results may ensue, but it's probably not
necessary to resort to cryptographic-grade hashing. This part is not necessary for the "html"

<action-type>.

<arg-list>

A list of zero or more ampersand-separated "<name>=<value>" parameters, specific to the
<action-type>; see below for details.

The [?<session-id>&<arg-list>] part of the URL is an application/x-www-form-urlencoded

query-string, and may be supplied as a POST body rather than as part of the GET query if preferred.
Note that does not apply to the <plot-spec> part, which is in RFC3986 terms part of the path and
not part of the query.

Available Action Types

The options for the various different values of the <action-type> string, with their associated
parameters and response values, are as follows:

html

Returns a new standalone HTML page containing the interactive plot specified by the supplied
plot specification. Note this does not require a session ID to be supplied, and it has no
parameters. This action is easy to use, but not very flexible.

state

Returns a JSON structure giving the image and/or image annotations for the current state of the
session. The session state may be updated by supplying navigation parameters, as follows:

• navigate=reset: reset the plot to initial state
• navigate=resize&size=width,height: resize the plot to width x height pixels
• navigate=click&pos=x,y&ibutton=1|2|3: emulate TOPCAT click on plot at graphics

position x,y
• navigate=drag&origin=x0,y0&pos=x1,y1&ibutton=1|2|3: emulate TOPCAT

continuing drag from start graphics position x0,y0 to x1,y1
• navigate=drag&origin=x0,y0&pos=x1,y1&ibutton=1|2|3&end=true: emulate TOPCAT

end-drag from start graphics position x0,y0 to x1,y1
• navigate=wheel&pos=x,y&wheelrot=nstep: emulate TOPCAT mouse wheel at graphics

position x,y
• navigate=none: no change to last position

The members of the returned structure are:

SUN/256 371

imgSrc (present if plot has changed since last request):
Contains a data: URL suitable for use as the content of an IMG/@src attribute to display
the current state of the plot

staticSvg (present if there are static decorations):
SVG content, suitable as the content of an SVG node, giving decorations to superimpose
over the plot image.

transientSvg (present if there are transient decorations):
SVG content, suitable as the content of an SVG node, giving decorations to superimpose
over the plot image representing a navigation action. Such decorations should only be
displayed for a short time (e.g. 0.5 second).

bounds (present for planar and cubic plots):
A 2- or 3-element array of (lower,upper) data bound pairs giving the extent of the current
plot.

imgsrc

Returns image data suitable for reference by an IMG/@src attribute value for the current state of
the session. The session state may be updated by supplying navigation parameters as follows:

• navigate=reset: reset the plot to initial state
• navigate=resize&size=width,height: resize the plot to width x height pixels
• navigate=click&pos=x,y&ibutton=1|2|3: emulate TOPCAT click on plot at graphics

position x,y
• navigate=drag&origin=x0,y0&pos=x1,y1&ibutton=1|2|3: emulate TOPCAT

continuing drag from start graphics position x0,y0 to x1,y1
• navigate=drag&origin=x0,y0&pos=x1,y1&ibutton=1|2|3&end=true: emulate TOPCAT

end-drag from start graphics position x0,y0 to x1,y1
• navigate=wheel&pos=x,y&wheelrot=nstep: emulate TOPCAT mouse wheel at graphics

position x,y
• navigate=none: no change to last position

The response MIME type can be influenced by the ofmt parameter in the <plot-spec> or the
format parameter in the <arg-list>. In case of disagreement, the latter takes precedence. The
available options are "png", "png-transp", "gif", "jpeg", "pdf", "svg", "eps", "eps-gzip".

position

Provides a service to convert a position in plot graphics coordinates to data coordinates. The
request must have a pos argument giving the graphics position in the form x,y (e.g.
"pos=203,144"), and the response will be a JSON structure with the following members:

dataPos:
On success, contains data coordinates as a numeric array.

txtPos:
On success, contains data coordinates as a formatted string.

message:
Textual indication of conversion status. It will be "ok" on success, but may have some
other value, such as "out of plot bounds", on failure.

count

Returns the number of points currently visible in this plot. Note that determining this value
does take some computation (it's not free). The output is a plain text decimal value; it can also
be interpreted as JSON.

row

Services a request for row information, at or near a submitted graphics position on the plot.

SUN/256 372

The request must have a pos argument giving the graphics position in the form x,y (e.g.
"pos=203,144"),

The output is a JSON array of objects; there is one array element for each table represented,
and each such element is a column-name->column-value map for the row indicated. If the
submitted point is not near any plotted points, the result will therefore be an empty array.

This API is subject to extension or modification in future releases.

11.1.3 Caching and Performance

The plot servlet requires some temporary disk storage for caching images and prepared coordinate
data to improve performance when updating plots during visualisation sequences. Servlet
configuration options are available to manage usage of these resources.

When first requested to make a plot, it works out what coordinate data will be required, reads this
from the input table, and writes it to cache in an efficient binary storage format. This may be simply
a copy of columns from the input table, or may require some computation, for instance if the plotted
quantity is the result of an expression in the expression language, or if the coordinates are longitude
and latitude (in which case they are converted to unit vector components). This coordinate cache
preparation requires a scan of the input table which is in the current implementation
single-threaded, so may be time-consuming for very large tables.

Once the coordinate data is in cache, the cache rather than the input table is used for subsequent
plots; that includes both derived replots resulting from user navigation and completely separate
plots that happen to require the same row/column data. Plots from cache are in most cases
multi-threaded, so can be quite rapid even for large datasets depending on server configuration and
load.

When the plot is first made, the initial (pre-navigation) plotted image is also stored in a cache, so
that if other HTTP clients request the same plot they can receive the initial image without further
data access or computation.

By default, the directory used for caching is the value of the java.io.tmpdir system property,
which is typically /tmp on Unix systems. The directory used for caching can be changed by
modifying this system property, or caching can be configured with the servlet context parameters
controlled by the StiltsContext class.

When cache storage gets full, older items are dropped in the usual way. There is no doubt scope for
improvement of the existing cache management; the details may be refined in future releases.

11.2 Task Service

This servlet allows execution of a single STILTS command by making an HTTP request with the
command name and parameters, rather than by presenting them on the command line. You might
want to run this service if you are providing a web service to external users which is able to access
files residing on the server, for instance generating static table plots (though see the Plot service for
more sophisticated server-side visualisation) or row selections on the fly. This can be done without
the server mode, for instance by invoking the stilts script or java from a CGI script to serve each
request, but using server mode has two advantages: first it provides correct output HTTP headers
such as Content-Type, and secondly it avoids the Java startup overheads for each invocation.

The URLs accepted by the service are of the form

<task-base-url>/<task-name>?<arg-name>=<arg-value>&<arg-name>=<arg-value>...

SUN/256 373

The <task-name> is one of the STILTS command names as listed in Appendix B, and the
<arg-name>=<arg-value> pairs are the parameter settings for that command; the parameter settings
are syntactically an application/x-www-form-urlencoded query string. These parameters may be
supplied as a POST body rather than as part of a GET query if preferred, though since the task
invocation will normally be idempotent, GET may be more respectable.

The HTTP response depends on the behaviour of the task in question. If the task is one that outputs
a table or sequence of tables, such as tpipe or tmatch2, the HTTP response will be the serialized
form of the table in an appropriate format. By default that is currently VOTable (Content-Type
"application/x-votable+xml"), but that can be altered by supplying the appropriate output format
parameter, e.g. "ofmt=fits". Plotting commands return an image in a default graphics format; again
the output format can be controlled using command paramters in the same way as on the command
line. Output for some other commands such as calc may just be plain text.

Here are some example invocations, assuming the default server base URL of
http://localhost:2112/stilts/:

http://localhost:2112/stilts/

Returns an HTML page giving version information and some links to example usages of the
server.

http://localhost:2112/stilts/task/tpipe

Returns an HTML page giving usage instructions for the tpipe task.

http://localhost:2112/stilts/task/calc?expression=21%2b2

Invokes the calc task to return a document containing the text "23". Note that the plus ("+")
sign in the expression has to be encoded using the sequence "%2b" since "+" has a special
significance in query URLs - see for instance sec 2.2 of RFC 1738.

http://localhost:2112/stilts/task/plot2plane?in=/data/table1.vot&layer1=mark&x1=RMAG&y1=BMAG

Invokes the plot2d task to return a magnitude-magnitude diagram of the named server-side
file as an image, probably an image/png (but see the Plot Service if you want interactive plots).

http://localhost:2112/stilts/task/tcopy?in=/data/cat.fits&ofmt=ecsv

Invokes the tcopy task to return a translation of the named server-side FITS file to ECSV
format.

Note that in the current form of this service no great attention has been paid to security, so it may be
possible for clients to read and write files and expend significant system resources by making
certain requests to the server. Anyone exposing this service directly to external clients should bear
this in mind.

11.3 Form Service

The Form service is more or less obsolete; it really just gives an example of how to set up an
HTML Form to invoke one of the STILTS commands using the Task Service.

The content served gives provides a couple of examples of an HTML form that can invoke plotting
using the Task Service. The output graphics use the old-style plot commands rather than the much
more capable plot2* plotting, and are not interactive; for much improved server-side visualisastion,

SUN/256 374

see Section 11.1.

SUN/256 375

12 Programmatic Invocation

The STILTS package provides some capabilities, for instance plotting, that might be useful as part
of other Java applications. The code that forms STILTS is fully documented at the API level; there
are comprehensive javadocs throughout for the uk.ac.starlink.ttools package, its subpackages,
and most of the other classes in the uk.ac.starlink tree on which it relies. Anybody is welcome to
use these classes at their own risk, but the code does not form a stable API intended for public use:
the javadocs are not distributed as part of the package (though you may be able to find them here),
tutorial documentation is not provided, and there is no commitment to API stability between
releases.

With this in mind, there are facilities for invoking the STILTS commands programmatically from
third-party java code. Of course it is possible to do this by just calling the static main(String[])

method of the application Main-Class (Stilts) but we document here how it can be done in a way
which allows more control, using the uk.ac.starlink.task parameter handling framework.

Each of the STILTS tasks listed in Appendix B is represented by a class implementing the Task

interface; these all have no-arg constructors. To run it, you need to create an instance of the class,
pass it an Environment object which can acquire values for parameters by name, and then execute
it. The MapEnvironment class, based on a Map containing name/value pairs, is provided for this
purpose. As well as managing parameter values, MapEnvironment captures table and text output in
a way that lets you retrieve it after the task has executed. Here is a simple example for invoking the
calc task to perform a simple calcation:

MapEnvironment env = new MapEnvironment();
env.setValue("expression", "sqrt(3*3+4*4)");
Task calcTask = new uk.ac.starlink.ttools.task.Calc();
calcTask.createExecutable(env).execute();
String result = env.getOutputText();

The execution corresponds exactly to the command-line:

stilts calc expression="sqrt(3*3+4*4)"

The Usage section for the calc task notes that the corresponding Task subclass is Calc.

Also in the usage section, each parameter reports the data type that it may take, and objects of this
type may be used as the parameter value passed in the MapEnvironment as an alternative to passing
string values. For the case of the input table parameters, this is StarTable, so in a task like tpipe
(TablePipe), if you want to read a file "data.fits", you can either write

env.setValue("in", "data.fits");

or

StarTable table = new StarTableFactory().readStarTable("data.fits");
env.setValue("in", table);

That doesn't buy you much, but the table could equally be obtained from any other source,
including being a user-defined iterable over existing data structures. See SUN/252 for more
information on StarTable handling.

For some short examples of programs which invoke STILTS tasks in this way, see the source code
of some of the examples in the uk.ac.starlink.ttools.example directory: Calculator and
Head10.

Some commands provide additional methods for use with parameter-based invocation. In particular
the plotting commands can be used to create JComponent objects that can be incorporated into an
existing GUI. A working example of this can be found in the source code for the example

SUN/256 376

EnvPlanePlotter class. For some more tutorial introductions to using the plotting classes
programmatically, see also the example classes SinePlot, ApiPlanePlotter, and BasicPlotGui in the
same place.

SUN/256 377

A Commands By Category

This section lists the commands available broken down by the category of function they provide.
Some commands appear in more than one category. Detailed descriptions and examples for each
command can be found in Appendix B.

Format conversion:

• tcopy (Appendix B.30): Converts between table formats
• votcopy (Appendix B.44): Transforms between VOTable encodings

See also Section 5.

Generic table manipulation:

• tcopy (Appendix B.30): Converts between table formats
• tpipe (Appendix B.41): Performs pipeline processing on a table
• tmulti (Appendix B.39): Writes multiple tables to a single container file
• tmultin (Appendix B.40): Writes multiple processed tables to single container file
• tcat (Appendix B.28): Concatenates multiple similar tables
• tcatn (Appendix B.29): Concatenates multiple tables
• tloop (Appendix B.32): Generates a single-column table from a loop variable
• tjoin (Appendix B.35): Joins multiple tables side-to-side
• arrayjoin (Appendix B.1): Adds table-per-row data as array-valued columns
• tgridmap (Appendix B.33): Calculates N-dimensional density maps
• tgroup (Appendix B.34): Calculates aggregate functions on groups of rows
• tcube (Appendix B.31): Calculates N-dimensional histograms

See also Section 6.

Crossmatching:

• tmatch1 (Appendix B.36): Performs a crossmatch internal to a single table
• tmatch2 (Appendix B.37): Crossmatches 2 tables using flexible criteria
• tmatchn (Appendix B.38): Crossmatches multiple tables using flexible criteria
• tskymatch2 (Appendix B.43): Crossmatches 2 tables on sky position
• cdsskymatch (Appendix B.3): Crossmatches table on sky position against

VizieR/SIMBAD table
• coneskymatch (Appendix B.5): Crossmatches table on sky position against remote cone

service
• sqlskymatch (Appendix B.22): Crossmatches table on sky position against SQL table

See also Section 7.

Plotting:

• plot2plane (Appendix B.10): Draws a plane plot
• plot2sky (Appendix B.11): Draws a sky plot
• plot2cube (Appendix B.12): Draws a cube plot
• plot2sphere (Appendix B.13): Draws a sphere plot
• plot2corner (Appendix B.14): Draws a matrix of plane plots
• plot2time (Appendix B.15): Draws a time plot
• plot2d (Appendix B.16) (deprecated): Old-style 2D Scatter Plot
• plot3d (Appendix B.17) (deprecated): Old-style 3D Scatter Plot
• plothist (Appendix B.18) (deprecated): Old-style Histogram

See also Section 9.

Sky Pixel Operations:

• tskymap (Appendix B.42): Calculates sky density maps
• pixfoot (Appendix B.8): Generates Multi-Order Coverage maps

SUN/256 378

• pixsample (Appendix B.9): Samples from a HEALPix pixel data file

VOTables:

• votcopy (Appendix B.44): Transforms between VOTable encodings
• votlint (Appendix B.45): Validates VOTable documents

Virtual Observatory service access:

• cdsskymatch (Appendix B.3): Crossmatches table on sky position against
VizieR/SIMBAD table

• cone (Appendix B.4): Executes a Cone Search-like query
• coneskymatch (Appendix B.5): Crossmatches table on sky position against remote cone

service
• tapskymatch (Appendix B.27): Crossmatches table on sky position against TAP table
• tapquery (Appendix B.25): Queries a Table Access Protocol server
• tapresume (Appendix B.26): Resumes a previous query to a Table Access Protocol server
• taplint (Appendix B.24): Tests TAP services
• datalinklint (Appendix B.6): Validates DataLink documents
• regquery (Appendix B.19): Queries the VO registry

SQL Database access:

• sqlclient (Appendix B.21): Executes SQL statements
• sqlupdate (Appendix B.23): Updates values in an SQL table
• sqlskymatch (Appendix B.22): Crossmatches table on sky position against SQL table

Miscellaneous:

• server (Appendix B.20): Runs an HTTP server to perform STILTS commands
• calc (Appendix B.2): Evaluates expressions
• funcs (Appendix B.7): Browses functions used by algebraic expression language
• xsdvalidate (Appendix B.46): Validates against XML Schema

SUN/256 379

B Command Reference

This appendix provides the reference documentation for the commands in the package. For each
one a description of its purpose, a list of its command-line arguments, and some examples are
given.

B.1 arrayjoin: Adds table-per-row data as array-valued columns

arrayjoin takes an input table and for each row adds the contents of a separate "array" table. The
columns added are the columns from the array table, and the value of each cell is the value of the
whole column from the array table represented as an array. The assumption is that all the array
tables have the same form (the same columns, though not necessarily the same row counts).

This can be useful for constructing a single table with array-valued columns containing data that is
made available in multiple external files, for instance via the DataLink protocol; this is illustrated in
the Examples subsection below. Note however that this command does not understand DataLink
directly, and cannot itself determine the location of the external array tables; an expression giving
their per-row location (filename or URL) must be supplied.

B.1.1 Usage

The usage of arrayjoin is

stilts <stilts-flags> arrayjoin ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
atable=<loc-expr> afmt=<in-format>
astream=true|false acmd=<cmds>
keepall=true|false aparams=<name-list>
cache=true|false fixcols=none|dups|all
suffixarray=<label>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.ArrayJoin.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on array tables as specified by parameter atable, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

afmt = <in-format> (String)
Specifies the format of array tables as specified by parameter atable. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has

SUN/256 380

the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

aparams = <name-list> (String)
Lists the table parameters (per-table metadata) that will be read from loaded tables and turned
into scalar-valued columns in the output. By default parameters are discarded, but you can
include them in the output by naming them using this parameter.

Parameters are supplied as a space- or comma-separated list. Matching against table names is
case-insensitive, and the asterisk character "*" may be used as a wildcard to match any
sequence of characters. The list is interpreted relative to the first external table which is loaded.
Supplying the value "*" therefore will include a column for each parameter in the first loaded
table.

astream = true|false (Boolean)
If set true, array tables specified by the atable parameter will be read as a stream. It is
necessary to give the afmt parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

atable = <loc-expr> (String)
Gives the location of the table whose rows will be turned into an array-valued column. This
will generally be an expression giving a URL or filename that is different for each row of the
input table. If table loading fails for the given location, for instance becase the file is not found
or an HTTP 404 response is received, the array cells in the corresponding row will be blank.

The first non-blank table loaded defines the array columns to be added. If subsequent tables
have a different structure (do not contain similar columns in a similar sequence) an error may
result. If the external array tables are not all homogenous in this way, the acmd parameter can
be used to filter them so that they are.

cache = true|false (Boolean)
Determines whether the array data will be cached the first time an array table is read (true) or
re-read from the array table every time the row is accessed (false). Since the row construction
may be an expensive step, especially if the tables are downloaded, it usually makes sense to set
this true (the default). When true it also enables the metadata to be adjusted to report constant
array length where applicable, which cannot be done before all the rows have been scanned,
and which may enable more efficient file output. However, if you want to stream the data you
can set it false.

[Default: true]

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

SUN/256 381

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

keepall = true|false (Boolean)
This parameter determines what happens when the atable parameter does not name a table
that can be loaded. If this parameter is false, the input table row is output with blank values in
the columns supplied by the array tables, so that the output table has the same number of rows
as the input table. If it is true, only rows with successfully loaded tables are included in the
output.

[Default: true]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken

SUN/256 382

place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

suffixarray = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended

SUN/256 383

to all renamed columns from the array tables.

[Default: _a]

B.1.2 Examples

Here are some examples of using arrayjoin:

stilts arrayjoin in=dr3-sources.vot
atable='"https://gea.esac.esa.int/data-server/data?RETRIEVAL_TYPE=XP_SAMPLED&RELEASE=Gaia+DR3&ID="+source_id'
icmd=progress
out=sources-with-xp.fits

This command uses the Gaia DR3 DataLink service to attach sampled XP spectrum data to an
input table containing other information about Gaia DR3 sources.

The input file dr3-sources.vot must contain the column source_id giving the Gaia DR3
source ID corresponding to that row. The atable expression is a URL built using that
source_id column and a base URL that can be obtained by examining the DR3 catalogue
documentation, or by examining the DataLink service descriptor returned from a source
catalogue query.

The output file sources-with-xp.fits is a FITS table with the same content as the input but
with three added array-valued columns, wavelength, flux and flux_error as supplied by
tables downloaded from the URL in the atable parameter. For each row of the output table,
the lengths of those three arrays will be the same, namely the row count of the table that
supplied them. These matched arrays can be manipulated within STILTS, for instance using
the Arrays functions or to produce plots using the lines or arrayquantile plot layer types.

The icmd=progress filter is a useful convenience to see how the command is progressing,
since the operation requires multiple downloads and so may be time-consuming.

stilts arrayjoin in=dr3-sources.vot
atable='"https://gea.esac.esa.int/data-server/data?RETRIEVAL_TYPE=XP_SAMPLED&RELEASE=Gaia+DR3&ID="+source_id'
icmd=progress
keepall=false
ocmd='constcol -acceptnull'
out=sources-with-xp.fits

Similar to the previous example, but with a couple of variations.

The keepall=false parameter means that only those rows for which array data exists will be
retained in the output table, rather than including blank entries in the array columns in cases
for which the remote table couldn't be loaded.

The ocmd='constcol -acceptnull' filter looks for columns in the output that have the same
value (or null) in every row. Since Gaia DR3 sampled spectra are all sampled onto the same
grid, in this case the wavelength column will have the same array value for every row, which
is harmless but makes the output table larger than required. The constcol filter spots this and
removes the wavelength column, replacing it with a parameter having the same name, which
can therefore be referred to using the expression language as param$wavelength.

stilts arrayjoin in=dl_dr3.fits
icmd='select has_epoch_photometry'
atable='"https://gea.esac.esa.int/data-server/data?RETRIEVAL_TYPE=EPOCH_PHOTOMETRY&ID="+urlEncode(designation)'
afmt=votable
acmd='select equals(BAND,\"G\")'
acmd='keepcols "time mag flux"'
out=with-epoch-photom.fits

Similar to the first example, but this time acquiring EPOCH_PHOTOMETRY rather than
XP_SAMPLED data, and performing some additional processing of the main and array input

SUN/256 384

tables. The value of the designation field is wrapped in the urlEncode function when
preparing the URL; this is necessary since that field may contain spaces which are not legal
URL characters. Only those input rows are used for which the boolean has_epoch_photometry

column is True; for the linked array tables the rows are limited to those with the BAND column
having the value "G"; and only the array columns time, mag and flux are retained for inclusion
into the output.

stilts arrayjoin in=rrlyrae.vot
atable='"https://gaia.ari.uni-heidelberg.de/timeseries/gaiadr3?sourceid="+source_id'
acmd='keepcols "time mag flux flux_error"'
aparams='p1 pf'
icmd=progress
out=rrlyrae-timeseries.vot

Acquires Gaia DR3 epoch photometry from a different service, ARI-Gaia. In this case the
epoch photometry tables have parameters characterising the variability; the aparams='p1 pf'

parameter takes two of these and adds them as scalar-valued columns in the output table. Since
the pf parameter gives the variability period, a period-folded variability graph can then be
plotted using an X coordinate like arrayFunc("x%1",divide(time,pf)).

stilts arrayjoin in=obscore-lotssdr2.vot
atable=access_url
icmd=progress
icmd='select equals(dataproduct_type,\"spectrum\")'
out=with-spectra.vot

Takes an ivoa.ObsCore-like table and adds array-valued columns giving the content of
spectrum files linked from the access_url field. Only those rows with a dataproduct_type of
"spectrum" are included. Note all the access_urls in the selected rows must point to spectrum
files of a similar form (i.e. having the same columns), otherwise the command will fail.

B.2 calc: Evaluates expressions

calc is a very simple utility for evaluating expressions. It uses the same expression evaluator as is
used in tpipe and the other generic table tasks for things like creating new columns, so it can be
used as a quick test to see what expressions work, or in order to evaluate expressions using the
various algebraic functions documented in Section 10.7. Since usually no table is involved, you
can't refer to column names in the expressions. It has one mandatory parameter, the expression to
evaluate, and writes the result to the screen.

B.2.1 Usage

The usage of calc is

stilts <stilts-flags> calc table=<table>
[expression=]<expr>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.Calc.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

expression = <expr> (String)
An expression to evaluate. The functions in Section 10.7 can be used.

table = <table> (StarTable)

SUN/256 385

A table which provides the context within which expression is evaluated. This parameter is
optional, and will usually not be required; its only purpose is to allow use of constant
expressions (table parameters) associated with the table. These can be referenced using
identifiers of the form param$*, ucd$* or utype$* - see Section 10.2 for more detail.

B.2.2 Examples

Here are some examples of using calc:

stilts calc 1+2

Calculates one plus two. Writes "3" to standard output.

stilts calc 'isoToMjd("2005-12-25T00:00:00")'

Works out the Modified Julian Day corresponding to Christmas 2005. The output is "53729.0".

stilts calc 'param$author' table=catalogue.xml

In this case the expression is evaluated in the context of the supplied table, which means that
the table's parameters can be referenced in the expression. This example just outputs the value
of the table parameter named "author".

B.3 cdsskymatch: Crossmatches table on sky position against VizieR/SIMBAD table

cdsskymatch uses the CDS X-Match service to join a local table to one of the tables hosted by the
Centre de Données astronomiques de Strasbourg. This includes all of the VizieR tables and the
SIMBAD database. The service is very fast, and in most cases it is the best way to match a local
table against a large external table hosted by a service. It is almost certainly much better than using
coneskymatch, though it is less flexible than TAP (see the tapquery task for flexible access to TAP
services, and tapskymatch for positional matches).

The local table is uploaded to the X-Match service in chunks, and the matches for each chunk are
retrieved in turn and eventually stitched together to form the final result. The tool only uploads sky
position and an identifier for each row of the input table, but all columns of the input table are
reinstated in the result for reference.

For a better understanding of the details of how this service operates, including exactly what
coordinates are matched against the uploaded positions (roughly: integrated to J2000 using proper
motions if available) and what columns are included in the output (roughly: a subset of the most
commonly used columns), please consult the service documentation.

Acknowledgement: CDS note that if the use of the X-Match service is useful to your research, they
would appreciate the following acknowledgement:

"This research made use of the cross-match service provided by CDS, Strasbourg."

B.3.1 Usage

The usage of cdsskymatch is

stilts <stilts-flags> cdsskymatch ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

SUN/256 386

out=<out-table> ofmt=<out-format>
ra=<expr> dec=<expr>
radius=<value/arcsec> cdstable=<value>
find=all|best|best-remote|each|each-dist
blocksize=<int-value> maxrec=<int-value>
compress=true|false
serviceurl=<url-value> usemoc=true|false
presort=true|false fixcols=none|dups|all
suffixin=<label> suffixremote=<label>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.task.CdsUploadSkyMatch.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

blocksize = <int-value> (Integer)
The CDS Xmatch service operates limits on the maximum number of rows that can be
uploaded and the maximum number of rows that is returned as a result from a single query. In
the case of large input tables, they are broken down into smaller blocks, and one request is sent
to the external service for each block. This parameter controls the number of rows in each
block. For an input table with fewer rows than this value, the whole thing is done as a single
request.

At time of writing, the maximum upload size is 100Mb (about 3Mrow; this does not depend on
the width of your table), and the maximum return size is 2Mrow.

Large blocksizes tend to be good (up to a point) for reducing the total amount of time a large
xmatch operation takes, but they can make it harder to see the job progressing. There is also
the danger (for ALL-type find modes) of exceeding the return size limit, which will result in
truncation of the returned result.

[Default: 50000]

cdstable = <value> (String)
Identifier of the table from the CDS crossmatch service that is to be matched against the local
table. This identifier may be the standard VizieR identifier (e.g. "II/246/out" for the 2MASS
Point Source Catalogue) or "simbad" to indicate SIMBAD data.

See for instance the TAPVizieR table searching facility at
http://tapvizier.u-strasbg.fr/adql/ to find VizieR catalogue identifiers.

compress = true|false (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzip", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: true]

dec = <expr> (String)
Declination in degrees in the ICRS coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 10. If left blank, an attempt is made to guess from
UCDs, column names and unit annotations what expression to use.

find = all|best|best-remote|each|each-dist (UserFindMode)
Determines which pair matches are included in the result.

• all: All matches

SUN/256 387

• best: Matched rows, best remote row for each input row
• best-remote: Matched rows, best input row for each remote row
• each: One row per input row, contains best remote match or blank
• each-dist: One row per input row, column giving distance only for best match

Note only the all mode is symmetric between the two tables.

Note also that there is a bug in best-remote matching. If the match is done in multiple
blocks, it's possible for a remote table row to appear matched against one local table row per
uploaded block, rather than just once for the whole result. If you're worried about that, set
blocksize >= rowCount. This may be fixed in a future release.

[Default: all]

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix

SUN/256 388

compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

maxrec = <int-value> (Integer)
Limit to the number of rows resulting from this operation. If the value is negative (the default)
no limit is imposed. Note however that there can be truncation of the result if the number of
records returned from a single chunk exceeds the service hard limit (2,000,000 at time of
writing).

[Default: -1]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

SUN/256 389

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

presort = true|false (Boolean)
If true, the rows are sorted by HEALPix index before they are uploaded to the CDS X-Match
service. If the match is done in multiple blocks, this may improve efficiency, since when
matching against a large remote catalogue the X-Match service likes to process requests in
which sources are grouped into a small region rather than scattered all over the sky.

Note this will have a couple of other side effects that may be undesirable: it will read all the
input rows into the task at once, which may make it harder to assess progress, and it will affect
the order of the rows in the output table.

It is probably only worth setting true for rather large (multi-million-row?) multi-block
matches, where both local and remote catalogues are spread over a significant fraction of the
sky. But feel free to experiment.

[Default: false]

ra = <expr> (String)
Right ascension in degrees in the ICRS coordinate system for the position of each row of the
input table. This may simply be a column name, or it may be an algebraic expression
calculated from columns as explained in Section 10. If left blank, an attempt is made to guess
from UCDs, column names and unit annotations what expression to use.

radius = <value/arcsec> (Double)
Maximum distance from the local table (ra,dec) position at which counterparts from the remote
table will be identified. This is a fixed value given in arcseconds, and must be in the range
[0,180] (this limit is currently enforced by the CDS Xmatch service).

serviceurl = <url-value> (URL)
The URL at which the CDS Xmatch service can be found. Normally this should not be altered
from the default, but if other implementations of the same service are known, this parameter
can be used to access them.

[Default: http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync]

suffixin = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: _in]

suffixremote = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended

SUN/256 390

to all renamed columns from the CDS result table.

[Default: _cds]

usemoc = true|false (Boolean)
If true, first acquire a MOC coverage map from CDS, and use that to pre-filter rows before
uploading them for matching. This should improve efficiency, but have no effect on the result.

[Default: true]

B.3.2 Examples

Here are some examples of cdsskymatch:

stilts cdsskymatch cdstable=II/246/out find=all
in=dr5qso.fits ra=RA dec=DEC radius=1 out=qso_2mass.fits

Matches a local catalogue dr5qso.fits against the VizieR table II/246/out (the 2MASS
Point Source Catalogue). The search radius is 1 arcsecond, and all 2MASS sources within the
radius of each input source are returned.

stilts cdsskymatch cdstable=simbad find=best
in=sources.txt ifmt=ascii ra=RAJ2000 dec=DEJ2000 radius=8.5
blocksize=1000 icmd=progress omode=topcat

This finds the closest object in the SIMBAD database within 8.5 arcsec for each row of an
input ASCII table. Uploads are done in blocks of 1,000 rows at a time, and progress is
displayed on the console. When the match is complete, the result is sent directly to a running
instance of TOPCAT.

stilts cdsskymatch in=3XMM_DR4cat_slim_v1.0.fits
icmd='select "SC_POSERR < 1 && SC_EXTENT == 0"'
cdstable=B/mk/mktypes
ra=SC_RA dec=SC_DEC radius=1.5
find=best suffixin=_XMM suffixremote=_MK fixcols=all
ocmd='select startsWith(spType_MK,\"G\")'
out=xmm_gtype.fits

This locates XMM-Newton point-like sources identified as being of spectral type G. It uses the
3XMM-DR4 XMM-Newton serendipitous source catalogue as input. The icmd filter selects
the objects in that catalogue with well-defined point-like positions. It then matches them with
Skiff's MK spectral classification catalogue (B/mk/mktypes in VizieR) and finally filters the
result to include only those sources identified as being of spectral type G. Thanks to Ada
Nebot (CDS) for this example.

B.4 cone: Executes a Cone Search-like query

cone is a utility to execute one of the "Simple" positional DAL query operations on a remote server:
Simple Cone Search, Simple Image Access (SIA) or Simple Spectral Access (SSA). The job it does
is not very complicated: given a base URL for a service of one of these types and values for the
central position and radius required, it assembles the query URL in the form required for the
relevant protocol, retrieves the result of the query, and turns it into a table which can be operated on
with the usual STILTS pipeline operations.

B.4.1 Usage

The usage of cone is

SUN/256 391

stilts <stilts-flags> cone serviceurl=<url-value> lon=<degrees>
lat=<degrees> radius=<degrees>
skysys=icrs|fk5|fk4|galactic|supergalactic|ecliptic
servicetype=cone|ssa|sia1|sia2|sia verb=1|2|3
compress=true|false dataformat=<value>
ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableCone.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

compress = true|false (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzip", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: true]

dataformat = <value> (String)
Indicates the format of data objects described in the returned table. The meaning of this is
dependent on the value of the servicetype parameter:

• servicetype=cone: not used
• servicetype=ssa: gives the MIME type of spectra referenced in the output table, also

special values "votable", "fits", "compliant", "graphic", "all", and others (value of
the SSA FORMAT parameter).

• servicetype=sia1: gives the MIME type required for images/resources referenced in the
output table, corresponding to the SIA FORMAT parameter. The special values
"GRAPHIC" (all graphics formats) and "ALL" (no restriction) as defined by SIAv1 are also
permissible. For SIA version 1 only, this defaults to"image/fits".

• servicetype=sia2: gives the MIME type required for images/resources referenced in the
output table, corresponding to the SIA FORMAT parameter. The special values
"GRAPHIC" (all graphics formats) and "ALL" (no restriction) as defined by SIAv1 are also
permissible.

• servicetype=sia: gives the MIME type required for images/resources referenced in the
output table, corresponding to the SIA FORMAT parameter. The special values
"GRAPHIC" (all graphics formats) and "ALL" (no restriction) as defined by SIAv1 are also
permissible. For SIA version 1 only, this defaults to"image/fits".

lat = <degrees> (Double)
Central latitude position for cone search. By default this is the Declination, but depending on
the value of the skysys parameter it may be in a different sky system.

lon = <degrees> (Double)
Central longitude position for cone search. By default this is the Right Ascension, but
depending on the value of the skysys parameter it may be in a different sky system.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline

SUN/256 392

which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

radius = <degrees> (Double)
Search radius in degrees.

servicetype = cone|ssa|sia1|sia2|sia (ServiceType)
Selects the type of data access service to contact. Most commonly this will be the Cone Search
service itself, but there are one or two other possibilities:

• cone: Cone Search protocol - returns a table of objects found near each location. See

SUN/256 393

Cone Search standard.
• ssa: Simple Spectral Access protocol - returns a table of spectra near each location. See

SSA standard.
• sia1: Simple Image Access protocol version 1 - returns a table of images near each

location. See SIA 1.0 standard.
• sia2: Simple Image Access protocol version 2 - returns a table of images near each

location. See SIA 2.0 standard.
• sia: alias for sia1

[Default: cone]

serviceurl = <url-value> (URL)
The base part of a URL which defines the query to be made. Additional parameters will be
appended to this using CGI syntax ("name=value", separated by '&' characters). If this value
does not end in either a '?' or a '&', one will be added as appropriate.

skysys = icrs|fk5|fk4|galactic|supergalactic|ecliptic (SkySystem)
Sky coordinate system used to interpret the lon and lat parameters. If the value is ICRS (the
default) the provided values are assumed to be Right Ascension and Declination and are sent
unchanged; for other values they will be converted from the named system into RA and Dec
first.

[Default: icrs]

verb = 1|2|3 (String)
Verbosity level of the tables returned by the query service. A value of 1 indicates the bare
minimum and 3 indicates all available information.

B.4.2 Examples

Here are some examples of cone:

stilts cone serviceurl=http://gaia.ari.uni-heidelberg.de/cone/search
lon=56.75 lat=24.12 radius=0.8
out=pleiades.fits

Queries the ARI-Gaia cone search service for sources within 0.8 of the given sky position, and
writes the result to a file.

stilts cone serviceurl=http://gaia.ari.uni-heidelberg.de/cone/search
lon=56.75 lat=24.12 radius=0.8
verb=1
ocmd='sorthead 10 phot_g_mean_mag'
ocmd='keepcols "source_id ra dec phot_g_mean_mag"'

This does the same basic query as the previous example, but post-processes the result so that a
limited amount of data (source identifier, position and magnitude) for only the ten brightest
sources is written to the console. Since most of the columns are discarded, we specify verb=1

which indicates to the service that only a minimal column set is required in the query result.

stilts -verbose
cone servicetype=ssa serviceurl='http://archive.eso.org/ssap'

lon=0 lat=90 radius=1.0 skysys=galactic
omode=count

Queries the ESO Simple Spectral Access service for spectra within one degree of the northern
galactic pole. The omode=count parameter means that it just counts the rows and columns and
prints the numbers to the console. The -verbose flag means that (amongst other things) the
full URL that the command used to make the query will be logged to the console.

SUN/256 394

B.5 coneskymatch: Crossmatches table on sky position against remote cone service

Note: this command is very inefficient for large tables, and in most cases cdsskymatch or
tapskymatch provide better alternatives.

coneskymatch is a utility which performs a cone search-like query to a remote server for each row
of an input table. Each of these queries returns a table with one row for each item held by the server
in the region of sky represented by the input row. The results of all the queries are then
concatenated into one big output table which is the output of this command.

The type of virtual observatory service queried is determined by the servicetype parameter.
Typically it will be a Cone Search service, which queries a remote catalogue for astronomical
objects or sources in a particular region. However, you can also query Simple Image Access and
Simple Spectral Access services in just the same way, to return tables of available image and
spectral resources in the relevant regions.

The identity of the server to query is given by the serviceurl parameter. Some advice about how
to locate URLs for suitable services is given in Appendix B.5.3.

The effect of this command is like doing a positional crossmatch where one of the catalogues is
local and the other is remote and exposes its data via a cone search/SIA/SSA service. Because of
both the network communication and the necessarily naive crossmatching algorithm (which scales
linearly with the size of the local catalogue) however, it is only suitable if the local catalogue has a
reasonably small number of rows, unless you are prepared to wait a long time.

The parallel parameter allows you to perform multiple cone searches concurrently, so that instead
of completing the first cone search, then the second, then the third, the program can be executing a
number of them at once. This can speed up operation considerably, especially in the face of network
latency, but beware that submitting a very large number of queries simultaneously to the same
server may overload it, resulting in some combination of failed queries, ultimately slower runtimes,
and unpopularity with server admins. Best to start with a low parallelism and cautiously increase it
to see whether there are gains in performance.

Note that when running, coneskymatch can generate a lot of WARNING messages. Most of these
are complaining about badly formed VOTables being returned from the cone search services.
STILTS does its best to work out what the service responses mean in this case, and usually makes a
good enough job of it.

Note: this task was known as multicone in its experimental form in STILTS v1.2 and v1.3.

B.5.1 Usage

The usage of coneskymatch is

stilts <stilts-flags> coneskymatch ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
ra=<expr> dec=<expr> sr=<expr/deg>
find=best|all|each usefoot=true|false
footnside=<int-value>
copycols=<colid-list>
scorecol=<col-name> parallel=<n>
erract=abort|ignore|retry|retry<n>
ostream=true|false fixcols=none|dups|all
suffix0=<label> suffix1=<label>
servicetype=cone|ssa|sia1|sia2|sia

SUN/256 395

serviceurl=<url-value> verb=1|2|3
dataformat=<value> emptyok=true|false
compress=true|false
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.MultiCone.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

compress = true|false (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzip", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: true]

copycols = <colid-list> (String)
List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 6.3 for list syntax. The default setting is "*", which means that all
columns from the input table are included in the output.

[Default: *]

dataformat = <value> (String)
Indicates the format of data objects described in the returned table. The meaning of this is
dependent on the value of the servicetype parameter:

• servicetype=cone: not used
• servicetype=ssa: gives the MIME type of spectra referenced in the output table, also

special values "votable", "fits", "compliant", "graphic", "all", and others (value of
the SSA FORMAT parameter).

• servicetype=sia1: gives the MIME type required for images/resources referenced in the
output table, corresponding to the SIA FORMAT parameter. The special values
"GRAPHIC" (all graphics formats) and "ALL" (no restriction) as defined by SIAv1 are also
permissible. For SIA version 1 only, this defaults to "image/fits".

• servicetype=sia2: gives the MIME type required for images/resources referenced in the
output table, corresponding to the SIA FORMAT parameter. The special values
"GRAPHIC" (all graphics formats) and "ALL" (no restriction) as defined by SIAv1 are also
permissible.

• servicetype=sia: gives the MIME type required for images/resources referenced in the
output table, corresponding to the SIA FORMAT parameter. The special values
"GRAPHIC" (all graphics formats) and "ALL" (no restriction) as defined by SIAv1 are also
permissible. For SIA version 1 only, this defaults to "image/fits".

dec = <expr> (String)
Declination in degrees in the ICRS coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 10. If left blank, an attempt is made to guess from
UCDs, column names and unit annotations what expression to use.

emptyok = true|false (Boolean)
Whether the table metadata which is returned from a search result with zero rows is to be
believed. According to the spirit, though not the letter, of the cone search standard, a cone

SUN/256 396

search service which returns no data ought nevertheless to return the correct column headings.
Unfortunately this is not always the case. If this parameter is set true, it is assumed that the
service behaves properly in this respect; if it does not an error may result. In that case, set this
parameter false. A consequence of setting it false is that in the event of no results being
returned, the task will return no table at all, rather than an empty one.

[Default: true]

erract = abort|ignore|retry|retry<n> (ConeErrorPolicy)
Determines what will happen if any of the individual cone search requests fails. By default the
task aborts. That may be the best thing to do, but for unreliable or poorly implemented services
you may find that some searches fail and others succeed so it can be best to continue operation
in the face of a few failures. The options are:

• abort: Failure of any query terminates the task.
• ignore: Failure of a query is treated the same as a query which returns no rows.
• retry: Failed queries are retried until they succeed; an increasing delay is introduced for

each failure. Use with care - if the failure is for some good, or at least reproducible reason
this could prevent the task from ever completing.

• retry<n>: Failed queries are retried at most a fixed number <n> of times; an increasing
delay is introduced for each failure. If failures persist the task terminates.

[Default: abort]

find = best|all|each (String)
Determines which matches are retained.

• best: Only the matching query table row closest to the input table row will be output.
Input table rows with no matches will be omitted. (Note this corresponds to the best1

option in the pair matching commands, and best1 is a permitted alias).
• all: All query table rows which match the input table row will be output. Input table rows

with no matches will be omitted.
• each: There will be one output table row for each input table row. If matches are found,

the closest one from the query table will be output, and in the case of no matches, the
query table columns will be blank.

[Default: all]

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

footnside = <int-value> (Integer)
Determines the HEALPix Nside parameter for use with the MOC footprint service. This tuning
parameter determines the resolution of the footprint if available. Larger values give better
resolution, hence a better chance of avoiding unnecessary queries, but processing them takes
longer and retrieving and storing them is more expensive.

The value must be a power of 2, and at the time of writing, the MOC service will not supply
footprints at resolutions greater than nside=512, so it should be <=512.

Only used if usefoot=true.

icmd = <cmds> (ProcessingStep[])

SUN/256 397

Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A

SUN/256 398

backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

ostream = true|false (Boolean)
If set true, this will cause the operation to stream on output, so that the output table is built up
as the results are obtained from the cone search service. The disadvantage of this is that some
output modes and formats need multiple passes through the data to work, so depending on the
output destination, the operation may fail if this is set. Use with care (or be prepared for the
operation to fail).

[Default: false]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

parallel = <n> (Integer)
Allows multiple cone searches to be performed concurrently. If set to the default value, 1, the
cone query corresponding to the first row of the input table will be dispatched, when that is
completed the query corresponding to the second row will be dispatched, and so on. If set to
<n>, then queries will be overlapped in such a way that up to approximately <n> may be

SUN/256 399

running at any one time.

Whether increasing <n> is a good idea, and what might be a sensible maximum value, depends
on the characteristics of the service being queried. In particular, setting it to too large a number
may overload the service resulting in some combination of failed queries, ultimately slower
runtimes, and unpopularity with server admins.

The maximum value permitted for this parameter by default is 5. This limit may be raised by
use of the service.maxparallel system property but use that option with great care since you
may overload services and make yourself unpopular with data centre admins. As a rule, you
should only increase this value if you have obtained permission from the data centres whose
services on which you will be using the increased parallelism.

[Default: 1]

ra = <expr> (String)
Right ascension in degrees in the ICRS coordinate system for the position of each row of the
input table. This may simply be a column name, or it may be an algebraic expression
calculated from columns as explained in Section 10. If left blank, an attempt is made to guess
from UCDs, column names and unit annotations what expression to use.

scorecol = <col-name> (String)
Gives the name of a column in the output table to contain the distance between the requested
central position and the actual position of the returned row. The distance returned is an angular
distance in degrees. If a null value is chosen, no distance column will appear in the output
table.

[Default: Separation]

servicetype = cone|ssa|sia1|sia2|sia (ServiceType)
Selects the type of data access service to contact. Most commonly this will be the Cone Search
service itself, but there are one or two other possibilities:

• cone: Cone Search protocol - returns a table of objects found near each location. See
Cone Search standard.

• ssa: Simple Spectral Access protocol - returns a table of spectra near each location. See
SSA standard.

• sia1: Simple Image Access protocol version 1 - returns a table of images near each
location. See SIA 1.0 standard.

• sia2: Simple Image Access protocol version 2 - returns a table of images near each
location. See SIA 2.0 standard.

• sia: alias for sia1

[Default: cone]

serviceurl = <url-value> (URL)
The base part of a URL which defines the queries to be made. Additional parameters will be
appended to this using CGI syntax ("name=value", separated by '&' characters). If this value
does not end in either a '?' or a '&', one will be added as appropriate.

See Appendix B.5.3 for discussion of how to locate service URLs corresponding to given
datasets.

sr = <expr/deg> (String)
Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or a function involving one.

suffix0 = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

SUN/256 400

[Default: _0]

suffix1 = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the cone result table.

[Default: _1]

usefoot = true|false (Boolean)
Determines whether an attempt will be made to restrict searches in accordance with available
footprint information. If this is set true, then before any of the per-row queries are performed,
an attempt may be made to acquire footprint information about the servce. If such information
can be obtained, then queries which fall outside the footprint, and hence which are known to
yield no results, are skipped. This can speed up the search considerably.

Currently, the only footprints available are those provided by the CDS MOC (Multi-Order
Coverage map) service, which covers VizieR and a few other cone search services.

[Default: true]

verb = 1|2|3 (String)
Verbosity level of the tables returned by the query service. A value of 1 indicates the bare
minimum and 3 indicates all available information.

B.5.2 Examples

Here are some examples of coneskymatch:

stilts coneskymatch serviceurl=http://archive.stsci.edu/hst/search.php \
in=messier.xml sr=0.05 out=matches.xml

This queries the HST cone search service from Space Telescope for records within .05 degrees
of each Messier object contained in a local VOTable messier.xml. The sky positions in the
input catalogue are guessed from the available table metadata. The result is written to a new
VOTable, matches.xml. Since the servicetype parameter is not given, the default (cone
search) service type is assumed.

stilts coneskymatch
servicetype=sia \
serviceurl=http://irsa.ipac.caltech.edu/cgi-bin/2MASS/IM/nph-im_sia?type=ql&ds=asky \
in=messier.xml ra=RA dec=DEC \
dataformat=image/fits \
out=fitsimages.xml

This is similar to the previous example, but instead of querying an HST cone search server for
catalogue objects near the input table positions, it queries a 2MASS Simple Image Access
(SIA) server for images. It also explicitly names the columns holding the J2000 positions of
reach record in the input catalogue as RA and DEC. The search radius parameter (sr) is not set
here; for SIA queries the default search radius is zero, which has the special meaning of
including any image which covers the requested position. Setting dataformat=image/fits

(which is the default) requests only records describing FITS-format images to be returned;
setting it to an empty value might return other formats such as JPEG too.

stilts coneskymatch \
serviceurl='http://www.nofs.navy.mil/cgi-bin/vo_cone.cgi?CAT=NOMAD' \
in=vizier.xml#7 \
icmd='addskycoords -inunit sex fk4 fk5 RAB1950 DEB1950 RAJ2000 DEJ2000' \
icmd='progress'
ra=RAJ2000 dec=DEJ2000 sr=0.01 \
ocmd='replacecol -units deg RA hmsToDegrees(RA[0],RA[1],RA[2])' \

SUN/256 401

ocmd='replacecol -units deg DEC dmsToDegrees(DEC[0],DEC[1],DEC[2])' \
omode=topcat

In this example some pre-processing of the input catalogue and post-processing of the output
catalogue is performed as well as the multiple cone search itself.

The input catalogue, which is the 8th TABLE element in a VOTable file, contains sky
positions in sexagesimal FK4 (B1950) coordinates. The icmd=addskycoords... parameter
specifies a filter which will add new columns in FK5 (J2000) degrees, which are what the
coneskymatch command requires. The icmd=progress parameter specifies a filter which will
write progress information to the terminal so you can see how the queries are progressing.

The NOMAD service specified by the serviceurl parameter used here happens to return
results with the RA/DEC columns represented in a rather eccentric format, namely 3-element
floating point arrays representing (hours,minutes,seconds)/(degrees,minutes,seconds). The two
ocmd=replacecol... filters replace the values of these columns with the scalar equivalents in
degrees. Finally, the omode=topcat parameter causes the result table to be loaded directly into
TOPCAT (if it is available).

stilts coneskymatch serviceurl='http://archive.stsci.edu/iue/search.php?' \
in=queries.txt ifmt=ascii \
ra='$1' dec='$2' \
sr='$3' copycols='$4' \
out=found.fits

Here the input is a plain text table with four unnamed columns, giving in order the right
ascension, declination, positional error and name of target objects. The command carries out a
cone search to the named service for each one. Note in this case the search radius (sr
parameter) is taken from the table and so varies for each query. The copycols parameter has
the value '$4', which means that the value of the fourth column of the input table will be
prepended to each row of the output table for which it is responsible. Output is to a FITS table.

B.5.3 Locating Cone Query Service URLs

To use the coneskymatch command you need the service URL (also known as the base URL or
access URL) of a cone search, SIA or SSA service to use. If you know one of these representing a
service that you wish to use, you can use it directly.

If you don't, you will need to find the URL from somewhere. It is the job of the Virtual Observatory
Registry to keep a record of where you can find various astronomical services, so this is where you
should look.

There are various ways you can interrogate the registry; the easiest is probably to use a graphical
registry search tool. One such tool is AstroGrid's VOExplorer, which allows you to perform
sophisticated searches for cone search, SIA or SSA services. Another option is to use TOPCAT; the
Cone Search, SIA and SSA load dialogues allow you to search the registry for these services prior
to performing a query; you can just use the registry part and cut'n'paste the URL which is shown.

Other registry querying tools are available, including STILTS's regquery (Appendix B.19)
command. See that section of the manual for details, but for instance to locate registered Cone
Search services which have something to do with SDSS data, you could execute the following:

stilts regquery query="capability/@standardID = 'ivo://ivoa.net/std/ConeSearch' and title like '%SDSS%'" \
ocmd="keepcols 'shortName AccessUrl'" \
ofmt=ascii

Writing just query="capability/@standardID = 'ivo://ivoa.net/std/ConeSearch'" with no
further qualification would give you all registered cone search services.

SUN/256 402

B.6 datalinklint: Validates DataLink documents

datalinklint runs a series of tests on a VOTable that is supposed to conform to the
{links}-response format defined in the IVOA DataLink specification, and reports the results. This is
not likely to be of use to normal users, it is intended for people developing or operating
DataLink-compliant services to assess correctness, perhaps with a view to improving compliance.

To run it, you point it at the URL or filename of a VOTable of interest, and it runs various tests on
it and reports them to standard output. Only the input table itself, and if the input location uses
HTTP the HTTP headers, are tested, this validator does not inspect any other resources. As well as
validation checks, some reporting of the table's content (such as a summary of the link defined by
each row and a listing of the defined service descriptors) is provided as INFO-level output for
convenience. This can be suppressed if preferred by use of the report parameter.

This operates in much the same way as the taplint command, and the output has a similar format,
though unlike taplint this command does not divide the testing up into stages. Each report line is
of the form:

T-MMMMxN aaaaa...

where the parts have the following meanings:

• T: Report type, one of E(rror), W(arning), I(nfo), S(ummary), F(ailure). See the documentation
of the report parameter for further description of what these mean. The report parameter can
be used to suppress some of these; only E indicates actual service compliance errors, but
including the others may make it easier to see what's going on.

• MMMM: Message label, which is always the same for messages generated by the same test, is
usually different for messages generated by different tests, and may be somewhat mnemonic.

• x: Continuation indicator, either "-" or "+". In most cases it is "-", indicating the first line of a
message, but multi-line messages (rare) use "-" for the first line and "+" for any continuation
lines.

• N: Sequence number, which is 1 for the first time message T-MMMM is reported, and increases by
one for each subsequent appearance. After a certain maximum (determined by the maxrepeat

parameter) additional reports with the same code are no longer output individually, but a
summary of the number of reports so discarded is written at the end of the section with the
character "x" instead of the sequence number. This behaviour prevents the output being
swamped by multiple reports of the same issue. If the maxrepeat parameter is increased above
9, more than one digit will be used here (so e.g. for maxrepeat=999, the format would be NNN

not N).
• aaaaa...: Message text, a free text description of what is being reported.

If you don't like that format, others may be selected using the format parameter, which currently
also supports JSON. For more flexible interaction with the output you can invoke datalinklint

programmatically and supply your own OutputReporter instance.

As with any validator, this command does not guarantee to pick up everything wrong with the
indicated VOTable, but it tries as hard as it can to check against the rules set out in the DataLink
specification and other related documents as appropriate. A non-exhaustive list of the items checked
is:

• VOTable validation à la votlint

• Correct RESOURCE structure of VOTable document
• All required columns are present with mandated metadata
• Optional but documented columns have mandated metadata if present
• Each row contains one of access_url, service_def, error_message
• Service descriptors correctly specified and referenced

SUN/256 403

• Syntax of error_message column values
• Syntax of content_type column values
• Syntax of semantics column values
• Values of content_qualifier column values if present
• Syntax of link_auth column values if present
• Results for the same ID are contiguous (DataLink 1.1)
• StandardID INFO is present and correct (Datalink 1.1)
• Reported HTTP content-type, if applicable
• Correct serialization (TABLEDATA) is used
• DALI error-response checking, if applicable

At present no checking is performed on the link targets; tests are confined to the presented
document itself.

HTTP connections made by this validator are flagged in the User-Agent field with the token
"(IVOA-test)".

B.6.1 Usage

The usage of datalinklint is

stilts <stilts-flags> datalinklint version=1.0|1.1 format=text|json
report=[EWISF]+ maxrepeat=<int-value>
truncate=<int-value> debug=true|false
[votable=]<filename>|<URL>|-

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.DatalinkLint.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

debug = true|false (Boolean)
If true, debugging output including stack traces will be output along with the normal validation
messages.

[Default: false]

format = text|json (OutputReporter)
Determines the format of the output. Possible values are text, json.

Note not all of the other parameters may be applicable to all output formats.

[Default: text]

maxrepeat = <int-value> (Integer)
Puts a limit on the number of times that a single message will be repeated. By setting this to
some reasonably small number, you can ensure that the output does not get cluttered up by
millions of repetitions of essentially the same error.

[Default: 9]

report = [EWISF]+ (String)
Letters indicating which message types should be listed. Each character of the string is one of
the letters E, W, I, S, F with the following meanings:

• E: Error in operation or standard compliance of the service.
• W: Warning that service behaviour is questionable, or contravenes a standard

recommendation, but is not in actual violation of the standard.
• I: Information about progress, for instance details of queries made.

SUN/256 404

• S: Summary of previous successful/unsuccessful reports.
• F: Failure of the validator to perform some testing. The cause is either some error internal

to the validator, or some error or missing functionality in the service which has already
been reported.

[Default: EWISF]

truncate = <int-value> (Integer)
Limits the line length written to the output.

[Default: 640]

version = 1.0|1.1 (uk.ac.starlink.vo.DatalinkVersion)
Selects the version of the DataLink standard which the input document is supposed to conform
to. If left blank, the default, then the version will be determined from the document itself if
possible, otherwise a default value for the application will be used.

Options are currently:

• 1.0: REC-DataLink-1.0
• 1.1: REC-DataLink-1.1

If a non-null version is specified and it conflicts with declarations in the document itself, this
conflict will be reported as an error.

votable = <filename>|<URL>|- (String)
Location of the DataLink VOTable document to check. This may be a URL, or a filename, or
the special value "-" to indicate standard input.

B.6.2 Examples

Here are some examples of datalinklint:

stilts datalinklint votable=links-response.vot

Perfoms validation on a VOTable file that has been downloaded from a DataLink links service,
and reports the results to standard output.

stilts datalinklint votable=http://example.org/links?ID=2112
truncate=80 report=EW

Validates a links response directly from the server, testing the HTTP transport requirements as
well as the content. Output lines are truncated to 80 characters for convenience, and only the
E(rror) and W(arning) lines are displayed.

The output of this invocation might look like:

This is the STILTS DataLink validator, 3.1-3
E-DLCT-1 Incorrect Content-Type text/xml for DataLink service http://example....
E-RUCD-1 Wrong UCD for column service_def; meta.code != meta.ref
E-SMCO-1 Unknown predicate 'alternative' from core DataLink vocabulary at row 1
E-SMCO-2 Unknown predicate 'alternative' from core DataLink vocabulary at row 2

Totals: Errors: 4; Warnings: 0

To output in JSON format instead, you could specify format=json.

B.7 funcs: Browses functions used by algebraic expression language

SUN/256 405

funcs is a utility which allows you to browse the functions you can use in STILTS's algebraic
expression language. Invoking the command causes a window to pop up on the display with two
parts. The left hand panel contains a tree-like representation of the functions available - the top level
shows the classes (categories) into which the functions are divided, and if you open these up (by
double clicking on them) each contains a list of functions and constants in that class. If you click on
any of these classes or their constituent functions or constants, a full descritption of what they are
and how to use them will appear in the right hand panel.

The information available from this command is the same as that given in Section 10.7, but the
graphical browser may be a more convenient way to view the documentation. There are no
parameters.

B.7.1 Usage

The usage of funcs is

stilts <stilts-flags> funcs

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.ShowFunctions.

This task has no parameters.

B.8 pixfoot: Generates Multi-Order Coverage maps

pixfoot takes a list of sky positions from an input table and generates a pixel map describing a sky
region which includes them all. Currently the output is to a format known as a Multi-Order
Coverage map (MOC), which is a HEALPix-based format composed of a list of HEALPix pixels of
different sizes, which can efficiently describe complex regions. Other output formats may be
introduced in the future.

See also the Coverage class for MOC-related functions.

B.8.1 Usage

The usage of pixfoot is

stilts <stilts-flags> pixfoot ifmt=<in-format> istream=true|false
icmd=<cmds> order=<int-value> ra=<expr>
dec=<expr> radius=<expr> mocfmt=fits|json
out=<out-file>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.PixFootprint.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

dec = <expr> (String)
Declination in degrees for the position of each row of the input table. This may simply be a
column name, or it may be an algebraic expression calculated from columns as explained in
Section 10. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

SUN/256 406

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

mocfmt = fits|json (MocFormat)
Determines the output format for the MOC file.

[Default: fits]

order = <int-value> (Integer)
Maximum HEALPix order for the MOC. This defines the maximum resolution of the output
coverage map. The angular resolution corresponding to order k is approximately
180/sqrt(3.Pi)/2^k (3520*2^-k arcmin).

[Default: 13]

SUN/256 407

out = <out-file> (uk.ac.starlink.util.Destination)
The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

ra = <expr> (String)
Right ascension in degrees for the position of each row of the input table. This may simply be
a column name, or it may be an algebraic expression calculated from columns as explained in
Section 10. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

radius = <expr> (String)
Expression which evaluates to the radius in degrees of the cone at each row of the input table.
The default is "0", which treats each position as a point rather than a cone, but a constant or an
expression as described in Section 10 may be used instead.

[Default: 0]

B.8.2 Examples

Here are some examples of pixfoot:

stilts pixfoot in=survey.vot order=8 mocfmt=fits out=sfoot.fits

Generates an order-8 FITS MOC file from the point positions of rows in the given VOTable.
The columns representing sky position are determined automatically (if possible) by
examining the metadata in the input table.

stilts pixfoot in='jdbc:mysql://localhost/astro1#SELECT * FROM first1'
icmd='addskycoords galactic icrs GLON GLAT ALPHA DELTA'
ra=ALPHA dec=DELTA radius=20./3600.
order=13 mocfmt=fits out=first.moc

Generates an order-13 FITS MOC file from positions in a table held in a database. The
positions in the original table are in galactic coordinates, so have to be converted to equatorial
(ICRS) first. The map is formed in this case by surrounding each point by a disc of 20 arcsec.
Note that JDBC database access will have to be set up as per Section 3.4 for this command to
work.

B.9 pixsample: Samples from a HEALPix pixel data file

pixsample samples data at the sky position represented by each row from an all-sky map contained
in a HEALPix-format pixel data file. Such files are actually tables (usually in FITS format) in
which the row number corresponds to a HEALPix pixel index, and the pixel values are cell
contents; one or more columns may be present containing values for one or more all-sky maps. The
result of this command is to add a column to the input table representing the pixel data at the
position of each input row for each of the data columns in the HEALPix table.

This command does not attempt to convert between coordinate systems except as instructed, so it is
important to know what coordinate system the HEALPix file is in, and ensure that the coordinates
supplied from the input table match this. You may need to examine the documentation or headers of
the HEALPix file in question to find out. See the Examples section for some examples.

There is a choice of how the sampling is done; the simplest way is just to use the value of the pixel
covering the indicated position. An alternative is to average over a disc of given radius (perhaps a
function of the input row). Other options (e.g. max/min) could easily be added.

SUN/256 408

Although HEALPix is not a common format for storing image data in general, it is used for storing
a number of important all-sky data sets such as the WMAP results and Schlegel dust maps. The
NASA LAMBDA (https://lambda.gsfc.nasa.gov/) (Legacy Archive for Microwave Background
Data Analysis) archive has a number of maps in a suitable format, including foreground data like
predicted reddening as well as CMB maps.

Note at present this command only supports all-sky, not partial, HEALPix maps. Partial map
support may be added at some point in the future if there is demand.

B.9.1 Usage

The usage of pixsample is

stilts <stilts-flags> pixsample in=<table> ifmt=<in-format> icmd=<cmds>
pixdata=<pix-table> pfmt=<in-format>
pcmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
pixorder=nested|ring|(auto) stat=point|mean
lon=<expr> lat=<expr>
insys=icrs|fk5|fk4|galactic|supergalactic|ecliptic
pixsys=icrs|fk5|fk4|galactic|supergalactic|ecliptic
radius=<expr>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.PixSample.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.

SUN/256 409

• The special value "-", meaning standard input. In this case the input format must be given
explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

insys = icrs|fk5|fk4|galactic|supergalactic|ecliptic (SkySystem)
Specifies the sky coordinate system in which sample positions are provided by the lon/lat
parameters. If the sample positions are given in the same coordinate system as that given by
the pixel data table, both the insys and pixsys parameters may be set null.

The available coordinate systems are:

• icrs: ICRS (Right Ascension, Declination)
• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)
• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

lat = <expr> (String)
Expression which evaluates to the latitude coordinate in degrees in the input table at which
positions are to be sampled from the pixel data table. This will usually be the name or ID of a
column in the input table, or an expression involving one. If this coordinate does not match the
coordinate system used by the pixel data table, both coordinate systems must be set using the
insys and pixsys parameters.

lon = <expr> (String)
Expression which evaluates to the longitude coordinate in degrees in the input table at which
positions are to be sampled from the pixel data table. This will usually be the name or ID of a
column in the input table, or an expression involving one. If this coordinate does not match the
coordinate system used by the pixel data table, both coordinate systems must be set using the
insys and pixsys parameters.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

SUN/256 410

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

pcmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on pixel data table as specified by parameter pixdata,
before any other processing has taken place. The value of this parameter is one or more of the
filter commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

pfmt = <in-format> (String)
File format for the HEALPix pixel data table. This is usually, but not necessarily, FITS.

[Default: (auto)]

pixdata = <pix-table> (StarTable)
The location of the table containing the pixel data. The data must be in the form of a HEALPix
table, with one pixel per row in HEALPix order. These files are typically, but not necessarily,
FITS tables. A filename or URL may be used, but a local file will be more efficient.

Some HEALPix format FITS tables seem to have rows which contain 1024-element arrays of

SUN/256 411

pixels instead of single pixel values. This (rather perverse?) format is not currently supported
here, but if there is demand support could be added.

pixorder = nested|ring|(auto) (HealpixScheme)
Selects the pixel ordering scheme used by the pixel data file. There are two different ways of
ordering pixels in a HEALPix file, "ring" and "nested", and the sampler needs to know which
one is in use. If you know which is in use, choose the appropriate value for this parameter; if
(auto) is used it will attempt to work it out from headers in the file (the ORDERING header).
If no reliable ordering scheme can be determined, the command will fail with an error.

[Default: (auto)]

pixsys = icrs|fk5|fk4|galactic|supergalactic|ecliptic (SkySystem)
Specifies the sky coordinate system used for the HEALPix data in the pixdata file. If the
sample positions are given in the same coordinate system as that given by the pixel data table,
both the insys and pixsys parameters may be set null.

The available coordinate systems are:

• icrs: ICRS (Right Ascension, Declination)
• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)
• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

radius = <expr> (String)
Determines the radius in degrees over which pixels will be sampled to generate the output
statistic in accordance with the value of the stat parameter. This will typically be a constant
value, but it may be an algebraic expression based on columns from the input table.

Not used if stat=point.

stat = point|mean (StatMode)
Determines how the pixel values will be sampled to generate an output value. The options are:

• point: Uses the value at the pixel covering the supplied position. In this case the radius

parameter is not used.
• mean: Averages the values over all the pixels within a radius given by the radius

parameter. This averaging is somewhat approximate; all pixels which are mostly within
the radius are averaged with equal weights.

[Default: point]

B.9.2 Examples

Here are some examples of pixsample:

stilts pixsample in=szdata.fits pixdata=wmap_ilc_7yr_v4.fits
lat=GAL_LAT lon=GAL_LON pcmd='keepcols TEMPERATURE'
out=szdata_cmb.fits

Samples from a HEALPix file containing WMAP data are added to an input file szdata.fits,
giving an output file szdata_cmb.fits which is the same but with an additional column
TEMPERATURE. The sampling is done using the default statistical mode point, which just takes a
point sample at the input position. The HEALPix file must have its pixels ordered using
galactic coordinates, since that is the coordinate system available from the input table.

The pixdata file used here can be found (at time of writing) at
https://lambda.gsfc.nasa.gov/data/map/dr4/dfp/ilc/wmap_ilc_7yr_v4.fits (24 Mbyte).

SUN/256 412

stilts pixsample in=messier.xml pixdata=lambda_sfd_ebv.fits
stat=mean radius=5./60.
insys=icrs pixsys=galactic lon=RA2000 lat=DEC2000

Samples data from a HEALPix table, averaging over a sampling radius of 5 arcmin. The
coordinates in the input table are only available as ICRS (RA,Dec) coordinates, and the
arrangement of the HEALPix pixels in the pixel data file uses galactic coordinates (you can
only determine this by looking at the FITS headers or documentation of that file), so it is
necessary to use the insys and pixsys parameters for conversion.

The pixdata file used here can be found (at time of writing) at
https://lambda.gsfc.nasa.gov/data/foregrounds/SFD/lambda_sfd_ebv.fits (25 Mbyte).

B.10 plot2plane: Draws a plane plot

plot2plane draws plots on a Cartesian 2-dimensional surface.

Positional coordinates are specified as x, y pairs, e.g.:

plot2plane layer1=mark in1=cat.fits x1=RMAG y1=RMAG-BMAG

Content is added to the plot by specifying one or more plot layers using the layerN parameter. The
N part is a suffix applied to all the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), size

(Section 8.3.2), sizexy (Section 8.3.3), xyvector (Section 8.3.4), xyerror (Section 8.3.5),
xyellipse (Section 8.3.6), xycorr (Section 8.3.7), link2 (Section 8.3.8), mark2 (Section 8.3.9),
poly4 (Section 8.3.10), mark4 (Section 8.3.11), polygon (Section 8.3.12), area (Section 8.3.13),
central (Section 8.3.14), lines (Section 8.3.15), marks (Section 8.3.16), handles (Section 8.3.17),
yerrors (Section 8.3.18), xyerrors (Section 8.3.19), statline (Section 8.3.20), statmark (Section
8.3.21), arrayquantile (Section 8.3.22), line (Section 8.3.23), linearfit (Section 8.3.24), label
(Section 8.3.25), arealabel (Section 8.3.26), contour (Section 8.3.27), grid (Section 8.3.28), fill
(Section 8.3.29), quantile (Section 8.3.30), histogram (Section 8.3.31), kde (Section 8.3.32), knn
(Section 8.3.33), densogram (Section 8.3.34), gaussian (Section 8.3.35), function (Section
8.3.36).

B.10.1 Usage

The usage of plot2plane is

stilts <stilts-flags> plot2plane xpix=<int-value> ypix=<int-value>
insets=<top>,<left>,<bottom>,<right>
omode=swing|out|cgi|discard|auto
storage=simple|memory|disk|policy|cache|basic-cache|persistent|parallel
seq=<suffix>[,...] legend=true|false
legborder=true|false legopaque=true|false
legseq=<suffix>[,...] legpos=<xfrac,yfrac>
title=<value>
auxmap=<map-name>|<color>-<color>[-<color>...]
auxclip=<lo>,<hi> auxflip=true|false
auxquant=<number>
auxfunc=log|linear|histogram|histolog|sqrt|square|acos|cos
auxmin=<number> auxmax=<number>
auxlabel=<text> auxcrowd=<factor>
auxwidth=<pixels> auxvisible=true|false
forcebitmap=true|false compositor=0..1
animate=<table> afmt=<in-format>
astream=true|false acmd=<cmds>
parallel=<int-value> xlog=true|false
ylog=true|false xflip=true|false
yflip=true|false xlabel=<text>

SUN/256 413

ylabel=<text> x2func=<function-of-x>
y2func=<function-of-y> x2label=<text>
y2label=<text> aspect=<number>
grid=true|false xcrowd=<number>
ycrowd=<number> minor=true|false
shadow=true|false
gridcolor=<rrggbb>|red|blue|...
gridtrans=0..1
labelcolor=<rrggbb>|red|blue|...
texttype=plain|antialias|latex
fontsize=<int-value>
fontstyle=standard|serif|mono
fontweight=plain|bold|italic|bold_italic
xmin=<number> xmax=<number> xsub=<lo>,<hi>
ymin=<number> ymax=<number> ysub=<lo>,<hi>
navaxes=xy|x|y xanchor=true|false
yanchor=true|false zoomfactor=<number>
leglabelN=<text>
layerN=<layer-type> <layerN-specific-params>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.plot2.task.PlanePlot2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
animate, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

afmt = <in-format> (String)
Specifies the format of the animation control table as specified by parameter animate. The
known formats are listed in Section 5.1.1. This flag can be used if you know what format your
table is in. If it has the special value (auto) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

animate = <table> (StarTable)
If not null, this parameter causes the command to create a sequence of plots instead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

• A filename.
• A URL.

SUN/256 414

• The special value "-", meaning standard input. In this case the input format must be given
explicitly using the afmt parameter. Note that not all formats can be streamed in this way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

aspect = <number> (Double)
Ratio of the unit length on the X axis to the unit length on the Y axis. If set to 1, the space will
be isotropic. If not set (the default) the ratio will be determined by the given or calculated data
bounds on both axes and the shape of the plotting region.

astream = true|false (Boolean)
If set true, the animation control table specified by the animate parameter will be read as a
stream. It is necessary to give the afmt parameter in this case. Depending on the required
operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).
This parameter is ignored for scheme-specified tables.

[Default: false]

auxclip = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The value is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or
all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white
background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

[Default: 1.0]

auxflip = true|false (Boolean)
If true, the colour map on the Aux axis will be reversed.

[Default: false]

auxfunc = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis

SUN/256 415

• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling
• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable. The Linear, Log, Square and Sqrt options just apply the named function to the full
data range. The histogram options on the other hand use a scaling function that corresponds to
the actual distribution of the data, so that there are about the same number of points (or pixels,
or whatever is being scaled) of each colour. The histogram options are somewhat more
expensive, but can be a good choice if you are exploring data whose distribution is unknown or
not well-behaved over its min-max range. The Histogram and HistoLog options both assign
the colours in the same way, but they display the colour ramp with linear or logarithmic
annotation respectively; the HistoLog option also ignores non-positive values.

[Default: linear]

auxlabel = <text> (String)
Sets the label used to annotate the aux axis, if it is visible.

auxmap = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: inferno, magma, plasma,
viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, cosmic, ember,
gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon, tropical, accent,
gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn, redshift, pride, rdbu,
piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light, greyscale, colour, standard,
bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue, intensity, rgb_red,
rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scale_hsv_s, scale_hsv_v,
scale_yuv_y, mask, blacker, whiter, transparency. Note: many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

[Default: inferno]

auxmax = <number> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxmin = <number> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxquant = <number> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the

SUN/256 416

plotted layers.

auxwidth = <pixels> (Integer)
Determines the lateral size of the aux colour ramp, if visible, in pixels.

[Default: 15]

compositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way this is used depends on the details of the specified plot.

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated alpha value until
the total alpha is saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero alpha in the output is boosted to the
given minimum value. The effect of this is that even very slightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0.05]

fontsize = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyle = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

[Default: standard]

fontweight = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

• plain

• bold

• italic

• bold_italic

[Default: plain]

forcebitmap = true|false (Boolean)
Affects whether rendering of the data contents of a plot (though not axis labels etc) is always
done to an intermediate bitmap rather than, where possible, being painted using graphics
primitives. This is a rather arcane setting that may nevertheless have noticeable effects on the
appearance and size of an output graphics file, as well as plotting time. For some types of plot
(e.g. shadingN=auto or shadingN=density) it will have no effect, since this kind of rendering
happens in any case.

When writing to vector graphics formats (PDF and PostScript), setting it true will force the
data contents to be bitmapped. This may make the output less beautiful (round markers will no
longer be perfectly round), but it may result in a much smaller file if there are very many data
points.

When writing to bitmapped output formats (PNG, GIF, JPEG, ...), it fixes shapes to be the
same as seen on the screen rather than be rendered at the mercy of the graphics system, which

SUN/256 417

sometimes introduces small distortions.

[Default: false]

grid = true|false (Boolean)
If true, grid lines are drawn on the plot at positions determined by the major tick marks. If
false, they are absent.

[Default: false]

gridcolor = <rrggbb>|red|blue|... (Color)
The color of the plot grid, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: grey]

gridtrans = 0..1 (Double)
Transparency of grid lines that may be drawn over the plot. The range is 0 (opaque) to 1
(invisible). This value is 1-alpha.

[Default: 0.5]

insets = <top>,<left>,<bottom>,<right> (Padding)
Defines the amount of space in pixels around the actual plotting area. This space is used for
axis labels, and other decorations and any left over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpix and ypix.

The value of this parameter is 4 comma separated integers: <top>,<left>,<bottom>,<right>.
Any or all of these values may be left blank, in which case the corresponding margin will be
calculated automatically according to how much space is required.

labelcolor = <rrggbb>|red|blue|... (Color)
The color of axis labels and other plot annotations, given by name or as a hexadecimal RGB
value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: black]

layerN = <layer-type> <layerN-specific-params> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name layer<N> where the suffix "<N>" is a
label identifying the layer and is appended to all the parameter names which configure that
layer. Suffixes may be any string, including the empty string.

SUN/256 418

This parameter may take one of the following values, described in more detail in Section 8.3:

• mark (Section 8.3.1)

• size (Section 8.3.2)

• sizexy (Section 8.3.3)

• xyvector (Section 8.3.4)

• xyerror (Section 8.3.5)

• xyellipse (Section 8.3.6)

• xycorr (Section 8.3.7)

• link2 (Section 8.3.8)

• mark2 (Section 8.3.9)

• poly4 (Section 8.3.10)

• mark4 (Section 8.3.11)

• polygon (Section 8.3.12)

• area (Section 8.3.13)

• central (Section 8.3.14)

• lines (Section 8.3.15)

• marks (Section 8.3.16)

• handles (Section 8.3.17)

• yerrors (Section 8.3.18)

• xyerrors (Section 8.3.19)

• statline (Section 8.3.20)

• statmark (Section 8.3.21)

• arrayquantile (Section 8.3.22)

• line (Section 8.3.23)

• linearfit (Section 8.3.24)

• label (Section 8.3.25)

• arealabel (Section 8.3.26)

• contour (Section 8.3.27)

• grid (Section 8.3.28)

• fill (Section 8.3.29)

• quantile (Section 8.3.30)

• histogram (Section 8.3.31)

• kde (Section 8.3.32)

• knn (Section 8.3.33)

• densogram (Section 8.3.34)

• gaussian (Section 8.3.35)

• function (Section 8.3.36)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or all of the following groups:

• input table parameters (e.g. inN, icmdN)
• coordinate params referring to input table columns (e.g. xN, yN)
• layer style parameters (e.g. shadingN, colorN)

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the
application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

legborder = true|false (Boolean)
If true, a line border is drawn around the legend.

[Default: true]

legend = true|false (Boolean)

SUN/256 419

Whether to draw a legend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

leglabelN = <text> (String)
Sets the presentation label for the layer with a given suffix. This is the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be
combined to form a single legend entry.

If no value is supplied (the default), the suffix itself is used as the label.

legopaque = true|false (Boolean)
If true, the background of the legend is opaque, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: true]

legpos = <xfrac,yfrac> (double[])
Determines the internal position of the legend on the plot. The value is a comma-separated pair
of values giving the X and Y positions of the legend within the plotting bounds, so for instance
"0.5,0.5" will put the legend right in the middle of the plot. If no value is supplied, the legend
will appear outside the plot boundary.

legseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they
appear. The legend has a line for each layer label (as determined by the leglabelN parameter).
If multiple layers have the same label, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a comma-separated sequence
of layer suffixes, which determines the order in which the legend entries appear. Layers with
suffixes missing from this list do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(see seq).

minor = true|false (Boolean)
If true, minor tick marks are painted along the axes as well as the major tick marks. Minor tick
marks do not have associated grid lines.

[Default: true]

navaxes = xy|x|y (boolean[])
Determines the axes which are affected by the interactive navigation actions (pan and zoom).
The default is xy, which means that the various mouse gestures will provide panning and
zooming in both X and Y directions. However, if it is set to (for instance) x then the mouse
will only allow panning and zooming in the horizontal direction, with the vertical extent fixed.

[Default: xy]

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

parallel = <int-value> (Integer)

SUN/256 420

Determines how many threads will run in parallel if animation output is being produced. Only
used if the animate parameter is supplied. The default value is the number of processors
apparently available to the JVM.

[Default: 20]

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentially
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
layer<N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the layer* parameters appear
on the command line. However if this parameter is specified, each comma-separated element is
interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding layer parameter, but missing or repeated elements are
allowed.

shadow = true|false (Boolean)
If true and no secondary axis is in use, then tick marks without numeric labels are painted
along the axis opposite to the primary axis, so that tick marks are visible along all edges not
just the ones with numeric labels. If a secondary axis is in use, this setting is ignored.

[Default: true]

storage = simple|memory|disk|policy|cache|basic-cache|persistent|parallel

(DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two main
options, cached or not. If no caching is used then rows are read sequentially from the specified
input table(s) every time they are required. This generally requires a small resource footprint
(though that can depend on how the table is specified) and makes sense if the data only needs
to be scanned once or perhaps if the table is very large. If caching is used then the required
data is read once from the specified input table(s), then prepared and cached before any
plotting is performed, and plots are done using this cached data. This may use a significant
amount of storage for large tables but it's usually more sensible (faster) if the data will need to
be scanned multiple times. There are various options for cache storage.

The options are:

• simple: no caching, data read directly from input table
• memory: cached to memory; OutOfMemoryError possible for very large plots
• disk: cached to disk
• policy: cached using application-wide default storage policy, which is usually adaptive

(memory/disk hybrid)
• persistent: cached to persistent files on disk, in the system temporary directory (defined

by system property java.io.tmpdir). If this is used, plot data will be stored on disk in a
way that means they can be re-used between STILTS invocations, so data preparation can
be avoided on subsequent runs. Note however it can leave potentially large files in your
temporary directory.

• cache: synonym for memory (backward compatibility)
• basic-cache: dumber version of memory (no optimisation for constant-valued columns)
• parallel: experimental version of memory-based cache that reads into the cache in

parallel for large files. This will make the plot faster to prepare, but interaction is a bit
slower and sequence-dependent attributes of the plot may not come out right. This
experimental option may be withdrawn or modified in future releases.

The default value is memory if a live plot is being generated (omode=swing), since in that case

SUN/256 421

the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default is simple.

[Default: simple]

texttype = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: plain]

title = <value> (String)
Text of a title to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

x2func = <function-of-x> (JELFunction)
Defines a secondary X axis in terms of the primary one. If a secondary axis is defined in this
way, then the axis opposite the primary one (i.e. on the top side of the plot) will be annotated
with the appropriate tickmarks.

The value of this parameter is an algebraic expression in terms of the variable x giving the
value on the secondary X axis corresponding to a given value on the primary X axis.

For instance, if the primary X axis represents flux in Jansky, then supplying the expression
"2.5*(23-log10(x))-48.6" (or "janskyToAb(x)") would annotate the secondary X axis as AB
magnitudes.

The function supplied should be monotonic and reasonably well-behaved, otherwise the
secondary axis annotation may not work well. The application will attempt to make a sensible
decision about whether to use linear or logarithmic tick marks.

x2label = <text> (String)
Provides a string that will label the secondary X axis. This appears on the opposite side of the
plot to the X axis itself.

xanchor = true|false (Boolean)
If true, then zoom actions will work in such a way that the zero point on the X axis stays in the
same position on the plot.

[Default: false]

xcrowd = <number> (Double)
Determines how closely the tick marks are spaced on the X axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

[Default: 1]

xflip = true|false (Boolean)
If true, the scale on the X axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

[Default: false]

xlabel = <text> (String)
Gives a label to be used for annotating axis X A default value based on the plotted data will be
used if no value is supplied.

SUN/256 422

[Default: X]

xlog = true|false (Boolean)
If false (the default), the scale on the X axis is linear, if true it is logarithmic.

[Default: false]

xmax = <number> (Double)
Maximum value of the data coordinate on the X axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

xmin = <number> (Double)
Minimum value of the data coordinate on the X axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

xpix = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 500]

xsub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the X axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

[Default: 0,1]

y2func = <function-of-y> (JELFunction)
Defines a secondary Y axis in terms of the primary one. If a secondary axis is defined in this
way, then the axis opposite the primary one (i.e. on the right side of the plot) will be annotated
with the appropriate tickmarks.

The value of this parameter is an algebraic expression in terms of the variable y giving the
value on the secondary Y axis corresponding to a given value on the primary Y axis.

For instance, if the primary Y axis represents flux in Jansky, then supplying the expression
"2.5*(23-log10(y))-48.6" (or "janskyToAb(y)") would annotate the secondary Y axis as AB
magnitudes.

The function supplied should be monotonic and reasonably well-behaved, otherwise the
secondary axis annotation may not work well. The application will attempt to make a sensible
decision about whether to use linear or logarithmic tick marks.

y2label = <text> (String)
Provides a string that will label the secondary Y axis. This appears on the opposite side of the
plot to the Y axis itself.

yanchor = true|false (Boolean)
If true, then zoom actions will work in such a way that the zero point on the Y axis stays in the
same position on the plot.

[Default: false]

ycrowd = <number> (Double)
Determines how closely the tick marks are spaced on the Y axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

SUN/256 423

[Default: 1]

yflip = true|false (Boolean)
If true, the scale on the Y axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

[Default: false]

ylabel = <text> (String)
Gives a label to be used for annotating axis Y A default value based on the plotted data will be
used if no value is supplied.

[Default: Y]

ylog = true|false (Boolean)
If false (the default), the scale on the Y axis is linear, if true it is logarithmic.

[Default: false]

ymax = <number> (Double)
Maximum value of the data coordinate on the Y axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

ymin = <number> (Double)
Minimum value of the data coordinate on the Y axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

ypix = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 400]

ysub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the Y axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

[Default: 0,1]

zoomfactor = <number> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Values below
1 are not permitted.

[Default: 1.2]

B.10.2 Examples

Here are some examples of plot2plane:

stilts plot2plane yflip=true layer_1=mark in_1=cat.fits x_1=BMAG-RMAG y_1=BMAG

This is a colour-magnitude diagram where the input table has columns named RMAG and
BMAG. The Y axis is inverted so that the magnitude values increase downwards not up. The
plot is displayed in a window on the screen, and may be panned and zoomed with the mouse.

SUN/256 424

stilts plot2plane layer=histogram in=hip_main.fits x=plx xlog=true
xlabel=Parallax ylabel=

Plots a histogram of parallaxes for Hipparcos data, with a logarithmic X axis. The axes are
labelled explicitly, with an empty string in the case of the Y axis.

stilts plot2plane xpix=600 ypix=500
in=gavo_g2.fits x=X y=Y
shading=aux aux='atan2(vely,velx)' auxmap=hue auxvisible=false
layer_m=mark shape_m=cross size_m=4
layer_v=xyvector xdelta_v=velx ydelta_v=vely scale_v=2
out=velocities.pdf

Two layers are plotted, point markers representing position (4 pixels radius, shaped like
crosses) and vectors representing velocity. Both markers and vectors are coloured according to
the direction (arctan(vely/velx)) of the arrows, so it's easy to see points moving in similar
directions; the "hue" colour map is good for this, since it's periodic, so values of +Pi and -Pi
have the same colour. Since it's not very revealing in this case, display of the aux axis colour
ramp beside the plot has been turned off. Since the X and Y coordinates and the colouring is
common to both layers, the relevant parameters can given without suffixes to avoid having to
repeat them. Output is to a PDF file.

stilts plot2plane xmin=0 xmax=6.283 ymin=-1 ymax=1 xlabel=Time
layer=function axis=horizontal xname=time fexpr='sin(time)'
dash=3,2 thick=4 color=ee6aa7

Plots a sine curve to the screen. Initially the view is of one period, but you can pan and zoom
interactively to see any range. The line is plotted in hot pink, four pixels wide, with a custom
dash pattern. Since the function layer type has no data coordinates, no input table is required.
The layer suffix here is the empty string; since there's only one layer, it doesn't cause any
problems.

stilts plot2plane ylog=true xflip=true xmin=-5.2 xmax=3.8 ymin=250 ymax=3.5e5
in1=6dfgs_E7.fits x1=bmag-rmag y1=vel
layer1a=mark color1a=cyan
layer1b=contour color1b=yellow smooth1b=9 scaling1b=log
layer1c=mark icmd1c='every 35;select star'

shape1c=filled_triangle_down size1c=5 color1c=red
shading1c=transparent opaque1c=3

layer2=function fexpr2='exp(x*2+12)' color2=black antialias2=true
dash2=dash thick2=3

leglabel1a=Population leglabel1c=Sample legpos=.95,.95 legseq=1a,1c
fontsize=16 texttype=latex ylabel="v\,/\,km.s^{-1}" xlabel=colour

There are four layers: 1a, 1b and 1c use the same positional data from the same input file, so
the positional coordinates common to them are given the suffix "1". Layer "2" is unrelated, and
has no input data, since it's just an analytic function. The legend is positioned to taste, and its
content is manipulated so that only datasets 1a and 1c are described, and they are given custom
names (the default would be their suffix names).

B.11 plot2sky: Draws a sky plot

plot2sky draws plots on the celestial sphere. This can be represented in a number of ways,
controlled by the projection parameter; by default the view is of a rotatable sphere seen from the
outside (which approximates to a tangent projection for small regions of the sky), but
Hammer-Aitoff and Plate Carée projections are also available. A number of options are also
provided for drawing and labelling the grid showing celestial coordinates.

Positional coordinates are specified as lon, lat pairs giving longitude and latitude in decimal
degrees. By default these are represented in the output in the same, unlabelled, coordinate system.

SUN/256 425

However the command can can also transform between different coordinate systems if you specify
the (per-plot) view system with the viewsys parameter and (per-layer) data system with the
datasysN parameter, e.g.:

plot2sky viewsys=galactic
layer1=mark in1=cat.fits lon1=RA2000 lat1=DEC2000 datasys1=equatorial

Content is added to the plot by specifying one or more plot layers using the layerN parameter. The
N part is a suffix applied to all the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), size

(Section 8.3.2), sizexy (Section 8.3.3), skyvector (Section 8.3.37), skyellipse (Section 8.3.38),
skycorr (Section 8.3.39), link2 (Section 8.3.8), mark2 (Section 8.3.9), poly4 (Section 8.3.10),
mark4 (Section 8.3.11), polygon (Section 8.3.12), area (Section 8.3.13), central (Section 8.3.14),
label (Section 8.3.25), arealabel (Section 8.3.26), contour (Section 8.3.27), skydensity (Section
8.3.40), healpix (Section 8.3.41), skygrid (Section 8.3.42).

B.11.1 Usage

The usage of plot2sky is

stilts <stilts-flags> plot2sky xpix=<int-value> ypix=<int-value>
insets=<top>,<left>,<bottom>,<right>
omode=swing|out|cgi|discard|auto
storage=simple|memory|disk|policy|cache|basic-cache|persistent|parallel
seq=<suffix>[,...] legend=true|false
legborder=true|false legopaque=true|false
legseq=<suffix>[,...] legpos=<xfrac,yfrac>
title=<value>
auxmap=<map-name>|<color>-<color>[-<color>...]
auxclip=<lo>,<hi> auxflip=true|false
auxquant=<number>
auxfunc=log|linear|histogram|histolog|sqrt|square|acos|cos
auxmin=<number> auxmax=<number>
auxlabel=<text> auxcrowd=<factor>
auxwidth=<pixels> auxvisible=true|false
forcebitmap=true|false compositor=0..1
animate=<table> afmt=<in-format>
astream=true|false acmd=<cmds>
parallel=<int-value>
projection=sin|aitoff|aitoff0|car|car0
viewsys=equatorial|galactic|supergalactic|ecliptic
reflectlon=true|false grid=true|false
scalebar=true|false
labelpos=Auto|External|Internal|...
sex=true|false crowd=<number>
gridcolor=<rrggbb>|red|blue|...
gridtrans=0..1
labelcolor=<rrggbb>|red|blue|...
gridaa=true|false
texttype=plain|antialias|latex
fontsize=<int-value>
fontstyle=standard|serif|mono
fontweight=plain|bold|italic|bold_italic
clon=<degrees> clat=<degrees>
radius=<degrees> zoomfactor=<number>
leglabelN=<text>
layerN=<layer-type> <layerN-specific-params>
datasysN=equatorial|galactic|supergalactic|ecliptic

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.plot2.task.SkyPlot2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

SUN/256 426

acmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
animate, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

afmt = <in-format> (String)
Specifies the format of the animation control table as specified by parameter animate. The
known formats are listed in Section 5.1.1. This flag can be used if you know what format your
table is in. If it has the special value (auto) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

animate = <table> (StarTable)
If not null, this parameter causes the command to create a sequence of plots instead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the afmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

astream = true|false (Boolean)
If set true, the animation control table specified by the animate parameter will be read as a
stream. It is necessary to give the afmt parameter in this case. Depending on the required
operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).
This parameter is ignored for scheme-specified tables.

[Default: false]

auxclip = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The value is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

SUN/256 427

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or
all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white
background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

[Default: 1.0]

auxflip = true|false (Boolean)
If true, the colour map on the Aux axis will be reversed.

[Default: false]

auxfunc = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis
• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling
• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable. The Linear, Log, Square and Sqrt options just apply the named function to the full
data range. The histogram options on the other hand use a scaling function that corresponds to
the actual distribution of the data, so that there are about the same number of points (or pixels,
or whatever is being scaled) of each colour. The histogram options are somewhat more
expensive, but can be a good choice if you are exploring data whose distribution is unknown or
not well-behaved over its min-max range. The Histogram and HistoLog options both assign
the colours in the same way, but they display the colour ramp with linear or logarithmic
annotation respectively; the HistoLog option also ignores non-positive values.

[Default: linear]

auxlabel = <text> (String)
Sets the label used to annotate the aux axis, if it is visible.

auxmap = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: inferno, magma, plasma,
viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, cosmic, ember,
gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon, tropical, accent,
gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn, redshift, pride, rdbu,
piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light, greyscale, colour, standard,

SUN/256 428

bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue, intensity, rgb_red,
rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scale_hsv_s, scale_hsv_v,
scale_yuv_y, mask, blacker, whiter, transparency. Note: many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

[Default: inferno]

auxmax = <number> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxmin = <number> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxquant = <number> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the
plotted layers.

auxwidth = <pixels> (Integer)
Determines the lateral size of the aux colour ramp, if visible, in pixels.

[Default: 15]

clat = <degrees> (Double)
Latitude of the central position of the plot in decimal degrees. Use with clon and radius. If the
center is not specified, the field of view is determined from the data.

clon = <degrees> (Double)
Longitude of the central position of the plot in decimal degrees. Use with clat and radius. If
the center is not specified, the field of view is determined from the data.

compositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way this is used depends on the details of the specified plot.

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated alpha value until
the total alpha is saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero alpha in the output is boosted to the
given minimum value. The effect of this is that even very slightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0.05]

crowd = <number> (Double)
Determines how closely sky grid lines are spaced. The default value is 1, meaning normal

SUN/256 429

crowding. Larger values result in more grid lines, and smaller values in fewer grid lines.

[Default: 1]

datasysN = equatorial|galactic|supergalactic|ecliptic (SkySys)
The sky system used to interpret supplied data longitude and latitude coordinate values for a
particular plot layer.

Choice of this value goes along with the viewsys value which specifies the view sky system
for the whole plot. If neither the view nor data system is specified, plotting is carried out in a
generic sky system assumed the same between the data and the view. But if any layers have a
supplied data sky system, there must be an explicitly or implicitly supplied view sky system
into which the data input coordinates will be transformed. If not supplied explicitly, the data
system defaults to the same value as the view system.

The available options are:

• equatorial: J2000 equatorial system
• galactic: IAU 1958 galactic system
• supergalactic: De Vaucouleurs supergalactic system
• ecliptic: ecliptic system based on conversion at 2000.0

fontsize = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyle = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

[Default: standard]

fontweight = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

• plain

• bold

• italic

• bold_italic

[Default: plain]

forcebitmap = true|false (Boolean)
Affects whether rendering of the data contents of a plot (though not axis labels etc) is always
done to an intermediate bitmap rather than, where possible, being painted using graphics
primitives. This is a rather arcane setting that may nevertheless have noticeable effects on the
appearance and size of an output graphics file, as well as plotting time. For some types of plot
(e.g. shadingN=auto or shadingN=density) it will have no effect, since this kind of rendering
happens in any case.

When writing to vector graphics formats (PDF and PostScript), setting it true will force the
data contents to be bitmapped. This may make the output less beautiful (round markers will no
longer be perfectly round), but it may result in a much smaller file if there are very many data
points.

When writing to bitmapped output formats (PNG, GIF, JPEG, ...), it fixes shapes to be the

SUN/256 430

same as seen on the screen rather than be rendered at the mercy of the graphics system, which
sometimes introduces small distortions.

[Default: false]

grid = true|false (Boolean)
If true, sky coordinate grid lines are drawn on the plot. If false, they are absent.

[Default: true]

gridaa = true|false (Boolean)
If true, grid lines are drawn with antialiasing. Antialiased lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

gridcolor = <rrggbb>|red|blue|... (Color)
The color of the plot grid, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: grey]

gridtrans = 0..1 (Double)
Transparency of grid lines that may be drawn over the plot. The range is 0 (opaque) to 1
(invisible). This value is 1-alpha.

[Default: 0.5]

insets = <top>,<left>,<bottom>,<right> (Padding)
Defines the amount of space in pixels around the actual plotting area. This space is used for
axis labels, and other decorations and any left over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpix and ypix.

The value of this parameter is 4 comma separated integers: <top>,<left>,<bottom>,<right>.
Any or all of these values may be left blank, in which case the corresponding margin will be
calculated automatically according to how much space is required.

labelcolor = <rrggbb>|red|blue|... (Color)
The color of axis labels and other plot annotations, given by name or as a hexadecimal RGB
value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: black]

labelpos = Auto|External|Internal|... (SkyAxisLabeller)
Controls whether and where the numeric annotations of the lon/lat axes are displayed. The

SUN/256 431

default option Auto usually does the sensible thing, but other options exist to force labelling
internally or externally to the plot region, or to remove numeric labels altogether.

The available options are:

• Auto: Uses External or Internal policy according to whether the sky fills the plot
bounds or not

• External: Labels are drawn outside the plot bounds
• Internal: Labels are drawn inside the plot bounds
• Basic: Labels are drawn somewhere near the grid line
• Hybrid: Grid lines are labelled outside the plot bounds where possible, but inside if they

would otherwise be invisible
• None: Axes are not labelled
• ExternalSys: Like External, but the axes are also labelled with coordinate system axis

names
• InternalSys: Like Internal, but the axes are also labelled with coordinate system axis

names

The ExternalSys and InternalSys options use axis descriptions appropriate to the View
coordinate system for the current plot; these options may not work well for plots which are
all-sky or show a substantial proportion of the sky.

[Default: Auto]

layerN = <layer-type> <layerN-specific-params> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name layer<N> where the suffix "<N>" is a
label identifying the layer and is appended to all the parameter names which configure that
layer. Suffixes may be any string, including the empty string.

This parameter may take one of the following values, described in more detail in Section 8.3:

• mark (Section 8.3.1)

• size (Section 8.3.2)

• sizexy (Section 8.3.3)

• skyvector (Section 8.3.37)

• skyellipse (Section 8.3.38)

• skycorr (Section 8.3.39)

• link2 (Section 8.3.8)

• mark2 (Section 8.3.9)

• poly4 (Section 8.3.10)

• mark4 (Section 8.3.11)

• polygon (Section 8.3.12)

• area (Section 8.3.13)

• central (Section 8.3.14)

• label (Section 8.3.25)

• arealabel (Section 8.3.26)

• contour (Section 8.3.27)

• skydensity (Section 8.3.40)

• healpix (Section 8.3.41)

• skygrid (Section 8.3.42)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or all of the following groups:

• input table parameters (e.g. inN, icmdN)
• coordinate params referring to input table columns (e.g. xN, yN)
• layer style parameters (e.g. shadingN, colorN)

SUN/256 432

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the
application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

legborder = true|false (Boolean)
If true, a line border is drawn around the legend.

[Default: true]

legend = true|false (Boolean)
Whether to draw a legend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

leglabelN = <text> (String)
Sets the presentation label for the layer with a given suffix. This is the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be
combined to form a single legend entry.

If no value is supplied (the default), the suffix itself is used as the label.

legopaque = true|false (Boolean)
If true, the background of the legend is opaque, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: true]

legpos = <xfrac,yfrac> (double[])
Determines the internal position of the legend on the plot. The value is a comma-separated pair
of values giving the X and Y positions of the legend within the plotting bounds, so for instance
"0.5,0.5" will put the legend right in the middle of the plot. If no value is supplied, the legend
will appear outside the plot boundary.

legseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they
appear. The legend has a line for each layer label (as determined by the leglabelN parameter).
If multiple layers have the same label, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a comma-separated sequence
of layer suffixes, which determines the order in which the legend entries appear. Layers with
suffixes missing from this list do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(see seq).

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

parallel = <int-value> (Integer)
Determines how many threads will run in parallel if animation output is being produced. Only

SUN/256 433

used if the animate parameter is supplied. The default value is the number of processors
apparently available to the JVM.

[Default: 20]

projection = sin|aitoff|aitoff0|car|car0 (Projection)
Sky projection used to display the plot.

The available options are:

• sin: rotatable sphere
• aitoff: Hammer-Aitoff projection with lon=0 at center
• aitoff0: Hammer-Aitoff projection with lon=180 at center
• car: Plate Carree projection (lon/lat on Cartesian axes) with lon=0 at center
• car0: Plate Carree Projection (lon/lat on Cartesian axes) with lon=180 at center

Note that for historical reasons the projections named "aitoff" denote the equal-area
Hammer-Aitoff projection and not the Aitoff projection itself. The Hammer-Aitoff projection
is defined as:

• x = [2sqrt(2)/sqrt(1+cos(lat)cos(lon/2))]cos(lat)sin(lon/2)

• y = [sqrt(2)/sqrt(1+cos(lat)cos(lon/2))]sin(lat)

[Default: sin]

radius = <degrees> (Double)
Approximate radius of the plot field of view in degrees. Only used if clon and clat are also
specified.

[Default: 1]

reflectlon = true|false (Boolean)
Whether to invert the celestial sphere by displaying the longitude axis increasing right-to-left
rather than left-to-right. It is conventional to display the celestial sphere in this way because
that's what it looks like from the earth, so the default is true. Set it false to see the sphere from
the outside.

[Default: true]

scalebar = true|false (Boolean)
If true, a small bar is drawn near the bottom left of the plot annotated with a distance in
degrees, arc minutes or arc seconds, to make it easier to determine the size of features on the
plot by eye.

[Default: true]

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentially
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
layer<N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the layer* parameters appear
on the command line. However if this parameter is specified, each comma-separated element is
interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding layer parameter, but missing or repeated elements are
allowed.

sex = true|false (Boolean)
If true, grid line labels are written in sexagesimal notation, if false in decimal degrees.

SUN/256 434

[Default: true]

storage = simple|memory|disk|policy|cache|basic-cache|persistent|parallel

(DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two main
options, cached or not. If no caching is used then rows are read sequentially from the specified
input table(s) every time they are required. This generally requires a small resource footprint
(though that can depend on how the table is specified) and makes sense if the data only needs
to be scanned once or perhaps if the table is very large. If caching is used then the required
data is read once from the specified input table(s), then prepared and cached before any
plotting is performed, and plots are done using this cached data. This may use a significant
amount of storage for large tables but it's usually more sensible (faster) if the data will need to
be scanned multiple times. There are various options for cache storage.

The options are:

• simple: no caching, data read directly from input table
• memory: cached to memory; OutOfMemoryError possible for very large plots
• disk: cached to disk
• policy: cached using application-wide default storage policy, which is usually adaptive

(memory/disk hybrid)
• persistent: cached to persistent files on disk, in the system temporary directory (defined

by system property java.io.tmpdir). If this is used, plot data will be stored on disk in a
way that means they can be re-used between STILTS invocations, so data preparation can
be avoided on subsequent runs. Note however it can leave potentially large files in your
temporary directory.

• cache: synonym for memory (backward compatibility)
• basic-cache: dumber version of memory (no optimisation for constant-valued columns)
• parallel: experimental version of memory-based cache that reads into the cache in

parallel for large files. This will make the plot faster to prepare, but interaction is a bit
slower and sequence-dependent attributes of the plot may not come out right. This
experimental option may be withdrawn or modified in future releases.

The default value is memory if a live plot is being generated (omode=swing), since in that case
the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default is simple.

[Default: simple]

texttype = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: plain]

title = <value> (String)
Text of a title to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

viewsys = equatorial|galactic|supergalactic|ecliptic (SkySys)
The sky coordinate system used for the generated plot.

Choice of this value goes along with the data coordinate system that may be specified for plot
layers. If unspecified, a generic longitude/latitude system is used, and all lon/lat coordinates in
the plotted data layers are assumed to be in the same system. If a value is supplied for this

SUN/256 435

parameter, then a sky system must be supplied for each data layer with the datasys parameter
and the coordinates are converted from data to view system before being plotted.

The available options are:

• equatorial: J2000 equatorial system
• galactic: IAU 1958 galactic system
• supergalactic: De Vaucouleurs supergalactic system
• ecliptic: ecliptic system based on conversion at 2000.0

xpix = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 500]

ypix = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 400]

zoomfactor = <number> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Values below
1 are not permitted.

[Default: 1.2]

B.11.2 Examples

Here are some examples of plot2sky:

stilts plot2sky in=messier.xml lon=RA lat=DEC
layer.pos=mark size.pos=4
layer.txt=label label.txt=Name color.txt=slategrey

Plots the positions of all the Messier objects on the sky, with text labels giving their object
names. This displays a sphere on the screen that you can rotate/zoom using the mouse.

stilts plot2sky projection=aitoff
xpix=600 ypix=300
gridcolour=green labelcolour=black
fontsize=10 gridaa=true texttype=antialias
sex=true crowd=4

This just plots a celestial coordinate grid with no data. Various options are tweaked to adjust
the appearance of the grid.

stilts plot2sky xpix=1000 ypix=500 fontsize=18 crowd=2
projection=aitoff viewsys=galactic
layer1=mark size1=0
shading1=density densemap1=gnuplot2 densefunc1=log
densesub1=0.5,.95 denseclip1=0.02,1
in1=gums_mw_all.fits
lon1=alpha lat1=delta datasys1=equatorial
icmd1=progress out=mw.pdf

Makes an all-sky plot using a Hammer-Aitoff projection into galactic coordinates of a large
dataset. Density shading means that the colour at each point is dependent on how many points
are plotted; the density colour map has been fine-tuned here to get a specific visual effect. The

SUN/256 436

sky coordinates in the input file (alpha and delta) are equatorial, but these are transformed to
galactic coordinates for plotting. The progress filter applied to the input table displays a
progress indicator on the console to see how far it's got. The result is written to a PDF file.

This command was used to plot the GUMS-10 MW dataset, a simulation of the milky way
stars seen by the Gaia satellite; The 2.1 billion row plot took about 45 minutes.

B.12 plot2cube: Draws a cube plot

plot2cube draws plots in a Cartesian 3-dimensional space. The plotting volume is a cube, which is
viewed from the outside and usually bounded by an annotated wire frame.

Positional coordinates are by default specified as x, y, z triples, e.g.:

plot2cube layer1=mark in1=sim.fits x1=XPOS y1=YPOS z1=ZPOS

However other coordinate specifications can be chosen using the per-layer geomN parameter, e.g.:

plot2cube layer1=mark in=sim.fits geom1=vector xyz1=POS3D

or

plot2cube layer1=mark in1=sphere.fits geom1=polar lon1=RA lat1=DEC r1=RADIUS

Content is added to the plot by specifying one or more plot layers using the layerN parameter. The
N part is a suffix applied to all the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), size

(Section 8.3.2), sizexy (Section 8.3.3), xyzvector (Section 8.3.43), xyzerror (Section 8.3.44),
link2 (Section 8.3.8), mark2 (Section 8.3.9), poly4 (Section 8.3.10), mark4 (Section 8.3.11),
polygon (Section 8.3.12), label (Section 8.3.25), line3d (Section 8.3.45), contour (Section
8.3.27), spheregrid (Section 8.3.46).

B.12.1 Usage

The usage of plot2cube is

stilts <stilts-flags> plot2cube xpix=<int-value> ypix=<int-value>
insets=<top>,<left>,<bottom>,<right>
omode=swing|out|cgi|discard|auto
storage=simple|memory|disk|policy|cache|basic-cache|persistent|parallel
seq=<suffix>[,...] legend=true|false
legborder=true|false legopaque=true|false
legseq=<suffix>[,...] legpos=<xfrac,yfrac>
title=<value>
auxmap=<map-name>|<color>-<color>[-<color>...]
auxclip=<lo>,<hi> auxflip=true|false
auxquant=<number>
auxfunc=log|linear|histogram|histolog|sqrt|square|acos|cos
auxmin=<number> auxmax=<number>
auxlabel=<text> auxcrowd=<factor>
auxwidth=<pixels> auxvisible=true|false
forcebitmap=true|false compositor=0..1
animate=<table> afmt=<in-format>
astream=true|false acmd=<cmds>
parallel=<int-value> xlog=true|false
ylog=true|false zlog=true|false
xflip=true|false yflip=true|false
zflip=true|false xlabel=<text>
ylabel=<text> zlabel=<text> xcrowd=<number>
ycrowd=<number> zcrowd=<number>
frame=true|false minor=true|false
gridaa=true|false
texttype=plain|antialias|latex

SUN/256 437

fontsize=<int-value>
fontstyle=standard|serif|mono
fontweight=plain|bold|italic|bold_italic
xmin=<number> xmax=<number> xsub=<lo>,<hi>
ymin=<number> ymax=<number> ysub=<lo>,<hi>
zmin=<number> zmax=<number> zsub=<lo>,<hi>
phi=<degrees> theta=<degrees> psi=<degrees>
zoom=<factor> xoff=<pixels> yoff=<pixels>
zoomaxes=[[x][y][z]] zoomfactor=<number>
leglabelN=<text>
layerN=<layer-type> <layerN-specific-params>
geomN=components|vector|polar

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.plot2.task.CubePlot2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
animate, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

afmt = <in-format> (String)
Specifies the format of the animation control table as specified by parameter animate. The
known formats are listed in Section 5.1.1. This flag can be used if you know what format your
table is in. If it has the special value (auto) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

animate = <table> (StarTable)
If not null, this parameter causes the command to create a sequence of plots instead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the afmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its

SUN/256 438

standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

astream = true|false (Boolean)
If set true, the animation control table specified by the animate parameter will be read as a
stream. It is necessary to give the afmt parameter in this case. Depending on the required
operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).
This parameter is ignored for scheme-specified tables.

[Default: false]

auxclip = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The value is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or
all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white
background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

[Default: 1.0]

auxflip = true|false (Boolean)
If true, the colour map on the Aux axis will be reversed.

[Default: false]

auxfunc = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis
• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling
• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable. The Linear, Log, Square and Sqrt options just apply the named function to the full
data range. The histogram options on the other hand use a scaling function that corresponds to

SUN/256 439

the actual distribution of the data, so that there are about the same number of points (or pixels,
or whatever is being scaled) of each colour. The histogram options are somewhat more
expensive, but can be a good choice if you are exploring data whose distribution is unknown or
not well-behaved over its min-max range. The Histogram and HistoLog options both assign
the colours in the same way, but they display the colour ramp with linear or logarithmic
annotation respectively; the HistoLog option also ignores non-positive values.

[Default: linear]

auxlabel = <text> (String)
Sets the label used to annotate the aux axis, if it is visible.

auxmap = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: inferno, magma, plasma,
viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, cosmic, ember,
gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon, tropical, accent,
gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn, redshift, pride, rdbu,
piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light, greyscale, colour, standard,
bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue, intensity, rgb_red,
rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scale_hsv_s, scale_hsv_v,
scale_yuv_y, mask, blacker, whiter, transparency. Note: many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

[Default: inferno]

auxmax = <number> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxmin = <number> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxquant = <number> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the
plotted layers.

auxwidth = <pixels> (Integer)
Determines the lateral size of the aux colour ramp, if visible, in pixels.

[Default: 15]

compositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way this is used depends on the details of the specified plot.

SUN/256 440

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated alpha value until
the total alpha is saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero alpha in the output is boosted to the
given minimum value. The effect of this is that even very slightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0.05]

fontsize = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyle = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

[Default: standard]

fontweight = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

• plain

• bold

• italic

• bold_italic

[Default: plain]

forcebitmap = true|false (Boolean)
Affects whether rendering of the data contents of a plot (though not axis labels etc) is always
done to an intermediate bitmap rather than, where possible, being painted using graphics
primitives. This is a rather arcane setting that may nevertheless have noticeable effects on the
appearance and size of an output graphics file, as well as plotting time. For some types of plot
(e.g. shadingN=auto or shadingN=density) it will have no effect, since this kind of rendering
happens in any case.

When writing to vector graphics formats (PDF and PostScript), setting it true will force the
data contents to be bitmapped. This may make the output less beautiful (round markers will no
longer be perfectly round), but it may result in a much smaller file if there are very many data
points.

When writing to bitmapped output formats (PNG, GIF, JPEG, ...), it fixes shapes to be the
same as seen on the screen rather than be rendered at the mercy of the graphics system, which
sometimes introduces small distortions.

[Default: false]

frame = true|false (Boolean)
If true, a cube wire frame with labelled axes is drawn to indicate the limits of the plotted 3D
region. If false, no wire frame and no axes are drawn.

[Default: true]

geomN = components|vector|polar (DataGeom)

SUN/256 441

Selects the geometry for coordinates of data in layer N. This determines what parameters must
be supplied to specify coordinate data for that layer.

Options, with the (suffixed) coordinate parameters they require, are:

• components: xN (X coordinate), yN (Y coordinate), zN (Z coordinate)
• vector: xyzN (3-element Cartesian component array)
• polar: lonN (Longitude in decimal degrees), latN (Latitude in decimal degrees), rN

(Radial distance)

[Default: components]

gridaa = true|false (Boolean)
If true, grid lines are drawn with antialiasing. Antialiased lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

insets = <top>,<left>,<bottom>,<right> (Padding)
Defines the amount of space in pixels around the actual plotting area. This space is used for
axis labels, and other decorations and any left over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpix and ypix.

The value of this parameter is 4 comma separated integers: <top>,<left>,<bottom>,<right>.
Any or all of these values may be left blank, in which case the corresponding margin will be
calculated automatically according to how much space is required.

layerN = <layer-type> <layerN-specific-params> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name layer<N> where the suffix "<N>" is a
label identifying the layer and is appended to all the parameter names which configure that
layer. Suffixes may be any string, including the empty string.

This parameter may take one of the following values, described in more detail in Section 8.3:

• mark (Section 8.3.1)

• size (Section 8.3.2)

• sizexy (Section 8.3.3)

• xyzvector (Section 8.3.43)

• xyzerror (Section 8.3.44)

• link2 (Section 8.3.8)

• mark2 (Section 8.3.9)

• poly4 (Section 8.3.10)

• mark4 (Section 8.3.11)

• polygon (Section 8.3.12)

• label (Section 8.3.25)

• line3d (Section 8.3.45)

• contour (Section 8.3.27)

• spheregrid (Section 8.3.46)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or all of the following groups:

• input table parameters (e.g. inN, icmdN)
• coordinate params referring to input table columns (e.g. xN, yN)
• layer style parameters (e.g. shadingN, colorN)

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the

SUN/256 442

application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

legborder = true|false (Boolean)
If true, a line border is drawn around the legend.

[Default: true]

legend = true|false (Boolean)
Whether to draw a legend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

leglabelN = <text> (String)
Sets the presentation label for the layer with a given suffix. This is the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be
combined to form a single legend entry.

If no value is supplied (the default), the suffix itself is used as the label.

legopaque = true|false (Boolean)
If true, the background of the legend is opaque, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: true]

legpos = <xfrac,yfrac> (double[])
Determines the internal position of the legend on the plot. The value is a comma-separated pair
of values giving the X and Y positions of the legend within the plotting bounds, so for instance
"0.5,0.5" will put the legend right in the middle of the plot. If no value is supplied, the legend
will appear outside the plot boundary.

legseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they
appear. The legend has a line for each layer label (as determined by the leglabelN parameter).
If multiple layers have the same label, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a comma-separated sequence
of layer suffixes, which determines the order in which the legend entries appear. Layers with
suffixes missing from this list do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(see seq).

minor = true|false (Boolean)
If true, minor tick marks are painted along the axes as well as the major tick marks. Minor tick
marks do not have associated grid lines.

[Default: true]

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

SUN/256 443

[Default: auto]

parallel = <int-value> (Integer)
Determines how many threads will run in parallel if animation output is being produced. Only
used if the animate parameter is supplied. The default value is the number of processors
apparently available to the JVM.

[Default: 20]

phi = <degrees> (Double)
First of the Euler angles, in the ZXZ sequence, defining the rotation of the plotted 3d space.
Units are degrees. This is the rotation around the initial Z axis applied before the plot is
viewed.

[Default: 30]

psi = <degrees> (Double)
Second of the Euler angles, in the ZXZ sequence, defining the rotation of the plotted 3d space.
Units are degrees.

[Default: 0]

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentially
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
layer<N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the layer* parameters appear
on the command line. However if this parameter is specified, each comma-separated element is
interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding layer parameter, but missing or repeated elements are
allowed.

storage = simple|memory|disk|policy|cache|basic-cache|persistent|parallel

(DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two main
options, cached or not. If no caching is used then rows are read sequentially from the specified
input table(s) every time they are required. This generally requires a small resource footprint
(though that can depend on how the table is specified) and makes sense if the data only needs
to be scanned once or perhaps if the table is very large. If caching is used then the required
data is read once from the specified input table(s), then prepared and cached before any
plotting is performed, and plots are done using this cached data. This may use a significant
amount of storage for large tables but it's usually more sensible (faster) if the data will need to
be scanned multiple times. There are various options for cache storage.

The options are:

• simple: no caching, data read directly from input table
• memory: cached to memory; OutOfMemoryError possible for very large plots
• disk: cached to disk
• policy: cached using application-wide default storage policy, which is usually adaptive

(memory/disk hybrid)
• persistent: cached to persistent files on disk, in the system temporary directory (defined

by system property java.io.tmpdir). If this is used, plot data will be stored on disk in a
way that means they can be re-used between STILTS invocations, so data preparation can
be avoided on subsequent runs. Note however it can leave potentially large files in your
temporary directory.

SUN/256 444

• cache: synonym for memory (backward compatibility)
• basic-cache: dumber version of memory (no optimisation for constant-valued columns)
• parallel: experimental version of memory-based cache that reads into the cache in

parallel for large files. This will make the plot faster to prepare, but interaction is a bit
slower and sequence-dependent attributes of the plot may not come out right. This
experimental option may be withdrawn or modified in future releases.

The default value is memory if a live plot is being generated (omode=swing), since in that case
the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default is simple.

[Default: simple]

texttype = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: plain]

theta = <degrees> (Double)
Second of the Euler angles, in the ZXZ sequence, defining the rotation of the plotted 3d space.
Units are degrees. This is the rotation towards the viewer.

[Default: -15]

title = <value> (String)
Text of a title to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

xcrowd = <number> (Double)
Determines how closely the tick marks are spaced on the X axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

[Default: 1]

xflip = true|false (Boolean)
If true, the scale on the X axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

[Default: false]

xlabel = <text> (String)
Gives a label to be used for annotating axis X A default value based on the plotted data will be
used if no value is supplied.

[Default: X]

xlog = true|false (Boolean)
If false (the default), the scale on the X axis is linear, if true it is logarithmic.

[Default: false]

xmax = <number> (Double)
Maximum value of the data coordinate on the X axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

xmin = <number> (Double)

SUN/256 445

Minimum value of the data coordinate on the X axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

xoff = <pixels> (Double)
Shifts the whole plot within the plotting region by the given number of pixels in the horizontal
direction.

[Default: 0]

xpix = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 500]

xsub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the X axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

[Default: 0,1]

ycrowd = <number> (Double)
Determines how closely the tick marks are spaced on the Y axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

[Default: 1]

yflip = true|false (Boolean)
If true, the scale on the Y axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

[Default: false]

ylabel = <text> (String)
Gives a label to be used for annotating axis Y A default value based on the plotted data will be
used if no value is supplied.

[Default: Y]

ylog = true|false (Boolean)
If false (the default), the scale on the Y axis is linear, if true it is logarithmic.

[Default: false]

ymax = <number> (Double)
Maximum value of the data coordinate on the Y axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

ymin = <number> (Double)
Minimum value of the data coordinate on the Y axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

yoff = <pixels> (Double)
Shifts the whole plot within the plotting region by the given number of pixels in the vertical
direction.

[Default: 0]

SUN/256 446

ypix = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 400]

ysub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the Y axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

[Default: 0,1]

zcrowd = <number> (Double)
Determines how closely the tick marks are spaced on the Z axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

[Default: 1]

zflip = true|false (Boolean)
If true, the scale on the Z axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

[Default: false]

zlabel = <text> (String)
Gives a label to be used for annotating axis Z A default value based on the plotted data will be
used if no value is supplied.

[Default: Z]

zlog = true|false (Boolean)
If false (the default), the scale on the Z axis is linear, if true it is logarithmic.

[Default: false]

zmax = <number> (Double)
Maximum value of the data coordinate on the Z axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

zmin = <number> (Double)
Minimum value of the data coordinate on the Z axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

zoom = <factor> (Double)
Sets the magnification factor at which the the plotted 3D region itself is viewed, without
affecting its contents. The default value is 1, which means the cube fits into the plotting space
however it is rotated. Much higher zoom factors will result in parts of the plotting region and
axes being drawn outside of the plotting region (so invisible).

[Default: 1]

zoomaxes = [[x][y][z]] (boolean[])
Determines which axes are affected by zoom navigation actions.

If no value is supplied (the default), the mouse wheel zooms around the center of the cube, and
right-button (or CTRL-) drag zooms in the two dimensions most closely aligned with the plane
of the screen, with the reference position set by the initial position of the mouse.

SUN/256 447

If this value is set (legal values are x, y, z, xy, yz, xz and xyz) then all zoom operations are
around the cube center and affect the axes named.

zoomfactor = <number> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Values below
1 are not permitted.

[Default: 1.2]

zsub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the Z axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

[Default: 0,1]

B.12.2 Examples

Some examples of plot2cube are shown below. See Section 8.1.3 for some examples of producing
animations, for instance of a rotating cube.

stilts plot2cube

Just displays a unit cube wireframe in a window. You can rotate it with the mouse.

stilts plot2cube layer.1=mark in.1=sim.fits x.1=x y.1=y z.1=z
shading.1=density densemap.1=pastel

Plots markers with x,y,z positions on the screen. You can rotate, zoom and pan the cube on the
window this produces. Density shading is used, which means you can see the lines of sight
along which most objects fall, though single points are still visible. Density shading is usually
a good choice if there is just one dataset, though it can get confusing with more than one.

stilts plot2cube in=gavo_g2.fits
x=X y=Y z=Z
shading=aux aux=HALOID opaque=2.5 auxmap=red-blue
layer_m=mark shape_m=open_circle size_m=2
layer_v=xyzvector xdelta_v=velX ydelta_v=velY zdelta_v=velZ

Plots points in three dimensions with little arrows representing velocity as well as position
markers; layer _m draws the markers and layer _v draws the arrows. Points and vectors are
coloured according to the HALOID data value. The positional coordinates (x, y, z) and the
shading options are common to both layers, so they can be specified without a prefix.

B.13 plot2sphere: Draws a sphere plot

plot2sphere draws plots in an isotropic 3-dimensional space using spherical polar coordinates. The
plotting volume is a cube, which is viewed from the outside and usually bounded by a wire frame
annotated by Cartesian coordinates. This viewing cube is not necessarily centered on the coordinate
origin.

SUN/256 448

This plotting geometry is like that used by plot2cube, but the coordinate unit size is always the
same in the three dimensions, and the coordinates are specified differently.

Positional coordinates are specified as lon, lat, r triples, e.g.:

plot2sphere layer1=mark in1=survey.fits lon1=RA lat1=DEC r1=REDSHIFT

Content is added to the plot by specifying one or more plot layers using the layerN parameter. The
N part is a suffix applied to all the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), size

(Section 8.3.2), sizexy (Section 8.3.3), link2 (Section 8.3.8), mark2 (Section 8.3.9), poly4 (Section
8.3.10), mark4 (Section 8.3.11), polygon (Section 8.3.12), area (Section 8.3.13), central (Section
8.3.14), label (Section 8.3.25), arealabel (Section 8.3.26), line3d (Section 8.3.45), contour

(Section 8.3.27), spheregrid (Section 8.3.46).

B.13.1 Usage

The usage of plot2sphere is

stilts <stilts-flags> plot2sphere xpix=<int-value> ypix=<int-value>
insets=<top>,<left>,<bottom>,<right>
omode=swing|out|cgi|discard|auto
storage=simple|memory|disk|policy|cache|basic-cache|persistent|parallel
seq=<suffix>[,...] legend=true|false
legborder=true|false legopaque=true|false
legseq=<suffix>[,...]
legpos=<xfrac,yfrac> title=<value>
auxmap=<map-name>|<color>-<color>[-<color>...]
auxclip=<lo>,<hi> auxflip=true|false
auxquant=<number>
auxfunc=log|linear|histogram|histolog|sqrt|square|acos|cos
auxmin=<number> auxmax=<number>
auxlabel=<text> auxcrowd=<factor>
auxwidth=<pixels> auxvisible=true|false
forcebitmap=true|false compositor=0..1
animate=<table> afmt=<in-format>
astream=true|false acmd=<cmds>
parallel=<int-value> crowd=<number>
frame=true|false minor=true|false
gridaa=true|false
texttype=plain|antialias|latex
fontsize=<int-value>
fontstyle=standard|serif|mono
fontweight=plain|bold|italic|bold_italic
cx=<number> cy=<number> cz=<number>
scale=<number> phi=<degrees>
theta=<degrees> psi=<degrees>
zoom=<factor> xoff=<pixels> yoff=<pixels>
zoomfactor=<number> leglabelN=<text>
layerN=<layer-type> <layerN-specific-params>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.plot2.task.SpherePlot2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
animate, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be

SUN/256 449

separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

afmt = <in-format> (String)
Specifies the format of the animation control table as specified by parameter animate. The
known formats are listed in Section 5.1.1. This flag can be used if you know what format your
table is in. If it has the special value (auto) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

animate = <table> (StarTable)
If not null, this parameter causes the command to create a sequence of plots instead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the afmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

astream = true|false (Boolean)
If set true, the animation control table specified by the animate parameter will be read as a
stream. It is necessary to give the afmt parameter in this case. Depending on the required
operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).
This parameter is ignored for scheme-specified tables.

[Default: false]

auxclip = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The value is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or

SUN/256 450

all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white
background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

[Default: 1.0]

auxflip = true|false (Boolean)
If true, the colour map on the Aux axis will be reversed.

[Default: false]

auxfunc = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis
• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling
• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable. The Linear, Log, Square and Sqrt options just apply the named function to the full
data range. The histogram options on the other hand use a scaling function that corresponds to
the actual distribution of the data, so that there are about the same number of points (or pixels,
or whatever is being scaled) of each colour. The histogram options are somewhat more
expensive, but can be a good choice if you are exploring data whose distribution is unknown or
not well-behaved over its min-max range. The Histogram and HistoLog options both assign
the colours in the same way, but they display the colour ramp with linear or logarithmic
annotation respectively; the HistoLog option also ignores non-positive values.

[Default: linear]

auxlabel = <text> (String)
Sets the label used to annotate the aux axis, if it is visible.

auxmap = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: inferno, magma, plasma,
viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, cosmic, ember,
gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon, tropical, accent,
gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn, redshift, pride, rdbu,
piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light, greyscale, colour, standard,
bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue, intensity, rgb_red,
rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scale_hsv_s, scale_hsv_v,
scale_yuv_y, mask, blacker, whiter, transparency. Note: many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

SUN/256 451

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

[Default: inferno]

auxmax = <number> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxmin = <number> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxquant = <number> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the
plotted layers.

auxwidth = <pixels> (Integer)
Determines the lateral size of the aux colour ramp, if visible, in pixels.

[Default: 15]

compositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way this is used depends on the details of the specified plot.

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated alpha value until
the total alpha is saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero alpha in the output is boosted to the
given minimum value. The effect of this is that even very slightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0.05]

crowd = <number> (Double)
Determines how closely tick marks are spaced on the wire frame axes. The default value is 1,
meaning normal crowding. Larger values result in more grid lines, and smaller values in fewer
grid lines.

[Default: 1]

cx = <number> (Double)
Gives the central coordinate in the X dimension. This will be determined from the data range if
not supplied.

cy = <number> (Double)
Gives the central coordinate in the Y dimension. This will be determined from the data range if
not supplied.

SUN/256 452

cz = <number> (Double)
Gives the central coordinate in the Z dimension. This will be determined from the data range if
not supplied.

fontsize = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyle = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

[Default: standard]

fontweight = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

• plain

• bold

• italic

• bold_italic

[Default: plain]

forcebitmap = true|false (Boolean)
Affects whether rendering of the data contents of a plot (though not axis labels etc) is always
done to an intermediate bitmap rather than, where possible, being painted using graphics
primitives. This is a rather arcane setting that may nevertheless have noticeable effects on the
appearance and size of an output graphics file, as well as plotting time. For some types of plot
(e.g. shadingN=auto or shadingN=density) it will have no effect, since this kind of rendering
happens in any case.

When writing to vector graphics formats (PDF and PostScript), setting it true will force the
data contents to be bitmapped. This may make the output less beautiful (round markers will no
longer be perfectly round), but it may result in a much smaller file if there are very many data
points.

When writing to bitmapped output formats (PNG, GIF, JPEG, ...), it fixes shapes to be the
same as seen on the screen rather than be rendered at the mercy of the graphics system, which
sometimes introduces small distortions.

[Default: false]

frame = true|false (Boolean)
If true, a cube wire frame with labelled axes is drawn to indicate the limits of the plotted 3D
region. If false, no wire frame and no axes are drawn.

[Default: true]

gridaa = true|false (Boolean)
If true, grid lines are drawn with antialiasing. Antialiased lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: false]

insets = <top>,<left>,<bottom>,<right> (Padding)
Defines the amount of space in pixels around the actual plotting area. This space is used for

SUN/256 453

axis labels, and other decorations and any left over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpix and ypix.

The value of this parameter is 4 comma separated integers: <top>,<left>,<bottom>,<right>.
Any or all of these values may be left blank, in which case the corresponding margin will be
calculated automatically according to how much space is required.

layerN = <layer-type> <layerN-specific-params> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name layer<N> where the suffix "<N>" is a
label identifying the layer and is appended to all the parameter names which configure that
layer. Suffixes may be any string, including the empty string.

This parameter may take one of the following values, described in more detail in Section 8.3:

• mark (Section 8.3.1)

• size (Section 8.3.2)

• sizexy (Section 8.3.3)

• link2 (Section 8.3.8)

• mark2 (Section 8.3.9)

• poly4 (Section 8.3.10)

• mark4 (Section 8.3.11)

• polygon (Section 8.3.12)

• area (Section 8.3.13)

• central (Section 8.3.14)

• label (Section 8.3.25)

• arealabel (Section 8.3.26)

• line3d (Section 8.3.45)

• contour (Section 8.3.27)

• spheregrid (Section 8.3.46)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or all of the following groups:

• input table parameters (e.g. inN, icmdN)
• coordinate params referring to input table columns (e.g. xN, yN)
• layer style parameters (e.g. shadingN, colorN)

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the
application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

legborder = true|false (Boolean)
If true, a line border is drawn around the legend.

[Default: true]

legend = true|false (Boolean)
Whether to draw a legend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

leglabelN = <text> (String)
Sets the presentation label for the layer with a given suffix. This is the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be
combined to form a single legend entry.

SUN/256 454

If no value is supplied (the default), the suffix itself is used as the label.

legopaque = true|false (Boolean)
If true, the background of the legend is opaque, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: true]

legpos = <xfrac,yfrac> (double[])
Determines the internal position of the legend on the plot. The value is a comma-separated pair
of values giving the X and Y positions of the legend within the plotting bounds, so for instance
"0.5,0.5" will put the legend right in the middle of the plot. If no value is supplied, the legend
will appear outside the plot boundary.

legseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they
appear. The legend has a line for each layer label (as determined by the leglabelN parameter).
If multiple layers have the same label, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a comma-separated sequence
of layer suffixes, which determines the order in which the legend entries appear. Layers with
suffixes missing from this list do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(see seq).

minor = true|false (Boolean)
If true, minor tick marks are painted along the axes as well as the major tick marks. Minor tick
marks do not have associated grid lines.

[Default: true]

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

parallel = <int-value> (Integer)
Determines how many threads will run in parallel if animation output is being produced. Only
used if the animate parameter is supplied. The default value is the number of processors
apparently available to the JVM.

[Default: 20]

phi = <degrees> (Double)
First of the Euler angles, in the ZXZ sequence, defining the rotation of the plotted 3d space.
Units are degrees. This is the rotation around the initial Z axis applied before the plot is
viewed.

[Default: 30]

psi = <degrees> (Double)
Second of the Euler angles, in the ZXZ sequence, defining the rotation of the plotted 3d space.
Units are degrees.

SUN/256 455

[Default: 0]

scale = <number> (Double)
The length of the cube sides in data coordinates. This will be determined from the data range if
not supplied.

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentially
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
layer<N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the layer* parameters appear
on the command line. However if this parameter is specified, each comma-separated element is
interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding layer parameter, but missing or repeated elements are
allowed.

storage = simple|memory|disk|policy|cache|basic-cache|persistent|parallel

(DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two main
options, cached or not. If no caching is used then rows are read sequentially from the specified
input table(s) every time they are required. This generally requires a small resource footprint
(though that can depend on how the table is specified) and makes sense if the data only needs
to be scanned once or perhaps if the table is very large. If caching is used then the required
data is read once from the specified input table(s), then prepared and cached before any
plotting is performed, and plots are done using this cached data. This may use a significant
amount of storage for large tables but it's usually more sensible (faster) if the data will need to
be scanned multiple times. There are various options for cache storage.

The options are:

• simple: no caching, data read directly from input table
• memory: cached to memory; OutOfMemoryError possible for very large plots
• disk: cached to disk
• policy: cached using application-wide default storage policy, which is usually adaptive

(memory/disk hybrid)
• persistent: cached to persistent files on disk, in the system temporary directory (defined

by system property java.io.tmpdir). If this is used, plot data will be stored on disk in a
way that means they can be re-used between STILTS invocations, so data preparation can
be avoided on subsequent runs. Note however it can leave potentially large files in your
temporary directory.

• cache: synonym for memory (backward compatibility)
• basic-cache: dumber version of memory (no optimisation for constant-valued columns)
• parallel: experimental version of memory-based cache that reads into the cache in

parallel for large files. This will make the plot faster to prepare, but interaction is a bit
slower and sequence-dependent attributes of the plot may not come out right. This
experimental option may be withdrawn or modified in future releases.

The default value is memory if a live plot is being generated (omode=swing), since in that case
the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default is simple.

[Default: simple]

texttype = plain|antialias|latex (TextSyntax)

SUN/256 456

Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: plain]

theta = <degrees> (Double)
Second of the Euler angles, in the ZXZ sequence, defining the rotation of the plotted 3d space.
Units are degrees. This is the rotation towards the viewer.

[Default: -15]

title = <value> (String)
Text of a title to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

xoff = <pixels> (Double)
Shifts the whole plot within the plotting region by the given number of pixels in the horizontal
direction.

[Default: 0]

xpix = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 500]

yoff = <pixels> (Double)
Shifts the whole plot within the plotting region by the given number of pixels in the vertical
direction.

[Default: 0]

ypix = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 400]

zoom = <factor> (Double)
Sets the magnification factor at which the the plotted 3D region itself is viewed, without
affecting its contents. The default value is 1, which means the cube fits into the plotting space
however it is rotated. Much higher zoom factors will result in parts of the plotting region and
axes being drawn outside of the plotting region (so invisible).

[Default: 1]

zoomfactor = <number> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Values below
1 are not permitted.

[Default: 1.2]

B.13.2 Examples

Some examples of plot2cube are shown below. See Section 8.1.3 for some examples of producing

SUN/256 457

animations, for instance of a rotating cube.

stilts plot2sphere in=hip_main.fits lon=radeg lat=dedeg r=plx
layer1=mark shading1=density densemap1=cyan-magenta

Plots points with RA, Dec and parallax coordinates in 3D. Density shading is used, which
means you can see the lines of sight along which most objects fall, though single points are
still visible. Density shading is usually a good choice if there is just one dataset, though it can
get confusing with more than one.

stilts plot2sphere in=hip_main.fits lon=radeg lat=dedeg r=plx
layer1=mark shading1=density densemap1=cyan-magenta
cx=0 cy=0 cz=0 scale=38 texttype=antialias gridaa=true

The same as the previous example but with some more configuration of the axes. The data
origin is placed at the centre of the visible cube (this is the position around which the cube will
rotate when you drag the mouse), and the size of the cube sides in data coordinates is set
explicitly.

B.14 plot2corner: Draws a matrix of plane plots

plot2corner represents the relationships between multiple quantities by drawing a scatter-like plot
of every pair of coordinates, and/or a histogram-like plot of every single coordinate, and placing
these on (half or all of) a square grid. The horizontal coordinates of all the plots on each column,
and the vertical coordinates of all the plots on each row, are aligned. Single-coordinate
(histogram-like) plots appear on the diagonal, and coordinate-pair (scatter plot-like) plots appear off
diagonal. By default only the diagonal and sub-diagonal part of the resulting plot matrix is shown,
since the plots above the diagonal are equivalent to those below it, but this is configurable. This
representation is variously known as a corner plot, scatter plot matrix, splom or pairs plot.

In principle any number of quantities can be simultaneously compared in this way, but depending
on the output format, attempting to use too many may make the individual plots too small to be
useful.

The number D of quantities to compare (the dimensionality of the space from which you want to
plot 2- and 1-dimensional projections) is given by the nvar parameter. Each specified layer then
requires D positional coordinates, given by the parameters x1, x2, ... xD. The resulting grid of plots
will have a linear dimension of D if there are histogram-like layers included, or D-1 if there are only
scatter-plot like layers. As well as the positional coordinate parameters xK themselves, some of the
other parameters are indexed by the coordinate index K as well, for instance xKlog, xKflip, xKmin
and xKmax.

Content is added to the plot by specifying one or more plot layers using the layerN parameter. The
N part is a suffix applied to all the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), line

(Section 8.3.23), linearfit (Section 8.3.24), label (Section 8.3.25), contour (Section 8.3.27),
grid (Section 8.3.28), fill (Section 8.3.29), quantile (Section 8.3.30), histogram (Section
8.3.31), kde (Section 8.3.32), knn (Section 8.3.33), densogram (Section 8.3.34), gaussian (Section
8.3.35), function (Section 8.3.36).

SUN/256 458

Example output from plot2corner.

B.14.1 Usage

The usage of plot2corner is

stilts <stilts-flags> plot2corner xpix=<int-value> ypix=<int-value>
insets=<top>,<left>,<bottom>,<right>
omode=swing|out|cgi|discard|auto
storage=simple|memory|disk|policy|cache|basic-cache|persistent|parallel
seq=<suffix>[,...] legend=true|false
legborder=true|false legopaque=true|false
legseq=<suffix>[,...]
legpos=<xfrac,yfrac> title=<value>
auxmap=<map-name>|<color>-<color>[-<color>...]
auxclip=<lo>,<hi> auxflip=true|false
auxquant=<number>
auxfunc=log|linear|histogram|histolog|sqrt|square|acos|cos
auxmin=<number> auxmax=<number>
auxlabel=<text> auxcrowd=<factor>
auxwidth=<pixels> auxvisible=true|false
forcebitmap=true|false compositor=0..1

SUN/256 459

animate=<table> afmt=<in-format>
astream=true|false acmd=<cmds>
parallel=<int-value> nvar=<int-value>
matrixformat=<value> cellgap=<int-value>
squares=true|false xKlog=true|false
xKflip=true|false xKlabel=<text>
grid=true|false xcrowd=<number>
minor=true|false shadow=true|false
gridcolor=<rrggbb>|red|blue|...
gridtrans=0..1
labelcolor=<rrggbb>|red|blue|...
texttype=plain|antialias|latex
fontsize=<int-value>
fontstyle=standard|serif|mono
fontweight=plain|bold|italic|bold_italic
xKmin=<number> xKmax=<number>
xKsub=<lo>,<hi> navaxes=xy|x|y
xKanchor=true|false zoomfactor=<number>
leglabelN=<text>
layerN=<layer-type> <layerN-specific-params>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.plot2.task.MatrixPlot2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
animate, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

afmt = <in-format> (String)
Specifies the format of the animation control table as specified by parameter animate. The
known formats are listed in Section 5.1.1. This flag can be used if you know what format your
table is in. If it has the special value (auto) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

animate = <table> (StarTable)
If not null, this parameter causes the command to create a sequence of plots instead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

• A filename.

SUN/256 460

• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the afmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

astream = true|false (Boolean)
If set true, the animation control table specified by the animate parameter will be read as a
stream. It is necessary to give the afmt parameter in this case. Depending on the required
operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).
This parameter is ignored for scheme-specified tables.

[Default: false]

auxclip = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The value is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or
all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white
background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

[Default: 1.0]

auxflip = true|false (Boolean)
If true, the colour map on the Aux axis will be reversed.

[Default: false]

auxfunc = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis
• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling

SUN/256 461

• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable. The Linear, Log, Square and Sqrt options just apply the named function to the full
data range. The histogram options on the other hand use a scaling function that corresponds to
the actual distribution of the data, so that there are about the same number of points (or pixels,
or whatever is being scaled) of each colour. The histogram options are somewhat more
expensive, but can be a good choice if you are exploring data whose distribution is unknown or
not well-behaved over its min-max range. The Histogram and HistoLog options both assign
the colours in the same way, but they display the colour ramp with linear or logarithmic
annotation respectively; the HistoLog option also ignores non-positive values.

[Default: linear]

auxlabel = <text> (String)
Sets the label used to annotate the aux axis, if it is visible.

auxmap = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: inferno, magma, plasma,
viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, cosmic, ember,
gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon, tropical, accent,
gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn, redshift, pride, rdbu,
piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light, greyscale, colour, standard,
bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue, intensity, rgb_red,
rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scale_hsv_s, scale_hsv_v,
scale_yuv_y, mask, blacker, whiter, transparency. Note: many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

[Default: inferno]

auxmax = <number> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxmin = <number> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxquant = <number> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the
plotted layers.

auxwidth = <pixels> (Integer)

SUN/256 462

Determines the lateral size of the aux colour ramp, if visible, in pixels.

[Default: 15]

cellgap = <int-value> (Integer)
Gives the number of pixels between cells in the displayed matrix of plots.

[Default: 4]

compositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way this is used depends on the details of the specified plot.

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated alpha value until
the total alpha is saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero alpha in the output is boosted to the
given minimum value. The effect of this is that even very slightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0.05]

fontsize = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyle = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

[Default: standard]

fontweight = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

• plain

• bold

• italic

• bold_italic

[Default: plain]

forcebitmap = true|false (Boolean)
Affects whether rendering of the data contents of a plot (though not axis labels etc) is always
done to an intermediate bitmap rather than, where possible, being painted using graphics
primitives. This is a rather arcane setting that may nevertheless have noticeable effects on the
appearance and size of an output graphics file, as well as plotting time. For some types of plot
(e.g. shadingN=auto or shadingN=density) it will have no effect, since this kind of rendering
happens in any case.

When writing to vector graphics formats (PDF and PostScript), setting it true will force the
data contents to be bitmapped. This may make the output less beautiful (round markers will no
longer be perfectly round), but it may result in a much smaller file if there are very many data
points.

When writing to bitmapped output formats (PNG, GIF, JPEG, ...), it fixes shapes to be the

SUN/256 463

same as seen on the screen rather than be rendered at the mercy of the graphics system, which
sometimes introduces small distortions.

[Default: false]

grid = true|false (Boolean)
If true, grid lines are drawn on the plot at positions determined by the major tick marks. If
false, they are absent.

[Default: false]

gridcolor = <rrggbb>|red|blue|... (Color)
The color of the plot grid, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: grey]

gridtrans = 0..1 (Double)
Transparency of grid lines that may be drawn over the plot. The range is 0 (opaque) to 1
(invisible). This value is 1-alpha.

[Default: 0.5]

insets = <top>,<left>,<bottom>,<right> (Padding)
Defines the amount of space in pixels around the actual plotting area. This space is used for
axis labels, and other decorations and any left over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpix and ypix.

The value of this parameter is 4 comma separated integers: <top>,<left>,<bottom>,<right>.
Any or all of these values may be left blank, in which case the corresponding margin will be
calculated automatically according to how much space is required.

labelcolor = <rrggbb>|red|blue|... (Color)
The color of axis labels and other plot annotations, given by name or as a hexadecimal RGB
value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

[Default: black]

layerN = <layer-type> <layerN-specific-params> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name layer<N> where the suffix "<N>" is a
label identifying the layer and is appended to all the parameter names which configure that

SUN/256 464

layer. Suffixes may be any string, including the empty string.

This parameter may take one of the following values, described in more detail in Section 8.3:

• mark (Section 8.3.1)

• line (Section 8.3.23)

• linearfit (Section 8.3.24)

• label (Section 8.3.25)

• contour (Section 8.3.27)

• grid (Section 8.3.28)

• fill (Section 8.3.29)

• quantile (Section 8.3.30)

• histogram (Section 8.3.31)

• kde (Section 8.3.32)

• knn (Section 8.3.33)

• densogram (Section 8.3.34)

• gaussian (Section 8.3.35)

• function (Section 8.3.36)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or all of the following groups:

• input table parameters (e.g. inN, icmdN)
• coordinate params referring to input table columns (e.g. xN, yN)
• layer style parameters (e.g. shadingN, colorN)

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the
application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

legborder = true|false (Boolean)
If true, a line border is drawn around the legend.

[Default: true]

legend = true|false (Boolean)
Whether to draw a legend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

leglabelN = <text> (String)
Sets the presentation label for the layer with a given suffix. This is the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be
combined to form a single legend entry.

If no value is supplied (the default), the suffix itself is used as the label.

legopaque = true|false (Boolean)
If true, the background of the legend is opaque, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: true]

legpos = <xfrac,yfrac> (double[])
Determines the internal position of the legend on the plot. The value is a comma-separated pair
of values giving the X and Y positions of the legend within the plotting bounds, so for instance
"0.5,0.5" will put the legend right in the middle of the plot. If no value is supplied, the legend
will appear outside the plot boundary.

legseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they

SUN/256 465

appear. The legend has a line for each layer label (as determined by the leglabelN parameter).
If multiple layers have the same label, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a comma-separated sequence
of layer suffixes, which determines the order in which the legend entries appear. Layers with
suffixes missing from this list do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(see seq).

matrixformat = <value> (MatrixFormat)
Configures which cells of the matrix grid will be filled in. Below-diagonal, above-diagonal, or
the full matrix can be chosen. Given grid cells will only appear if there are appropriate plot
layers specified, i.e. 2-coordinate (scatter-plot-like) plots for the off-diagonal cells and
1-coordinate (histogram-like) plots for the diagonal cells.

The available options are:

• lower: only the lower diagonal part of the matrix is populated, as well as the diagonal if
diagonal elements are present

• upper: only the upper diagonal part of the matrix is populated, as well as the diagonal if
diagonal elements are present

• full: all cells of the matrix are populated where present

[Default: lower]

minor = true|false (Boolean)
If true, minor tick marks are painted along the axes as well as the major tick marks. Minor tick
marks do not have associated grid lines.

[Default: true]

navaxes = xy|x|y (boolean[])
Determines the axes which are affected by the interactive navigation actions (pan and zoom).
The default is xy, which means that the various mouse gestures will provide panning and
zooming in both X and Y directions. However, if it is set to (for instance) x then the mouse
will only allow panning and zooming in the horizontal direction, with the vertical extent fixed.

[Default: xy]

nvar = <int-value> (Integer)
Gives the number of quantities to be plotted against each other, which will be the number of
cells along each side of the scatter plot matrix.

[Default: 3]

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

parallel = <int-value> (Integer)
Determines how many threads will run in parallel if animation output is being produced. Only

SUN/256 466

used if the animate parameter is supplied. The default value is the number of processors
apparently available to the JVM.

[Default: 20]

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentially
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
layer<N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the layer* parameters appear
on the command line. However if this parameter is specified, each comma-separated element is
interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding layer parameter, but missing or repeated elements are
allowed.

shadow = true|false (Boolean)
If true and no secondary axis is in use, then tick marks without numeric labels are painted
along the axis opposite to the primary axis, so that tick marks are visible along all edges not
just the ones with numeric labels. If a secondary axis is in use, this setting is ignored.

[Default: true]

squares = true|false (Boolean)
If true, each of the plotted panels in the matrix will have the same vertical and horizontal
dimension. If false, the shape of each panel will be determined by the shape of the overall
plotting area.

[Default: false]

storage = simple|memory|disk|policy|cache|basic-cache|persistent|parallel

(DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two main
options, cached or not. If no caching is used then rows are read sequentially from the specified
input table(s) every time they are required. This generally requires a small resource footprint
(though that can depend on how the table is specified) and makes sense if the data only needs
to be scanned once or perhaps if the table is very large. If caching is used then the required
data is read once from the specified input table(s), then prepared and cached before any
plotting is performed, and plots are done using this cached data. This may use a significant
amount of storage for large tables but it's usually more sensible (faster) if the data will need to
be scanned multiple times. There are various options for cache storage.

The options are:

• simple: no caching, data read directly from input table
• memory: cached to memory; OutOfMemoryError possible for very large plots
• disk: cached to disk
• policy: cached using application-wide default storage policy, which is usually adaptive

(memory/disk hybrid)
• persistent: cached to persistent files on disk, in the system temporary directory (defined

by system property java.io.tmpdir). If this is used, plot data will be stored on disk in a
way that means they can be re-used between STILTS invocations, so data preparation can
be avoided on subsequent runs. Note however it can leave potentially large files in your
temporary directory.

• cache: synonym for memory (backward compatibility)
• basic-cache: dumber version of memory (no optimisation for constant-valued columns)
• parallel: experimental version of memory-based cache that reads into the cache in

SUN/256 467

parallel for large files. This will make the plot faster to prepare, but interaction is a bit
slower and sequence-dependent attributes of the plot may not come out right. This
experimental option may be withdrawn or modified in future releases.

The default value is memory if a live plot is being generated (omode=swing), since in that case
the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default is simple.

[Default: simple]

texttype = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: plain]

title = <value> (String)
Text of a title to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

xKanchor = true|false (Boolean)
If true, then zoom actions will work in such a way that the zero point on the xK axis stays in
the same position on the plot.

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence
x2anchor affects the axes on which the x2 coordinates are plotted.

[Default: false]

xKflip = true|false (Boolean)
If true, the scale on the xK axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence
x2flip affects the axes on which the x2 coordinates are plotted.

[Default: false]

xKlabel = <text> (String)
Gives a label to be used for annotating axis xK A default value based on the plotted data will
be used if no value is supplied.

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence
x2label affects the axes on which the x2 coordinates are plotted.

[Default: xK]

xKlog = true|false (Boolean)
If false (the default), the scale on the xK axis is linear, if true it is logarithmic.

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence
x2log affects the axes on which the x2 coordinates are plotted.

[Default: false]

xKmax = <number> (Double)
Maximum value of the data coordinate on the xK axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence

SUN/256 468

x2max affects the axes on which the x2 coordinates are plotted.

xKmin = <number> (Double)
Minimum value of the data coordinate on the xK axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence
x2min affects the axes on which the x2 coordinates are plotted.

xKsub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the XK axis. The value may be specified
as a comma-separated pair of two numbers, giving the lower and upper bounds of the range of
of interest respectively. This sub-range is applied to the data range that would otherwise be
used, either automatically calculated or explicitly supplied; zero corresponds to the lower
bound and one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence
x2sub affects the axes on which the x2 coordinates are plotted.

[Default: 0,1]

xcrowd = <number> (Double)
Determines how closely the tick marks are spaced on the xK axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

The xK axis refers to any axes in the matrix on which input coordinate #K is plotted. Hence
xcrowd affects the axes on which the x2 coordinates are plotted.

[Default: 1]

xpix = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 500]

ypix = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 400]

zoomfactor = <number> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Values below
1 are not permitted.

[Default: 1.2]

B.14.2 Examples

Here are some examples of using plot2corner:

stilts plot2corner in=:attractor:100000,rampe
nvar=3 x1=x x2=y x3=z
layer_m=mark

SUN/256 469

Plots a grid of scatter plots for a 3-d dataset. This presents three plots: X vs. Y, X vs. Z, and Y
vs. Z in the lower triangle of the grid.

stilts plot2corner in=:attractor:100000,rampe
nvar=3 x1=x x2=y x3=z
matrixformat=full
layer_m=mark layer_h=histogram

Same as the previous example, but also presents histograms (one each for X, Y and Z) along
the diagonal. Additionally, the matrixformat=full parameter means that the full grid (with
redundant plots also for Y vs. X, Z vs. X, and Z vs. Y) are plotted above the diagonal.

stilts plot2corner in=rrlyrae.fits
icmd_A='select best_classification==\"RRAB\"'
icmd_C='select best_classification==\"RRC\"'
color_A=red color_C=cyan
nvar=4 x1=peak_to_peak_g x2=p1 x3=r21_g x4=phi21_g x4min=3
layer_A_m=mark layer_C_m=mark
layer_A_k=kde layer_C_k=kde smooth_A_k=-50 smooth_C_k=-50
layer_f=contour color_f=light_grey smooth_f=10 nlevel_f=6
leglabel_A=RRAB leglabel_C=RRC legseq=_A_m,_C_m legpos=1,1

In this example there are two separate input datasets (different selections from the same input
table) and four quantities to plot. One of the coordinates is restricted in range using the x4min

parameter. As well as the mark and kde layers, an additional contour layer (of the whole input
table) is overplotted on the scatter plot grid elements.

B.15 plot2time: Draws a time plot

plot2time draws plots where the horizontal axis represents time. The time axis can be labelled in
various different ways including MJD, decimal year and ISO-8601 form.

Positional coordinates are specified as t, y pairs, with an optional ttype specifier to indicate how
the input value is to be interpreted, e.g.:

plot2time in1=series.fits layer1=line t1=EPOCH ttype1=MJD y1=ENERGY

Time values can be represented in various ways in input data, for instance as Julian Day, Modified
Julian Date, decimal years since 0AD, Unix seconds, ISO-8601, or variants of some of the above
with additional offsets. In some cases the input format contains enough metadata to determine how
the values should be mapped to a common timescale (so for instance they can be plotted as MJD or
Year/Month/Day), and in other cases they do not. For example CDF files and VOTable 1.4 files
with TIMESYS markup contain sufficient metadata, and text inputs using the ISO-8601 format can
usually be identified and understood, but there's no way to tell automatically whether a numeric
column in a CSV file represents MJD, seconds since a known epoch, decimal years, or anything
else. For this reason the ttypeN parameter is provided for all the layer types with a tN coordinate, as
follows:

ttypeN = DecYear|MJD|JD|Unix|Iso8601 (TimeMapper)
Selects the form in which the Time value for parameter tN is supplied. Options are:

• DecYear: Years since 0 AD
• MJD: Modified Julian Date
• JD: Julian Day
• Unix: Seconds since midnight 1 Jan 1970
• Iso8601: ISO 8601 string

If left blank, a guess will be taken depending on the data type of the value supplied for the tN

value.

SUN/256 470

This command, unlike the other plot2* commands at time of writing, can be used to draw
multi-zone plots. These are plots with different panels stacked vertically so that different datasets
can share the same horizontal (time) axis, but have separate vertical axes, colour maps, legends etc.
The horizontal axes are always synchronized between zones. This is currently controlled with the
zoneN parameter. For any layer with a layer suffix N, you can specify a zone identifier as an
arbitrary string, Z, by supplying the parameter zoneN=Z. Layers with the same value of zoneN are
plotted in the same zone, and layers with different values are plotted in different zones. If no zoneN

is given, the layer is assigned to a single (unnamed) zone, so with no zone parameters specified all
plots appear in a single zone. Parameters specific to a given zone can then be suffixed with the same
Z zone identifier. The examples section illustrates what this looks like in practice.

Note: The multi-zone feature is experimental. As currently implemented it lacks some features. The
interface may be changed in a future version.

Content is added to the plot by specifying one or more plot layers using the layerN parameter. The
N part is a suffix applied to all the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: line (Section 8.3.23), linearfit
(Section 8.3.24), mark (Section 8.3.1), fill (Section 8.3.29), quantile (Section 8.3.30), grid

(Section 8.3.28), histogram (Section 8.3.31), kde (Section 8.3.32), knn (Section 8.3.33), densogram
(Section 8.3.34), gaussian (Section 8.3.35), yerror (Section 8.3.47), spectrogram (Section
8.3.48), label (Section 8.3.25), function (Section 8.3.36).

B.15.1 Usage

The usage of plot2time is

stilts <stilts-flags> plot2time xpix=<int-value> ypix=<int-value>
insets=<top>,<left>,<bottom>,<right>
omode=swing|out|cgi|discard|auto
storage=simple|memory|disk|policy|cache|basic-cache|persistent|parallel
seq=<suffix>[,...] legend=true|false
legborder=true|false legopaque=true|false
legseq=<suffix>[,...] legpos=<xfrac,yfrac>
title=<value>
auxmap=<map-name>|<color>-<color>[-<color>...]
auxclip=<lo>,<hi> auxflip=true|false
auxquant=<number>
auxfunc=log|linear|histogram|histolog|sqrt|square|acos|cos
auxmin=<number> auxmax=<number>
auxlabel=<text> auxcrowd=<factor>
auxwidth=<pixels> auxvisible=true|false
forcebitmap=true|false compositor=0..1
animate=<table> afmt=<in-format>
astream=true|false acmd=<cmds>
parallel=<int-value> cellgap=<int-value>
ylog=true|false yflip=true|false
tlabel=<text> ylabel=<text>
t2func=<time-expr> y2func=<function-of-y>
t2label=<text> y2label=<text>
grid=true|false tcrowd=<number>
ycrowd=<number>
tformat=iso-8601|year|mjd|unix
minor=true|false shadow=true|false
gridcolor=<rrggbb>|red|blue|...
gridtrans=0..1
texttype=plain|antialias|latex
fontsize=<int-value>
fontstyle=standard|serif|mono
fontweight=plain|bold|italic|bold_italic
tmin=<year-or-iso8601>
tmax=<year-or-iso8601> tsub=<lo>,<hi>
ymin=<number> ymax=<number> ysub=<lo>,<hi>
navaxes=t|y|ty zoomfactor=<number>
leglabelN=<text>

SUN/256 471

layerN=<layer-type> <layerN-specific-params>
zoneN=<text>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.plot2.task.TimePlot2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
animate, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

afmt = <in-format> (String)
Specifies the format of the animation control table as specified by parameter animate. The
known formats are listed in Section 5.1.1. This flag can be used if you know what format your
table is in. If it has the special value (auto) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

animate = <table> (StarTable)
If not null, this parameter causes the command to create a sequence of plots instead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the afmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

astream = true|false (Boolean)
If set true, the animation control table specified by the animate parameter will be read as a
stream. It is necessary to give the afmt parameter in this case. Depending on the required

SUN/256 472

operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).
This parameter is ignored for scheme-specified tables.

[Default: false]

auxclip = <lo>,<hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The value is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0,1 is used, the whole range of colours specified by the selected shader will be
used. But if for instance a value of 0,0.5 is given, only those colours at the left hand end of the
ramp will be seen.

If the null (default) value is chosen, a default clip will be used. This generally covers most or
all of the range 0-1 but for colour maps which fade to white, a small proportion of the lower
end may be excluded, to ensure that all the colours are visually distinguishable from a white
background. This default is usually a good idea if the colour map is being used with something
like a scatter plot, where markers are plotted against a white background. However, for
something like a density map when the whole plotting area is tiled with colours from the map,
it may be better to supply the whole range 0,1 explicitly.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxclipZ
affects only zone Z.

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxcrowdZ
affects only zone Z.

[Default: 1.0]

auxflip = true|false (Boolean)
If true, the colour map on the Aux axis will be reversed.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxflipZ
affects only zone Z.

[Default: false]

auxfunc = log|linear|histogram|histolog|sqrt|square|acos|cos (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.

The available options are:

• log: Logarithmic scaling
• linear: Linear scaling
• histogram: Scaling follows data distribution, with linear axis
• histolog: Scaling follows data distribution, with logarithmic axis
• sqrt: Square root scaling
• square: Square scaling
• acos: Arccos Scaling
• cos: Cos Scaling

For all these options, the full range of data values is used, and displayed on the colour bar if
applicable. The Linear, Log, Square and Sqrt options just apply the named function to the full
data range. The histogram options on the other hand use a scaling function that corresponds to

SUN/256 473

the actual distribution of the data, so that there are about the same number of points (or pixels,
or whatever is being scaled) of each colour. The histogram options are somewhat more
expensive, but can be a good choice if you are exploring data whose distribution is unknown or
not well-behaved over its min-max range. The Histogram and HistoLog options both assign
the colours in the same way, but they display the colour ramp with linear or logarithmic
annotation respectively; the HistoLog option also ignores non-positive values.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxfuncZ
affects only zone Z.

[Default: linear]

auxlabel = <text> (String)
Sets the label used to annotate the aux axis, if it is visible.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxlabelZ
affects only zone Z.

auxmap = <map-name>|<color>-<color>[-<color>...] (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available as listed in Section 8.7: inferno, magma, plasma,
viridis, cividis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, cosmic, ember,
gothic, rainforest, voltage, bubblegum, gem, chroma, sunset, neon, tropical, accent,
gnuplot, gnuplot2, specxby, set1, paired, hotcold, guppy, iceburn, redshift, pride, rdbu,
piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, light, greyscale, colour, standard,
bugn, bupu, orrd, pubu, purd, painbow, huecl, infinity, hue, intensity, rgb_red,
rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scale_hsv_s, scale_hsv_v,
scale_yuv_y, mask, blacker, whiter, transparency. Note: many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

You can also construct your own custom colour map by giving a sequence of colour names
separated by minus sign ("-") characters. In this case the ramp is a linear interpolation between
each pair of colours named, using the same syntax as when specifying a colour value. So for
instance "yellow-hotpink-#0000ff" would shade from yellow via hot pink to blue.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxmapZ
affects only zone Z.

[Default: inferno]

auxmax = <number> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxmaxZ
affects only zone Z.

auxmin = <number> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxminZ
affects only zone Z.

auxquant = <number> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
a medium-sized number like 256).

SUN/256 474

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxquantZ
affects only zone Z.

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the
plotted layers.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g.
auxvisibleZ affects only zone Z.

auxwidth = <pixels> (Integer)
Determines the lateral size of the aux colour ramp, if visible, in pixels.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. auxwidthZ
affects only zone Z.

[Default: 15]

cellgap = <int-value> (Integer)
Gives the number of pixels between individual members in the stack of plots.

[Default: 4]

compositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way this is used depends on the details of the specified plot.

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated alpha value until
the total alpha is saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero alpha in the output is boosted to the
given minimum value. The effect of this is that even very slightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0.05]

fontsize = <int-value> (Integer)
Size of the text font in points.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. fontsizeZ
affects only zone Z.

[Default: 12]

fontstyle = standard|serif|mono (FontType)
Font style for text.

The available options are:

• standard

• serif

• mono

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. fontstyleZ
affects only zone Z.

[Default: standard]

fontweight = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

• plain

SUN/256 475

• bold

• italic

• bold_italic

If a zone suffix is appended to the parameter name, only that zone is affected, e.g.
fontweightZ affects only zone Z.

[Default: plain]

forcebitmap = true|false (Boolean)
Affects whether rendering of the data contents of a plot (though not axis labels etc) is always
done to an intermediate bitmap rather than, where possible, being painted using graphics
primitives. This is a rather arcane setting that may nevertheless have noticeable effects on the
appearance and size of an output graphics file, as well as plotting time. For some types of plot
(e.g. shadingN=auto or shadingN=density) it will have no effect, since this kind of rendering
happens in any case.

When writing to vector graphics formats (PDF and PostScript), setting it true will force the
data contents to be bitmapped. This may make the output less beautiful (round markers will no
longer be perfectly round), but it may result in a much smaller file if there are very many data
points.

When writing to bitmapped output formats (PNG, GIF, JPEG, ...), it fixes shapes to be the
same as seen on the screen rather than be rendered at the mercy of the graphics system, which
sometimes introduces small distortions.

[Default: false]

grid = true|false (Boolean)
If true, grid lines are drawn on the plot at positions determined by the major tick marks. If
false, they are absent.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. gridZ

affects only zone Z.

[Default: false]

gridcolor = <rrggbb>|red|blue|... (Color)
The color of the plot grid, given by name or as a hexadecimal RGB value.

The standard plotting colour names are red, blue, green, grey, magenta, cyan, orange, pink,
yellow, black, light_grey, white. However, many other common colour names (too many to
list here) are also understood. The list currently contains those colour names understood by
most web browsers, from AliceBlue to YellowGreen, listed e.g. in the Extended color
keywords section of the CSS3 standard.

Alternatively, a six-digit hexadecimal number RRGGBB may be supplied, optionally prefixed
by "#" or "0x", giving red, green and blue intensities, e.g. "ff00ff", "#ff00ff" or "0xff00ff"
for magenta.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. gridcolorZ
affects only zone Z.

[Default: grey]

gridtrans = 0..1 (Double)
Transparency of grid lines that may be drawn over the plot. The range is 0 (opaque) to 1
(invisible). This value is 1-alpha.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. gridtransZ
affects only zone Z.

[Default: 0.5]

SUN/256 476

insets = <top>,<left>,<bottom>,<right> (Padding)
Defines the amount of space in pixels around the actual plotting area. This space is used for
axis labels, and other decorations and any left over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpix and ypix.

The value of this parameter is 4 comma separated integers: <top>,<left>,<bottom>,<right>.
Any or all of these values may be left blank, in which case the corresponding margin will be
calculated automatically according to how much space is required.

layerN = <layer-type> <layerN-specific-params> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name layer<N> where the suffix "<N>" is a
label identifying the layer and is appended to all the parameter names which configure that
layer. Suffixes may be any string, including the empty string.

This parameter may take one of the following values, described in more detail in Section 8.3:

• line (Section 8.3.23)

• linearfit (Section 8.3.24)

• mark (Section 8.3.1)

• fill (Section 8.3.29)

• quantile (Section 8.3.30)

• grid (Section 8.3.28)

• histogram (Section 8.3.31)

• kde (Section 8.3.32)

• knn (Section 8.3.33)

• densogram (Section 8.3.34)

• gaussian (Section 8.3.35)

• yerror (Section 8.3.47)

• spectrogram (Section 8.3.48)

• label (Section 8.3.25)

• function (Section 8.3.36)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or all of the following groups:

• input table parameters (e.g. inN, icmdN)
• coordinate params referring to input table columns (e.g. xN, yN)
• layer style parameters (e.g. shadingN, colorN)

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the
application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

legborder = true|false (Boolean)
If true, a line border is drawn around the legend.

[Default: true]

legend = true|false (Boolean)
Whether to draw a legend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

leglabelN = <text> (String)
Sets the presentation label for the layer with a given suffix. This is the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be

SUN/256 477

combined to form a single legend entry.

If no value is supplied (the default), the suffix itself is used as the label.

legopaque = true|false (Boolean)
If true, the background of the legend is opaque, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: true]

legpos = <xfrac,yfrac> (double[])
Determines the internal position of the legend on the plot. The value is a comma-separated pair
of values giving the X and Y positions of the legend within the plotting bounds, so for instance
"0.5,0.5" will put the legend right in the middle of the plot. If no value is supplied, the legend
will appear outside the plot boundary.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. legposZ
affects only zone Z.

legseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they
appear. The legend has a line for each layer label (as determined by the leglabelN parameter).
If multiple layers have the same label, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a comma-separated sequence
of layer suffixes, which determines the order in which the legend entries appear. Layers with
suffixes missing from this list do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(see seq).

minor = true|false (Boolean)
If true, minor tick marks are painted along the axes as well as the major tick marks. Minor tick
marks do not have associated grid lines.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. minorZ
affects only zone Z.

[Default: true]

navaxes = t|y|ty (boolean[])
Determines the axes which are affected by the interactive navigation actions (pan and zoom).
The default is t which means that the various mouse gestures will provide panning and
zooming in the Time direction only. However, if it is set to ty mouse actions will affect both
the horizontal and vertical axes.

[Default: t]

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

parallel = <int-value> (Integer)

SUN/256 478

Determines how many threads will run in parallel if animation output is being produced. Only
used if the animate parameter is supplied. The default value is the number of processors
apparently available to the JVM.

[Default: 20]

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentially
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
layer<N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the layer* parameters appear
on the command line. However if this parameter is specified, each comma-separated element is
interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding layer parameter, but missing or repeated elements are
allowed.

shadow = true|false (Boolean)
If true and no secondary axis is in use, then tick marks without numeric labels are painted
along the axis opposite to the primary axis, so that tick marks are visible along all edges not
just the ones with numeric labels. If a secondary axis is in use, this setting is ignored.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. shadowZ
affects only zone Z.

[Default: true]

storage = simple|memory|disk|policy|cache|basic-cache|persistent|parallel

(DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two main
options, cached or not. If no caching is used then rows are read sequentially from the specified
input table(s) every time they are required. This generally requires a small resource footprint
(though that can depend on how the table is specified) and makes sense if the data only needs
to be scanned once or perhaps if the table is very large. If caching is used then the required
data is read once from the specified input table(s), then prepared and cached before any
plotting is performed, and plots are done using this cached data. This may use a significant
amount of storage for large tables but it's usually more sensible (faster) if the data will need to
be scanned multiple times. There are various options for cache storage.

The options are:

• simple: no caching, data read directly from input table
• memory: cached to memory; OutOfMemoryError possible for very large plots
• disk: cached to disk
• policy: cached using application-wide default storage policy, which is usually adaptive

(memory/disk hybrid)
• persistent: cached to persistent files on disk, in the system temporary directory (defined

by system property java.io.tmpdir). If this is used, plot data will be stored on disk in a
way that means they can be re-used between STILTS invocations, so data preparation can
be avoided on subsequent runs. Note however it can leave potentially large files in your
temporary directory.

• cache: synonym for memory (backward compatibility)
• basic-cache: dumber version of memory (no optimisation for constant-valued columns)
• parallel: experimental version of memory-based cache that reads into the cache in

parallel for large files. This will make the plot faster to prepare, but interaction is a bit
slower and sequence-dependent attributes of the plot may not come out right. This
experimental option may be withdrawn or modified in future releases.

SUN/256 479

The default value is memory if a live plot is being generated (omode=swing), since in that case
the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default is simple.

[Default: simple]

t2func = <time-expr> (TimeJELFunction)
Defines a secondary time axis in terms of the primary one. If a secondary axis is defined in this
way, then the axis opposite the primary one, i.e. the one on the top edge of the plot, will be
annotated with the appropriate tickmarks.

The value of this parameter is an algebraic expression giving the numeric value to be displayed
on the secondary axis corresponding to a given time value on the primary axis. The expression
may be given in terms of one of the following variables:

• mjd: Modified Julian Date
• jd: Julian Day
• decYear: decimal year CE
• unixSec: seconds since 1970-01-01T00:00:00

In most cases, the value of this parameter will simply be one of those variable names, for
instance, "mjd" to annotate the secondary axis in Modified Julian Date. However you can apply
operations to these values in the usual way if required, for instance to provide a differently
offset date scale.

The function supplied should be monotonic and reasonably well-behaved, otherwise the
secondary axis annotation may not work well. Tick marks will always be applied on a linear
scale. Currently there is no way to annotate the secondary axis with ISO-8601 dates or other
non-numeric labels.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. t2funcZ
affects only zone Z.

t2label = <text> (String)
Provides a string that will label the secondary Time axis. This appears on the opposite side of
the plot to the Time axis itself.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. t2labelZ
affects only zone Z.

tcrowd = <number> (Double)
Determines how closely the tick marks are spaced on the Time axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. tcrowdZ
affects only zone Z.

[Default: 1]

texttype = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Plain and Antialias both take
the text at face value, but Antialias smooths the characters. LaTeX interprets the text as
LaTeX source code and typesets it accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. texttypeZ

SUN/256 480

affects only zone Z.

[Default: plain]

tformat = iso-8601|year|mjd|unix (TimeFormat)
Selects the way in which time values are represented when using them to label the time axis.

The available options are:

• iso-8601: ISO 8601 date, of the form yyyy-mm-ddThh:mm:ss.s (e.g. "2012-03-13T04")
• year: Decimal year (e.g. "2012.197")
• mjd: Modified Julian Date (e.g. "55999.2")
• unix: Seconds since midnight of 1 Jan 1970 (e.g. "1331613420")

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. tformatZ
affects only zone Z.

[Default: iso-8601]

title = <value> (String)
Text of a title to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. titleZ
affects only zone Z.

tlabel = <text> (String)
Gives a label to be used for annotating the Time axis. If not supplied no label will be drawn.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. tlabelZ
affects only zone Z.

tmax = <year-or-iso8601> (Double)
Maximum value of the time coordinate plotted. This sets the value before any subranging is
applied. If not supplied, the value is determined from the plotted data.

The value may be set with a string that can be interpreted as a decimal year (e.g. "2007.521")
or an ISO-8601 string (e.g. "2007-07-10T03:57:36", "2007-07-10T03" or "2007-07-10").
Note however that the numeric value of this configuration item if accessed programmatically is
seconds since 1 Jan 1970.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. tmaxZ

affects only zone Z.

tmin = <year-or-iso8601> (Double)
Minimum value of the time coordinate plotted. This sets the value before any subranging is
applied. If not supplied, the value is determined from the plotted data.

The value may be set with a string that can be interpreted as a decimal year (e.g. "2007.521")
or an ISO-8601 string (e.g. "2007-07-10T03:57:36", "2007-07-10T03" or "2007-07-10").
Note however that the numeric value of this configuration item if accessed programmatically is
seconds since 1 Jan 1970.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. tminZ

affects only zone Z.

tsub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the Time axis. The value may be
specified as a comma-separated pair of two numbers, giving the lower and upper bounds of the
range of of interest respectively. This sub-range is applied to the data range that would
otherwise be used, either automatically calculated or explicitly supplied; zero corresponds to
the lower bound and one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half

SUN/256 481

with the value 0,0.5.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. tsubZ

affects only zone Z.

[Default: 0,1]

xpix = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 500]

y2func = <function-of-y> (JELFunction)
Defines a secondary Y axis in terms of the primary one. If a secondary axis is defined in this
way, then the axis opposite the primary one (i.e. on the right side of the plot) will be annotated
with the appropriate tickmarks.

The value of this parameter is an algebraic expression in terms of the variable y giving the
value on the secondary Y axis corresponding to a given value on the primary Y axis.

For instance, if the primary Y axis represents flux in Jansky, then supplying the expression
"2.5*(23-log10(y))-48.6" (or "janskyToAb(y)") would annotate the secondary Y axis as AB
magnitudes.

The function supplied should be monotonic and reasonably well-behaved, otherwise the
secondary axis annotation may not work well. The application will attempt to make a sensible
decision about whether to use linear or logarithmic tick marks.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. y2funcZ
affects only zone Z.

y2label = <text> (String)
Provides a string that will label the secondary Y axis. This appears on the opposite side of the
plot to the Y axis itself.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. y2labelZ
affects only zone Z.

ycrowd = <number> (Double)
Determines how closely the tick marks are spaced on the Y axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. ycrowdZ
affects only zone Z.

[Default: 1]

yflip = true|false (Boolean)
If true, the scale on the Y axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. yflipZ
affects only zone Z.

[Default: false]

ylabel = <text> (String)
Gives a label to be used for annotating axis Y A default value based on the plotted data will be
used if no value is supplied.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. ylabelZ
affects only zone Z.

SUN/256 482

[Default: Y]

ylog = true|false (Boolean)
If false (the default), the scale on the Y axis is linear, if true it is logarithmic.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. ylogZ

affects only zone Z.

[Default: false]

ymax = <number> (Double)
Maximum value of the data coordinate on the Y axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. ymaxZ

affects only zone Z.

ymin = <number> (Double)
Minimum value of the data coordinate on the Y axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. yminZ

affects only zone Z.

ypix = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot area itself. See also insets.

[Default: 400]

ysub = <lo>,<hi> (Subrange)
Defines a normalised adjustment to the data range of the Y axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0,1" therefore has no effect. The range could be restricted to its lower half
with the value 0,0.5.

If a zone suffix is appended to the parameter name, only that zone is affected, e.g. ysubZ

affects only zone Z.

[Default: 0,1]

zoneN = <text> (String)
Defines which plot zone the layer with suffix N will appear in. This only makes sense for
multi-zone plots. The actual value of the parameter is not significant, it just serves as a label,
but different layers will end up in the same plot zone if they give the same values for this
parameter.

zoomfactor = <number> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Values below
1 are not permitted.

[Default: 1.2]

B.15.2 Examples

Here are some examples of plot2time:

SUN/256 483

stilts plot2time xpix=1000 ypix=300
in=ACE_data.vot t=epoch
layer.r=line y.r=Br color.r=grey
layer.t=line y.t=Bt color.t=cyan
layer.n=line y.n=Bn color.n=pink

Three time series are plotted on the same axes as lines in different colours. In this case we trust
the markup in the VOTable input to describe the format of the epoch column.

stilts plot2time xpix=1000 ypix=1000
in=ACE_data.vot t=fp_year ttype=decyear
layer.r=line y.r=Br zone.r=ZR
layer.t=line y.t=Bt zone.t=ZT
layer.n=line y.n=Bn zone.n=ZN
titleZR="Br" titleZT="Bt" titleZN="Bn"

The same data is plotted as in the previous example, but in this case each line is drawn in a
different panel (zone), stacked vertically. The default colour is used for each line. Each plot is
given a different title; note the title parameter suffixes refer to the zone identifiers not the
layer identifiers. The time coordinate in this case is supplied as a decimal year column which
does not have sufficient metadata to identify it as such, so we specify the time format explicitly
as decyear.

stilts plot2time tmin=2007-06-07T02:40 tmax=2007-06-07T06:20 tformat=mjd
in=STEREO_STA_L1_SEPT_20070607_V05.cdf t=epoch_ns
ylabel=Channel
layer_3=spectrogram spectrum_3=Spec_0_NS
auxmap=accent auxfunc=log

Plots a spectrogram from a CDF file. The range along the horizontal axis is specified explicitly
using ISO-8601 date strings, but it is labelled in Modified Julian Date.

stilts plot2time in=STEREO_STA_L1_SEPT_20070607_V05.cdf t=epoch_ns
layer_1=spectrogram spectrum_1=spec_0_ns zone_1=A
layer_2=spectrogram spectrum_2=spec_0_e zone_2=B
layer_3=line y_3='mean(spec_0_ns)' color_3=plum zone_3=C
layer_4=line y_4='mean(spec_0_e)' color_4=skyblue zone_4=C
ylogC=true
auxfunc=sqrt auxmapA=viridis auxmapB=magma

This is a 3-zone plot; zones A and B each contains a spectrogram (layers _1 and _2), and zone C

contains two line plots (layers _3 and _4). The Y axis is set to logarithmic for zone C only. The
colour ramps are configured with aux* parameters; the stretch function is set to sqrt for all
zones, and the colour map is set to different values for zones A and B.

B.16 plot2d: Old-style 2D Scatter Plot

This section describes a deprecated command. It still works, but you are advised to use the more
capable plot2plane instead.

plot2d performs two-dimensional scatter plots, sending the output to a graphical display or writing
it to a file in some vector or bitmapped graphics format. You need to supply it with values for one
or more X and Y datasets, in terms of table columns, and it will generate a plot with a point for each
row. There are many options available to configure the detailed appearance of the plot, but in its
simplest form invocation is quite straightforward. See Section 9 for more discussion on use of the
plotting commands.

B.16.1 Usage

The usage of plot2d is

SUN/256 484

stilts <stilts-flags> plot2d xpix=<int-value> ypix=<int-value>
font=dialog|serif|... fontsize=<int-value>
fontstyle=plain|bold|italic|bold-italic
legend=true|false title=<value>
omode=swing|out|cgi|discard|auto
out=<out-file>
ofmt=png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip
inN=<table> ifmtN=<in-format>
istreamN=true|false cmdN=<cmds> xdataN=<expr>
ydataN=<expr> auxdataN=<expr>
xlo=<float-value> ylo=<float-value>
auxlo=<float-value> xhi=<float-value>
yhi=<float-value> auxhi=<float-value>
xlog=true|false ylog=true|false
auxlog=true|false xflip=true|false
yflip=true|false auxflip=true|false
xlabel=<value> ylabel=<value> auxlabel=<value>
xerrorN=<expr>|[<lo-expr>],[<hi-expr>]
yerrorN=<expr>|[<lo-expr>],[<hi-expr>]
auxshader=rainbow|pastel|... txtlabelN=<value>
subsetNS=<expr> nameNS=<value>
colourNS=<rrggbb>|red|blue|...
shapeNS=filled_circle|open_circle|...
sizeNS=<int-value> transparencyNS=<int-value>
lineNS=DotToDot|LinearRegression
linewidthNS=<int-value>
dashNS=dot|dash|...|<a,b,...>
hideNS=true|false
errstyleNS=lines|capped_lines|...
grid=true|false antialias=true|false
sequence=<suffix>,<suffix>,...

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TablePlot2D.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|false (Boolean)
Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false simply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down slightly.

[Default: true]

auxdataN = <expr> (String)
Gives a column name or expression for the aux axis data for table N. The expression is a
numeric algebraic expression based on column names as described in Section 10

auxflip = true|false (Boolean)
If set true, the scale on the aux axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

auxhi = <float-value> (Double)
The upper limit for the plotted aux axis. If not set, a value will be chosen which is high enough
to accommodate all the data.

auxlabel = <value> (String)
Specifies a label to be used for annotating axis aux. A default values based on the plotted data
will be used if no value is supplied for this parameter.

SUN/256 485

auxlo = <float-value> (Double)
The lower limit for the plotted aux axis. If not set, a value will be chosen which is low enough
to accommodate all the data.

auxlog = true|false (Boolean)
If false (the default), the scale on the aux axis is linear; if true it is logarithmic.

[Default: false]

auxshader = rainbow|pastel|... (Shader)
Determines how data from auxiliary axes will be displayed. Generally this is some kind of
colour ramp. These are the available colour fixing options:

• rainbow

• pastel

• standard

• heat

• colour

• hue

• greyscale

• red-blue

and these are the available colour modifying options:

• hsv_h

• hsv_s

• hsv_v

• intensity

• rgb_red

• rgb_green

• rgb_blue

• yuv_y

• yuv_u

• yuv_v

• transparency

[Default: rainbow]

cmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the table. The value of this parameter is one or more
of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

colourNS = <rrggbb>|red|blue|... (Color)
Defines the colour of markers plotted. The value may be a 6-digit hexadecimal number giving
red, green and blue intensities, e.g. "ff00ff" for magenta. Alternatively it may be the name of
one of the pre-defined colours. These are currently red, blue, green, grey, magenta, cyan,
orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

dashNS = dot|dash|...|<a,b,...> (float[])

SUN/256 486

Defines the dash style for any lines drawn in data set NS To generate a dashed line the value
may be one of the named dash types:

• dot

• dash

• longdash

• dotdash

or may be a comma-separated string of on/off length values such as "4,2,8,2". A null value
indicates a solid line.

Only has an effect if the lineNS parameter is set to draw lines.

errstyleNS = lines|capped_lines|... (ErrorRenderer)
Defines the way in which error bars (or ellipses, or...) will be represented for data set NS if
errors are being displayed. The following options are available:

• none

• lines

• capped_lines

• caps

• arrows

• ellipse

• crosshair_ellipse

• rectangle

• crosshair_rectangle

• filled_ellipse

• filled_rectangle

[Default: lines]

font = dialog|serif|... (String)
Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

• serif

• sansserif

• monospaced

• dialog

• dialoginput

as well as a range of system-dependent fonts, possibly including

• aakar

• abyssinica_sil

• ani

• anjalioldlipi

• bitstream_charter

• c059

• cantarell

• cantarell_extra_bold

• cantarell_light

• cantarell_thin

• century_schoolbook_l

• chandas

• chilanka

• courier

• courier_10_pitch

• d050000l

• dejavu_math_tex_gyre

SUN/256 487

• dejavu_sans

• dejavu_sans_condensed

• dejavu_sans_light

• dejavu_sans_mono

• dejavu_serif

• dejavu_serif_condensed

• dingbats

• ...

[Default: dialog]

fontsize = <int-value> (Integer)
Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic (Integer)
Gives a style in which the font is to be applied for plot annotations. Options are plain, bold,
italic and bold-italic.

[Default: plain]

grid = true|false (Boolean)
If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

hideNS = true|false (Boolean)
Indicates whether the actual markers plotted for each point should be hidden. Normally this is
false, but you may want to set it to true if the point positions are being revealed in some other
way, for instance by error markers or lines drawn between them.

[Default: false]

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and

SUN/256 488

processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

legend = true|false (Boolean)
Determines whether a legend showing which plotting style is used for each data set. Defaults
to true if there is more than one set, false otherwise.

lineNS = DotToDot|LinearRegression (Line)
Determines what line if any will be plotted along with the data points. The options are:

• null: No line is plotted.
• DotToDot: Each point is joined to the next one in sequence by a straight line.
• LinearRegression: A linear regression line is plotted based on all the points which are

visible in the plot. Note that the regression coefficients take no account of points out of
the visible range.

linewidthNS = <int-value> (Integer)
Sets the line width in pixels for any lines drawn in data set NS.

Only has an effect if the lineNS parameter is set to draw lines.

[Default: 1]

nameNS = <value> (String)
Provides a name to use for a subset with the symbolic label NS. This name will be used for
display in the legend, if one is displayed.

ofmt = png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip (GraphicExporter)
Graphics format in which the plot is written to the output file, see Section 8.6. One of:

• png: PNG
• png-transp: PNG with transparent background
• gif: GIF
• jpeg: JPEG
• pdf: Portable Document Format
• svg: Scalable Vector Graphics
• eps: Encapsulated PostScript
• eps-gzip: Gzipped Encapsulated PostScript

May default to a sensible value depending on the filename given by out.

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

out = <out-file> (uk.ac.starlink.util.Destination)

SUN/256 489

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

sequence = <suffix>,<suffix>,... (String[])
Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "NS" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably alphabetic by suffix).

shapeNS = filled_circle|open_circle|... (MarkShape)
Defines the shapes for the markers that are plotted in data set NS. The following shapes are
available:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

sizeNS = <int-value> (Integer)
Defines the marker size in pixels for markers plotted in data set NS. If the value is negative, an
attempt will be made to use a suitable size according to how many points there are to be
plotted.

[Default: -1]

subsetNS = <expr> (String)
Gives the selection criterion for the subset labelled "NS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

title = <value> (String)
A one-line title to display at the top of the plot.

transparencyNS = <int-value> (Integer)
Determines the transparency of plotted markers for data set NS. A value of <n> means that
opacity is only achieved (the background is only blotted out) when <n> pixels of this colour
have been plotted on top of each other.

The minimum value is 1, which means opaque markers.

txtlabelN = <value> (String)
Gives an expression which will label each plotted point. If given, the text (or number) resulting
from evaluating the expression will be written near each point which is plotted.

xdataN = <expr> (String)
Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 10

SUN/256 490

xerrorN = <expr>|[<lo-expr>],[<hi-expr>] (String)
Gives expressions for the errors on X coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 10.

xflip = true|false (Boolean)
If set true, the scale on the x axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

xhi = <float-value> (Double)
The upper limit for the plotted x axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

xlabel = <value> (String)
Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xlo = <float-value> (Double)
The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xlog = true|false (Boolean)
If false (the default), the scale on the x axis is linear; if true it is logarithmic.

[Default: false]

xpix = <int-value> (Integer)
The width of the output graphic in pixels.

[Default: 400]

ydataN = <expr> (String)
Gives a column name or expression for the y axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 10

yerrorN = <expr>|[<lo-expr>],[<hi-expr>] (String)
Gives expressions for the errors on Y coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 10.

yflip = true|false (Boolean)
If set true, the scale on the y axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

yhi = <float-value> (Double)

SUN/256 491

The upper limit for the plotted y axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

ylabel = <value> (String)
Specifies a label to be used for annotating axis y. A default values based on the plotted data
will be used if no value is supplied for this parameter.

ylo = <float-value> (Double)
The lower limit for the plotted y axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

ylog = true|false (Boolean)
If false (the default), the scale on the y axis is linear; if true it is logarithmic.

[Default: false]

ypix = <int-value> (Integer)
The height of the output graphic in pixels.

[Default: 300]

B.16.2 Examples

Here are some examples of plot2d in use:

stilts plot2d in=cat.xml xdata=RMAG-BMAG ydata=BMAG

Plots a colour-magnitude diagram. Since no omode or out value has been specified, the plot is
posted directly to the graphics display for inspection. By adding the parameter
out=xyplot.eps the plot could be written to an Encapsulated Postscript file instead.

The generated plot is here.

stilts plot2d in=6dfgs_mini.xml xdata=RMAG-BMAG ydata=BMAG
subset1=SGFLAG==1 name1=galaxy colour1=blue shape1=open_circle
subset2=SGFLAG==2 name2=star colour2=e010f0 shape2=x size2=3
xlo=-1 xhi=4.5 ylo=10 yhi=20 xpix=500 ypix=250
out=xyplot2.png

Plots a colour-magnitude diagram with multiple subsets. The subsets are labelled "1" and "2"
with separate sets of parameters applying to each. The selections for the sets are given by the
subset* parameters; set 1 is those rows with the SGFLAG column equal to 1 and set 2 is those
rows with the SGFLAG column equal to 2. The boundaries of the plot in data coordinates are
set explicitly rather than being determined from the data (this is faster) and the plot size in
pixels is also set explicitly rather than taking the default values. Output is to a PNG file.

The generated plot is here.

stilts plot2d in1=iras_psc.fits cmd1='addskycoords fk5 galactic RA DEC GLON GLAT'
xdata1=GLON ydata1=GLAT
auxdata1=FNU_100 auxlog=true auxflip=true size1=0 transparency1=3
in2=messier.xml cmd2='addskycoords fk5 galactic RA DEC GLON GLAT'
xdata2=GLON ydata2=GLAT
txtlabel2=RADIUS>16?("M"+ID):"" cmd2='addcol SIZE sqrt(RADIUS/2)'
xerror2=SIZE yerror2=SIZE
subset2a=true hide2a=true colour2a=black errstyle2a=ellipse
subset2b=true hide2b=true colour2b=black errstyle2b=filled_ellipse

transparency2b=6
xlabel='Galactic Longitude' ylabel='Galactic Latitude' title='The Sky'
legend=false grid=false fontsize=12 fontstyle=bold-italic
xlo=0 xhi=360 ylo=-90 yhi=+90 xpix=600 ypix=300
out=skyplot.png

You can do quite complicated things.

SUN/256 492

The generated plot is here.

B.17 plot3d: Old-style 3D Scatter Plot

This section describes a deprecated command. It still works, but you are advised to use the more
capable plot2cube or plot2sphere instead.

plot3d performs three-dimensional scatter plots, sending the output to a graphical display or
writing it to a file in some vector or bitmapped graphics format. You need to supply it with values
for one or more X, Y and Z datasets, in terms of table columns, and it will generate a plot with a
point for each row. There are many options available to configure the detailed appearance of the
plot, but in its simplest form invocation is quite straightforward. See Section 9 for more discussion
on use of the plotting commands.

B.17.1 Usage

The usage of plot3d is

stilts <stilts-flags> plot3d xpix=<int-value> ypix=<int-value>
font=dialog|serif|... fontsize=<int-value>
fontstyle=plain|bold|italic|bold-italic
legend=true|false title=<value>
omode=swing|out|cgi|discard|auto
out=<out-file>
ofmt=png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip
inN=<table> ifmtN=<in-format>
istreamN=true|false cmdN=<cmds> xdataN=<expr>
ydataN=<expr> zdataN=<expr> auxdataN=<expr>
xlo=<float-value> ylo=<float-value>
zlo=<float-value> auxlo=<float-value>
xhi=<float-value> yhi=<float-value>
zhi=<float-value> auxhi=<float-value>
xlog=true|false ylog=true|false
zlog=true|false auxlog=true|false
xflip=true|false yflip=true|false
zflip=true|false auxflip=true|false
xlabel=<value> ylabel=<value> zlabel=<value>
auxlabel=<value>
xerrorN=<expr>|[<lo-expr>],[<hi-expr>]
yerrorN=<expr>|[<lo-expr>],[<hi-expr>]
zerrorN=<expr>|[<lo-expr>],[<hi-expr>]
auxshader=rainbow|pastel|... txtlabelN=<value>
subsetNS=<expr> nameNS=<value>
colourNS=<rrggbb>|red|blue|...
shapeNS=filled_circle|open_circle|...
sizeNS=<int-value> transparencyNS=<int-value>
lineNS=DotToDot|LinearRegression
linewidthNS=<int-value>
dashNS=dot|dash|...|<a,b,...>
hideNS=true|false
errstyleNS=lines|capped_lines|...
grid=true|false antialias=true|false
sequence=<suffix>,<suffix>,...
fog=<float-value> phi=<float-value>
theta=<float-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TablePlot3D.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|false (Boolean)

SUN/256 493

Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false simply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down slightly.

[Default: true]

auxdataN = <expr> (String)
Gives a column name or expression for the aux axis data for table N. The expression is a
numeric algebraic expression based on column names as described in Section 10

auxflip = true|false (Boolean)
If set true, the scale on the aux axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

auxhi = <float-value> (Double)
The upper limit for the plotted aux axis. If not set, a value will be chosen which is high enough
to accommodate all the data.

auxlabel = <value> (String)
Specifies a label to be used for annotating axis aux. A default values based on the plotted data
will be used if no value is supplied for this parameter.

auxlo = <float-value> (Double)
The lower limit for the plotted aux axis. If not set, a value will be chosen which is low enough
to accommodate all the data.

auxlog = true|false (Boolean)
If false (the default), the scale on the aux axis is linear; if true it is logarithmic.

[Default: false]

auxshader = rainbow|pastel|... (Shader)
Determines how data from auxiliary axes will be displayed. Generally this is some kind of
colour ramp. These are the available colour fixing options:

• rainbow

• pastel

• standard

• heat

• colour

• hue

• greyscale

• red-blue

and these are the available colour modifying options:

• hsv_h

• hsv_s

• hsv_v

• intensity

• rgb_red

• rgb_green

• rgb_blue

• yuv_y

• yuv_u

• yuv_v

• transparency

SUN/256 494

[Default: rainbow]

cmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the table. The value of this parameter is one or more
of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

colourNS = <rrggbb>|red|blue|... (Color)
Defines the colour of markers plotted. The value may be a 6-digit hexadecimal number giving
red, green and blue intensities, e.g. "ff00ff" for magenta. Alternatively it may be the name of
one of the pre-defined colours. These are currently red, blue, green, grey, magenta, cyan,
orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

dashNS = dot|dash|...|<a,b,...> (float[])
Defines the dash style for any lines drawn in data set NS To generate a dashed line the value
may be one of the named dash types:

• dot

• dash

• longdash

• dotdash

or may be a comma-separated string of on/off length values such as "4,2,8,2". A null value
indicates a solid line.

Only has an effect if the lineNS parameter is set to draw lines.

errstyleNS = lines|capped_lines|... (ErrorRenderer)
Defines the way in which error bars (or ellipses, or...) will be represented for data set NS if
errors are being displayed. The following options are available:

• none

• lines

• capped_lines

• caps

• arrows

• cuboid

• ellipse

• crosshair_ellipse

• rectangle

• crosshair_rectangle

• filled_ellipse

• filled_rectangle

[Default: lines]

fog = <float-value> (Double)
Sets the level of fogging used to provide a visual indication of depth. Object plotted further
away from the viewer appear more washed-out by a white fog. The default value gives a bit of
fogging; increase it to make the fog thicker, or set to zero if no fogging is required.

SUN/256 495

[Default: 1.0]

font = dialog|serif|... (String)
Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

• serif

• sansserif

• monospaced

• dialog

• dialoginput

as well as a range of system-dependent fonts, possibly including

• aakar

• abyssinica_sil

• ani

• anjalioldlipi

• bitstream_charter

• c059

• cantarell

• cantarell_extra_bold

• cantarell_light

• cantarell_thin

• century_schoolbook_l

• chandas

• chilanka

• courier

• courier_10_pitch

• d050000l

• dejavu_math_tex_gyre

• dejavu_sans

• dejavu_sans_condensed

• dejavu_sans_light

• dejavu_sans_mono

• dejavu_serif

• dejavu_serif_condensed

• dingbats

• ...

[Default: dialog]

fontsize = <int-value> (Integer)
Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic (Integer)
Gives a style in which the font is to be applied for plot annotations. Options are plain, bold,
italic and bold-italic.

[Default: plain]

grid = true|false (Boolean)
If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

hideNS = true|false (Boolean)
Indicates whether the actual markers plotted for each point should be hidden. Normally this is
false, but you may want to set it to true if the point positions are being revealed in some other

SUN/256 496

way, for instance by error markers or lines drawn between them.

[Default: false]

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

legend = true|false (Boolean)
Determines whether a legend showing which plotting style is used for each data set. Defaults
to true if there is more than one set, false otherwise.

lineNS = DotToDot|LinearRegression (Line)
Determines what line if any will be plotted along with the data points. The options are:

• null: No line is plotted.
• DotToDot: Each point is joined to the next one in sequence by a straight line.
• LinearRegression: A linear regression line is plotted based on all the points which are

visible in the plot. Note that the regression coefficients take no account of points out of
the visible range.

linewidthNS = <int-value> (Integer)
Sets the line width in pixels for any lines drawn in data set NS.

Only has an effect if the lineNS parameter is set to draw lines.

[Default: 1]

nameNS = <value> (String)
Provides a name to use for a subset with the symbolic label NS. This name will be used for

SUN/256 497

display in the legend, if one is displayed.

ofmt = png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip (GraphicExporter)
Graphics format in which the plot is written to the output file, see Section 8.6. One of:

• png: PNG
• png-transp: PNG with transparent background
• gif: GIF
• jpeg: JPEG
• pdf: Portable Document Format
• svg: Scalable Vector Graphics
• eps: Encapsulated PostScript
• eps-gzip: Gzipped Encapsulated PostScript

May default to a sensible value depending on the filename given by out.

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

out = <out-file> (uk.ac.starlink.util.Destination)
The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

phi = <float-value> (Double)
Angle in degrees through which the 3D plot is rotated abound the Z axis prior to drawing.

[Default: 30.0]

sequence = <suffix>,<suffix>,... (String[])
Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "NS" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably alphabetic by suffix).

shapeNS = filled_circle|open_circle|... (MarkShape)
Defines the shapes for the markers that are plotted in data set NS. The following shapes are
available:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

SUN/256 498

• open_triangle_up

• open_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

sizeNS = <int-value> (Integer)
Defines the marker size in pixels for markers plotted in data set NS. If the value is negative, an
attempt will be made to use a suitable size according to how many points there are to be
plotted.

[Default: -1]

subsetNS = <expr> (String)
Gives the selection criterion for the subset labelled "NS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

theta = <float-value> (Double)
Angle in degrees through which the 3D plot is rotated towards the viewer (i.e. about the
horizontal axis of the viewing plane) prior to drawing.

[Default: 15.0]

title = <value> (String)
A one-line title to display at the top of the plot.

transparencyNS = <int-value> (Integer)
Determines the transparency of plotted markers for data set NS. A value of <n> means that
opacity is only achieved (the background is only blotted out) when <n> pixels of this colour
have been plotted on top of each other.

The minimum value is 1, which means opaque markers.

txtlabelN = <value> (String)
Gives an expression which will label each plotted point. If given, the text (or number) resulting
from evaluating the expression will be written near each point which is plotted.

xdataN = <expr> (String)
Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 10

xerrorN = <expr>|[<lo-expr>],[<hi-expr>] (String)
Gives expressions for the errors on X coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 10.

xflip = true|false (Boolean)
If set true, the scale on the x axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

SUN/256 499

xhi = <float-value> (Double)
The upper limit for the plotted x axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

xlabel = <value> (String)
Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xlo = <float-value> (Double)
The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xlog = true|false (Boolean)
If false (the default), the scale on the x axis is linear; if true it is logarithmic.

[Default: false]

xpix = <int-value> (Integer)
The width of the output graphic in pixels.

[Default: 300]

ydataN = <expr> (String)
Gives a column name or expression for the y axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 10

yerrorN = <expr>|[<lo-expr>],[<hi-expr>] (String)
Gives expressions for the errors on Y coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 10.

yflip = true|false (Boolean)
If set true, the scale on the y axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

yhi = <float-value> (Double)
The upper limit for the plotted y axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

ylabel = <value> (String)
Specifies a label to be used for annotating axis y. A default values based on the plotted data
will be used if no value is supplied for this parameter.

ylo = <float-value> (Double)
The lower limit for the plotted y axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

ylog = true|false (Boolean)
If false (the default), the scale on the y axis is linear; if true it is logarithmic.

[Default: false]

ypix = <int-value> (Integer)
The height of the output graphic in pixels.

[Default: 300]

SUN/256 500

zdataN = <expr> (String)
Gives a column name or expression for the z axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 10

zerrorN = <expr>|[<lo-expr>],[<hi-expr>] (String)
Gives expressions for the errors on Z coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 10.

zflip = true|false (Boolean)
If set true, the scale on the z axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

zhi = <float-value> (Double)
The upper limit for the plotted z axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

zlabel = <value> (String)
Specifies a label to be used for annotating axis z. A default values based on the plotted data
will be used if no value is supplied for this parameter.

zlo = <float-value> (Double)
The lower limit for the plotted z axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

zlog = true|false (Boolean)
If false (the default), the scale on the z axis is linear; if true it is logarithmic.

[Default: false]

B.17.2 Examples

Here are some examples of plot3d in use:

stilts plot3d in=cat.xml xdata=RMAG ydata=BMAG zdata=VEL zlog=true

Plots a 3-d scatter plot of red magnitude vs. blue magnitude vs. velocity; the velocity is plotted
on a logarithmic scale. Since no omode or out value has been specified, the plot is posted
directly to the graphics display for inspection. By adding the parameter out=xyplot.eps the
plot could be written to an Encapsulated Postscript file instead.

The generated plot is here.

stilts plot3d in=sim1.fits xdata=x ydata=y zdata=z
cmd='addcol vel "sqrt(velx*velx+vely*vely+velz*velz)"' auxdata=vel auxlog=true
xpix=500 ypix=400 phi=50 theta=10 out=cube.jpeg

Plots the x, y, z positions of particles from a file containing the result of a simulation run. Here
an auxiliary axis is used to colour-code the points according their velocity. This is done by
introducing a new vel column to the table using the addcol filter command, so that the vel

column can be used as the value for the auxdata parameter. Alternatively, the given expression

SUN/256 501

for the velocity could have been used directly as the value of the auxdata parameter.

Additionally, the phi and theta parameters are given to adjust the orientation of the cube.

The generated plot is here.

B.18 plothist: Old-style Histogram

This section describes a deprecated command. It still works, but you are advised to use the more
capable plot2plane instead.

plothist performs histogram plots, sending the output to a graphical display or writing it to a file
in some vector or bitmapped graphics format. You need to supply it with values for one or more
sets of X values, in terms of table columns, and it will bin the data and draw bars appropriately. Plot
bounds, bin widths etc may be supplied expliicitly, but will be calculated from the data and set from
defaults as appropriate otherwise. There are many options available to configure the detailed
appearance of the plot, but in its simplest form invocation is quite straightforward. See Section 9 for
more discussion on use of the plotting commands.

B.18.1 Usage

The usage of plothist is

stilts <stilts-flags> plothist xpix=<int-value> ypix=<int-value>
font=dialog|serif|... fontsize=<int-value>
fontstyle=plain|bold|italic|bold-italic
legend=true|false title=<value>
omode=swing|out|cgi|discard|auto
out=<out-file>
ofmt=png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip
inN=<table> ifmtN=<in-format>
istreamN=true|false cmdN=<cmds>
xdataN=<expr> xlo=<float-value>
xhi=<float-value> xlog=true|false
xflip=true|false xlabel=<value>
subsetNS=<expr> nameNS=<value>
colourNS=<rrggbb>|red|blue|...
barstyleNS=fill|open|...
linewidthNS=<int-value>
dashNS=dot|dash|...|<a,b,...>
grid=true|false antialias=true|false
sequence=<suffix>,<suffix>,...
ylo=<float-value> yhi=<float-value>
ylog=true|false ylabel=<value>
weightN=<value> binwidth=<float-value>
norm=true|false cumulative=true|false
binbase=<float-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableHistogram.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|false (Boolean)
Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false simply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down slightly.

SUN/256 502

[Default: true]

barstyleNS = fill|open|... (BarShape)
Defines how histogram bars will be drawn for dataset NS. The options are:

• fill

• open

• tops

• semi

• semitops

• spikes

• fillover

• openover

[Default: fill]

binbase = <float-value> (Double)
Adjusts the offset of the bins. By default zero (or one for logarithmic X axis) is a boundary
between bins; other boundaries are defined by this and the bin width. If this value is adjusted,
the lower bound of one of the bins will be set to this value, so all the bins move along by the
corresponding distance.

[Default: 0.0]

binwidth = <float-value> (Double)
Defines the width on the X axis of histogram bins. If the X axis is logarithmic, then this is a
multiplicative value.

cmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the table. The value of this parameter is one or more
of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (";"). This parameter can be repeated multiple times on the
same command line to build up a list of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

colourNS = <rrggbb>|red|blue|... (Color)
Defines the colour of bars plotted for data set NS. The value may be a 6-digit hexadecimal
number giving red, green and blue intensities, e.g. "ff00ff" for magenta. Alternatively it may
be the name of one of the pre-defined colours. These are currently red, blue, green, grey,
magenta, cyan, orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

cumulative = true|false (Boolean)
Determines whether historams are cumulative. When false (the default), the height of each bar
is determined by counting the number of points which fall into the range on the X axis that it
covers. When true, the height is determined by counting all the points between negative
infinity and the upper bound of the range on the X axis that it covers.

[Default: false]

dashNS = dot|dash|...|<a,b,...> (float[])
Defines the dashing pattern for lines drawn for dataset NS. To generate a dashed line the value
may be one of the named dash types:

SUN/256 503

• dot

• dash

• longdash

• dotdash

or may be a comma-separated string of on/off length values such as "4,2,8,2". A null value
indicates a solid line. Only certain bar styles are affected by the dash pattern.

font = dialog|serif|... (String)
Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

• serif

• sansserif

• monospaced

• dialog

• dialoginput

as well as a range of system-dependent fonts, possibly including

• aakar

• abyssinica_sil

• ani

• anjalioldlipi

• bitstream_charter

• c059

• cantarell

• cantarell_extra_bold

• cantarell_light

• cantarell_thin

• century_schoolbook_l

• chandas

• chilanka

• courier

• courier_10_pitch

• d050000l

• dejavu_math_tex_gyre

• dejavu_sans

• dejavu_sans_condensed

• dejavu_sans_light

• dejavu_sans_mono

• dejavu_serif

• dejavu_serif_condensed

• dingbats

• ...

[Default: dialog]

fontsize = <int-value> (Integer)
Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic (Integer)
Gives a style in which the font is to be applied for plot annotations. Options are plain, bold,
italic and bold-italic.

[Default: plain]

grid = true|false (Boolean)
If true, grid lines are drawn on the plot. If false, they are absent.

SUN/256 504

[Default: true]

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|false (Boolean)
If set true, the input table specified by the inN parameter will be read as a stream. It is
necessary to give the ifmtN parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large files in certain formats (such as VOTable). This
parameter is ignored for scheme-specified tables.

[Default: false]

legend = true|false (Boolean)
Determines whether a legend showing which plotting style is used for each data set. Defaults
to true if there is more than one set, false otherwise.

linewidthNS = <int-value> (Integer)
Defines the line width for lines drawn as part of the bars for dataset NS. Only certain bar styles
are affected by the line width.

[Default: 2]

nameNS = <value> (String)
Provides a name to use for a subset with the symbolic label NS. This name will be used for
display in the legend, if one is displayed.

norm = true|false (Boolean)
Determines whether bin counts are normalised. If true, histogram bars are scaled such that
summed height of all bars over the whole dataset is equal to one. Otherwise (the default), no
scaling is done.

[Default: false]

ofmt = png|png-transp|gif|jpeg|pdf|svg|eps|eps-gzip (GraphicExporter)
Graphics format in which the plot is written to the output file, see Section 8.6. One of:

SUN/256 505

• png: PNG
• png-transp: PNG with transparent background
• gif: GIF
• jpeg: JPEG
• pdf: Portable Document Format
• svg: Scalable Vector Graphics
• eps: Encapsulated PostScript
• eps-gzip: Gzipped Encapsulated PostScript

May default to a sensible value depending on the filename given by out.

omode = swing|out|cgi|discard|auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

• swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plots in TOPCAT.

• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

out = <out-file> (uk.ac.starlink.util.Destination)
The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

sequence = <suffix>,<suffix>,... (String[])
Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "NS" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably alphabetic by suffix).

subsetNS = <expr> (String)
Gives the selection criterion for the subset labelled "NS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

title = <value> (String)
A one-line title to display at the top of the plot.

weightN = <value> (String)
Defines a weighting for each point accumulated to determine the height of plotted bars. If this
parameter has a value other than 1 (the default) then instead of simply accumulating the
number of points per bin to determine bar height, the bar height will be the sum over the
weighting expression for the points in each bin. Note that with weighting, the figure drawn is
no longer strictly speaking a histogram.

When weighted, bars can be of negative height. An anomaly of the plot as currently
implemented is that the Y axis never descends below zero, so any such bars are currently
invisible. This may be amended in a future release (contact the author to lobby for such an

SUN/256 506

amendment).

[Default: 1]

xdataN = <expr> (String)
Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 10

xflip = true|false (Boolean)
If set true, the scale on the x axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

xhi = <float-value> (Double)
The upper limit for the plotted x axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

xlabel = <value> (String)
Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xlo = <float-value> (Double)
The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xlog = true|false (Boolean)
If false (the default), the scale on the x axis is linear; if true it is logarithmic.

[Default: false]

xpix = <int-value> (Integer)
The width of the output graphic in pixels.

[Default: 400]

yhi = <float-value> (Double)
Upper bound for Y axis. Autogenerated from the data if not supplied.

ylabel = <value> (String)
Specifies a label for annotating the vertical axis. A default value based on the type of
histogram will be used if no value is supplied for this parameter.

[Default: Count]

ylo = <float-value> (Double)
Lower bound for Y axis.

[Default: 0.0]

ylog = true|false (Boolean)
Whether to use a logarithmic scale for the Y axis.

[Default: false]

ypix = <int-value> (Integer)
The height of the output graphic in pixels.

[Default: 300]

B.18.2 Examples

Here are some examples of plothist in use:

stilts plothist in=cat.xml xdata=RMAG-BMAG

SUN/256 507

Plots a histogram of the R-B colour. The plot is displayed directly on the screen.

The generated plot is here.

stilts plothist in=cat.xml xdata=RMAG-BMAG ofmt=eps-gzip out=hist.eps.gz

Makes the same plot as the previous example, but writes it to a gzipped encapsulated postscript
file instead of displaying it on the screen.

The generated plot is here.

stilts plothist inJ=2mass_xsc.fits xdataJ=j_m_k20fe barstyleJ=tops
inH=2mass_xsc.fits xdataH=h_m_k20fe barstyleH=tops
inK=2mass_xsc.fits xdataK=k_m_k20fe barstyleK=tops
binwidth=0.1 xlo=12 xhi=16 xflip=true xlabel=Magnitude xpix=500
out=2mass.png

Overplots histograms of three different columns from the same input table. These are treated as
three separate datasets which all happen to use the same input file. The different datasets are
labelled "J", "H" and "K" so these suffixes appear on all the dataset-dependent parameters
which are supplied. The binwidth and X range are specified explicitly rather than leaving them
to be chosen automatically by examining the data.

The generated plot is here.

B.19 regquery: Queries the VO registry

regquery submits a query to the Virtual Observatory registry and returns the result as a table
containing all the records which match the condition specified. The resulting table can be written
out in any of the supported formats or otherwise processed in the usual ways. Making use of this
command requires an understanding of the VOResource schema.

It is important to note that the results of this command give a very much flattened and incomplete
view of the results of a full registry query. That is because the contents of an IVOA Registry (see
the IVOA Resource Metadata and VOResource documents for more detail) are hierarchical and
cannot be faithfully represented in a simple tabular structure. Other superior registry search clients
exist; this command is just useful for viewing the results in a rather simplified way which can be
represented as a table.

B.19.1 Usage

The usage of regquery is

stilts <stilts-flags> regquery query=<value> regurl=<url-value>
soapout=<out-file> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.RegQuery.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken

SUN/256 508

place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

query = <value> (String)
Text of an ADQL WHERE clause targeted at the VOResource 1.0 schema defining which
resource records you wish to retrieve from the registry. Some examples are:

SUN/256 509

• @xsi:type like '%Organisation%'

• capability/@standardID = 'ivo://ivoa.net/std/ConeSearch' and title like

'%SDSS%'

• curation/publisher like 'CDS%' and title like '%galax%'

A full description of ADQL syntax and of the VOResource schema is well beyond the scope of
this documentation, but in general you want to use <field-name> like '<value>' where '%' is
a wildcard character. Logical operators and and or and parentheses can be used to group and
combine expressions. To work out the various <field-name>s you need to look at the
VOResource 1.0 schema.

regurl = <url-value> (URL)
The URL of a SOAP endpoint which provides a VOResource1.0 IVOA registry service. Some
known suitable registry endpoints at time of writing are

• http://registry.astrogrid.org/astrogrid-registry/services/RegistryQueryv1_0

• https://registry.euro-vo.org/services/RegistrySearch

• https://vao.stsci.edu/directory/ristandardservice.asmx

[Default:
http://registry.astrogrid.org/astrogrid-registry/services/RegistryQueryv1_0]

soapout = <out-file> (uk.ac.starlink.util.Destination)
If set to a non-null value, this gives the destination for the text of the request and response
SOAP messages. The special value "-" indicates standard output.

B.19.2 Examples

Here are some examples of regquery:

stilts regquery query="title like '%IRAS%'" ofmt=ascii out=iras.txt

Retrieves all the records in the registry whose title field contain the string "IRAS". The '%'
characters function as wildcards for the ADQL like operator. The output is written to a local
ASCII table which can be examined later.

stilts regquery query="capability/@standardID = 'ivo://ivoa.net/std/ConeSearch'
and curation/@publisher like '%astrogrid%'"

omode=count

Searches for all resources which offer a cone search service and are published by AstroGrid. In
this case the records are not stored, but the omode=count output mode counts the rows. This
therefore tells you how many AstroGrid cone search services are in the registry.

stilts regquery query="capability/@standardID = 'ivo://ivoa.net/std/SSA'"
ocmd="keepcols 'identifier accessUrl'"
ofmt=ascii out=-

Queries the registry for all Simple Spectral Access services. The keepcols filter takes the
result and throws away all the columns except for identifier and accessUrl, and these are
written to the terminal int ASCII format.

B.20 server: Runs an HTTP server to perform STILTS commands

server runs an HTTP server which makes various elements of STILTS functionality available as
HTTP services, so that they can be run by local or remote clients making HTTP requests rather than
from the more usual command line interface.

SUN/256 510

When you run server it will start up a server which runs until it is interrupted, and write to standard
output the base URL at which it can be accessed, for instance "http://localhost:2112/stilts/".
If you point your browser here you will see some examples (hyperlinks to service requests) of how
to use the server.

See Section 11 for more discussion of the server functionality available.

Note: The server command and associated servlet code are somewhat experimental. If you have
requirements which are not currently provided, please contact the author for discussion.

B.20.1 Usage

The usage of server is

stilts <stilts-flags> server port=<int-value> basepath=<value>
tasks=<task-name> ...
tablefactory=file|dirs:...|locator:...

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.StiltsServer.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

basepath = <value> (String)
Base path on the server at which request URLs are rooted. The default is /stilts, which
means that for instance requests to execute task plot2d should be directed to the URL
http://host:portnum/stilts/task/plot2d?name=value&name=value...

[Default: /stilts]

port = <int-value> (Integer)
Port number on which the server should run.

[Default: 2112]

tablefactory = file|dirs:...|locator:... (StarTableFactory)
This parameter determines how input table names (typically the in parameter of table
processing commands) are used to acquire references to actual table data. The default
behaviour is for input table names to be treated as filenames, in conjunction with some file
type parameter. While this is usually sensible for local use, in server situations it may be
inappropriate, since you don't want external users to have read access to your entire filesystem.

This parameter gives options for alternative ways of mapping table names to table data items.
The currently available options are:

• file: default behaviour - names are treated as filenames
• dirs:<dir>:<dir>:...: following the "dirs:" prefix a list of directories is specified

which will be searched for the file named. Note that the directory separator character
differs between operating systems; it is a colon (":") for Unix-like OSs and a semi-colon
(";") for MS Windows. If a given name is identical to the path-less filename in one of the
<dir> directories, that file is used as the referenced table. File type information is ignored
in this case, so the files must be one of the types which STILTS can autodetect, currently
FITS or VOTable (FITS is more efficient). By using this option, clients can be restricted
to using a fixed set of tables in a restricted part of the server's file system.

• locator:<class-name>: the <class-name> must be the name of a Java class on the
classpath which implements the interface uk.ac.starlink.ttools.task.TableLocator

and which has a no-arg constructor. An instance of this class will be used to resolve

SUN/256 511

names to tables.

The usage and functionality of this parameter is experimental, and may change significantly in
future releases.

[Default: file]

tasks = <task-name> ... (String)
Gives a space-separated list of tasks which will be provided by the relevant endpoints of the
running server. If the value is null then all tasks will be available. However, some tasks don't
make a lot of sense to run from the server, so the default value is a somewhat restricted list. If
the server is being exposed to external users, you might also want to reduce the list for security
reasons. If you don't want any tasks made available, for instance if you want to run the plot
service only, you can set this to the empty string.

[Default: arrayjoin calc cdsskymatch cone coneskymatch datalinklint pixfoot

pixsample plot2d plot3d plothist regquery sqlclient sqlskymatch sqlupdate

taplint tapquery tapresume tapskymatch tcat tcatn tcopy tcube tgridmap tgroup

tjoin tloop tmatch1 tmatch2 tmatchn tmulti tmultin tpipe tskymap tskymatch2

votcopy votlint xsdvalidate plot2plane plot2sky plot2cube plot2sphere

plot2corner plot2time]

B.20.2 Examples

Here are some examples of running the server command:

stilts server

Starts a server on the default port until it is interrupted. Most tasks are available in server
mode. A message will be printed on standard output indicating the base URL at which it may
be accessed, for instance "http://localhost:2112/stilts/".

stilts server port=2100 basepath=tableserv

Starts a server running on port 2100 with a given URL. The URL at which, for instance, the
plot2d task can be executed will be "http:// host :2100/tableserv/task/plot2d"

stilts server tasks="plot2d plothist"

Starts a server with a restricted list of tasks available. Only the plotting tasks plot2d and
plothist will be available for execution by clients.

B.21 sqlclient: Executes SQL statements

sqlclient is a simple command-line client for use with SQL databases. One or more SQL
statements can be supplied using the sql parameter. The result of each statement may be one or
more update counts (for update-type statements) or tables (for query-type statements). Tables will
be written to standard output in a format given by the ofmt parameter. Update results and timing
information will be written to standard error.

In most cases, you will find life easier if you use either the database's own command-line or GUI
client, or, if you require STILTS-type format conversion or post-processing, a jdbc:-format URL
for the in parameter of the tpipe or tcopy commands (see Section 3.4 for more explanation of the
latter). However, this command enables you to submit multiple queries over the same JDBC
connection, including ones which do not generate a tabular result. It may be useful if a

SUN/256 512

command-line client is not available to you for the database you are using.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate permissions on it as well as the relevant drivers.

This command is experimental, and it may be enhanced, renamed or withdrawn in future releases.

B.21.1 Usage

The usage of sqlclient is

stilts <stilts-flags> sqlclient db=<jdbc-url> user=<value> password=<value>
sql=<sql> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.SqlClient.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

db = <jdbc-url> (Connection)
URL which defines a connection to a database. This has the form
jdbc:<subprotocol>:<subname> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
jdbc.drivers system property as well for the connection to be made.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: text]

password = <value> (String)
Password for logging in to SQL database.

sql = <sql> (String)
Text of an SQL statement for execution. This parameter may be repeated, or statements may
be separated by semicolon (";") characters.

user = <value> (String)
User name for logging in to SQL database. Defaults to the current username.

[Default: mbt]

B.21.2 Examples

Here are some examples of sqlclient:

stilts -classpath lib/drivers.jtds-1.1.jar \
-Djdbc.drivers=net.sourceforge.jtds.jdbc.Driver \
-Djava.net.preferIPv4Stack=true \
sqlclient \

db='jdbc:jtds:sqlserver://amenhotep:1433/twomass' \

SUN/256 513

user='guest1' \
ofmt=csv-nohead \
sql='SET SHOWPLAN_TEXT ON' \
sql='SELECT ra,dec FROM twomass_psc WHERE ra BETWEEN 21.7 AND 21.8 \

AND dec BETWEEN 9.1 AND 9.12'

This sends two commands to a SQL Server database; the first one (SET SHOWPLAN...) sets a
flag which causes the DB to return an execution plan rather than the result for subsequent
queries, and the second makes the query itself. Since the password is not provided on the
command line, a prompt for it will be issued before execution. The result is SQL Server's
execution plan for the SELECT statement expressed as a headerless comma-separated value
table sent to the terminal. CSV is chosen for the output format since it does not truncate wide
columns.

B.22 sqlskymatch: Crossmatches table on sky position against SQL table

sqlskymatch resembles coneskymatch (Appendix B.5), but instead of sending an HTTP query to a
remote cone search service for each match (i.e. each row of the input table), it executes an SQL
query directly. The query is a SELECT statement with a WHERE clause which makes restrictions
on Right Ascension and Declination columns; the names of these columns must be given as
parameters. The effect is that of a spatial join between a client-side table and a table stored in the
database.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate read permissions on it as well as the relevant drivers.

Note: this task was known as sqlcone in its experimental form in STILTS v1.3.

B.22.1 Usage

The usage of sqlskymatch is

stilts <stilts-flags> sqlskymatch ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
ra=<expr> dec=<expr> sr=<expr/deg>
find=best|all|each usefoot=true|false
footnside=<int-value>
copycols=<colid-list> scorecol=<col-name>
erract=abort|ignore|retry|retry<n>
ostream=true|false fixcols=none|dups|all
suffix0=<label> suffix1=<label>
db=<jdbc-url> user=<value>
password=<value> dbtable=<table-name>
dbra=<sql-col> dbdec=<sql-col>
dbunit=deg|rad
tiling=hpx<K>|healpixnest<K>|healpixring<K>|htm<K>
dbtile=<sql-col> selectcols=<sql-cols>
where=<sql-condition>
preparesql=true|false
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.SqlCone.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

SUN/256 514

copycols = <colid-list> (String)
List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 6.3 for list syntax. The default setting is "*", which means that all
columns from the input table are included in the output.

[Default: *]

db = <jdbc-url> (Connection)
URL which defines a connection to a database. This has the form
jdbc:<subprotocol>:<subname> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
jdbc.drivers system property as well for the connection to be made.

dbdec = <sql-col> (String)
The name of a column in the SQL database table dbtable which gives the declination. Units
are given by dbunit.

dbra = <sql-col> (String)
The name of a column in the SQL database table dbtable which gives the right ascension.
Units are given by dbunit.

dbtable = <table-name> (String)
The name of the table in the SQL database which provides the remote data.

dbtile = <sql-col> (String)
The name of a column in the SQL database table dbtable which contains a sky tiling pixel
index. The tiling scheme is given by the tiling parameter. Use of a tiling column is optional,
but if present (and if the column is indexed in the database table) it may serve to speed up
searches. Set to null if the database table contains no tiling column or if you do not wish to use
one.

dbunit = deg|rad (AngleUnits)
Units of the right ascension and declination columns identified in the database table. May be
either deg[rees] (the default) or rad[ians].

[Default: deg]

dec = <expr> (String)
Declination in degrees in the coordinate system for the position of each row of the input table.
This may simply be a column name, or it may be an algebraic expression calculated from
columns as explained in Section 10. If left blank, an attempt is made to guess from UCDs,
column names and unit annotations what expression to use.

erract = abort|ignore|retry|retry<n> (ConeErrorPolicy)
Determines what will happen if any of the individual cone search requests fails. By default the
task aborts. That may be the best thing to do, but for unreliable or poorly implemented services
you may find that some searches fail and others succeed so it can be best to continue operation
in the face of a few failures. The options are:

• abort: Failure of any query terminates the task.
• ignore: Failure of a query is treated the same as a query which returns no rows.
• retry: Failed queries are retried until they succeed; an increasing delay is introduced for

each failure. Use with care - if the failure is for some good, or at least reproducible reason
this could prevent the task from ever completing.

• retry<n>: Failed queries are retried at most a fixed number <n> of times; an increasing
delay is introduced for each failure. If failures persist the task terminates.

[Default: abort]

SUN/256 515

find = best|all|each (String)
Determines which matches are retained.

• best: Only the matching query table row closest to the input table row will be output.
Input table rows with no matches will be omitted. (Note this corresponds to the best1

option in the pair matching commands, and best1 is a permitted alias).
• all: All query table rows which match the input table row will be output. Input table rows

with no matches will be omitted.
• each: There will be one output table row for each input table row. If matches are found,

the closest one from the query table will be output, and in the case of no matches, the
query table columns will be blank.

[Default: all]

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

footnside = <int-value> (Integer)
Determines the HEALPix Nside parameter for use with the MOC footprint service. This tuning
parameter determines the resolution of the footprint if available. Larger values give better
resolution, hence a better chance of avoiding unnecessary queries, but processing them takes
longer and retrieving and storing them is more expensive.

The value must be a power of 2, and at the time of writing, the MOC service will not supply
footprints at resolutions greater than nside=512, so it should be <=512.

Only used if usefoot=true.

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)

SUN/256 516

The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

SUN/256 517

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

ostream = true|false (Boolean)
If set true, this will cause the operation to stream on output, so that the output table is built up
as the results are obtained from the cone search service. The disadvantage of this is that some
output modes and formats need multiple passes through the data to work, so depending on the
output destination, the operation may fail if this is set. Use with care (or be prepared for the
operation to fail).

[Default: false]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

password = <value> (String)
Password for logging in to SQL database.

preparesql = true|false (Boolean)
If true, the JDBC connection will use PreparedStatements for the SQL SELECTs otherwise it
will use simple Statements. This is a tuning parameter and affects only performance. On some
database/driver combinations it's a lot faster set false (the default); on others it may be faster,
who knows?

[Default: false]

ra = <expr> (String)
Right ascension in degrees in the coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 10. If left blank, an attempt is made to guess from
UCDs, column names and unit annotations what expression to use.

scorecol = <col-name> (String)
Gives the name of a column in the output table to contain the distance between the requested
central position and the actual position of the returned row. The distance returned is an angular
distance in degrees. If a null value is chosen, no distance column will appear in the output
table.

[Default: Separation]

selectcols = <sql-cols> (String)
An SQL expression for the list of columns to be selected from the table in the database. A
value of "*" retrieves all columns.

[Default: *]

SUN/256 518

sr = <expr/deg> (String)
Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or a function involving one.

suffix0 = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: _0]

suffix1 = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the cone result table.

[Default: _1]

tiling = hpx<K>|healpixnest<K>|healpixring<K>|htm<K> (SkyTiling)
Describes the sky tiling scheme that is in use. One of the following values may be used:

• hpxK: alias for healpixnestK
• healpixnestK: HEALPix using the Nest scheme at order K
• healpixringK: HEALPix using the Ring scheme at order K
• htmK: Hierarchical Triangular Mesh at level K

So for instance hpx5 or healpixnest5 would both indicate the HEALPix NEST tiling scheme
at order 5.

At level K, there are 12*4^K HEALPix pixels, or 8*4^K HTM pixels on the sky. More
information about these tiling schemes can be found at the HEALPix and HTM web sites.

usefoot = true|false (Boolean)
Determines whether an attempt will be made to restrict searches in accordance with available
footprint information. If this is set true, then before any of the per-row queries are performed,
an attempt may be made to acquire footprint information about the servce. If such information
can be obtained, then queries which fall outside the footprint, and hence which are known to
yield no results, are skipped. This can speed up the search considerably.

Currently, the only footprints available are those provided by the CDS MOC (Multi-Order
Coverage map) service, which covers VizieR and a few other cone search services.

[Default: true]

user = <value> (String)
User name for logging in to SQL database. Defaults to the current username.

[Default: mbt]

where = <sql-condition> (String)
An SQL expression further limiting the rows to be selected from the database. This will be
combined with the constraints on position implied by the cone search centres and radii. The
value of this parameter should just be a condition, it should not contain the WHERE keyword. A
null value indicates no additional criteria.

B.22.2 Examples

Here are some examples of sqlskymatch:

stilts -classpath lib/drivers/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver

SUN/256 519

sqlskymatch in=messier.xml ra=RA dec=DEC sr=0.05 \
db='jdbc:mysql://localhost/ASTRO1' user=mbt \
dbtable=FIRST dbra=_RA2000 dbdec=_DE2000 \
out=matches.xml

This performs a series of SELECT statements on the table FIRST in the local MySQL database
ASTRO1 to identify database objects in the region of each object represented in the VOTable
messier.xml. The result, a join between the Messier and FIRST tables, is output as a VOTable
called matches.xml. In this case a password has not been supplied on the command line, so if
one is required it will be prompted for on the console.

B.23 sqlupdate: Updates values in an SQL table

sqlupdate updates values in an existing table in an SQL database. The rows to update are specified,
as a normal SELECT statement, using the select parameter. Each column to update, and the value
to write to it, are given using the assign parameter.

Why not just use the database's own UPDATE statement? In most cases, that would be a much
better idea. However, using sqlupdate you can write values using STILTS's expression language
(Section 10), and hence take advantage of its various functions, without having to embed them into
the database. SQL column names can be used as variables in these expressions, in the same way
that table column names are used as variables in other commands such as tpipe.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate write permissions on it as well as the relevant drivers.

This is a somewhat specialised command, and several (database/driver-specific) things can go
wrong with it. If you do not have a fairly good understanding of the database with which you are
using it then you may run into problems (but then you'd be unlikely to have the permissions to do
the updates in any case).

B.23.1 Usage

The usage of sqlupdate is

stilts <stilts-flags> sqlupdate db=<jdbc-url> user=<value> password=<value>
select=<select-stmt> assign=<col>=<expr>
progress=true|false

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.SqlUpdate.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

assign = <col>=<expr> (Assignment[])
Assigns new values for a given column. The assignment is made in the form
<colname>=<expr> where <colname> is the name of a column in the SQL table and <expr> is
the text of an expression using STILTS's expression language, as described in Section 10. SQL
table column names or $ID identifiers may be used as variables in the usual way.

This parameter may be supplied more than once to effect multiple assignments, or multiple
assignments may be made by separating them with semicolons in the value of this parameter.

db = <jdbc-url> (Connection)

SUN/256 520

URL which defines a connection to a database. This has the form
jdbc:<subprotocol>:<subname> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
jdbc.drivers system property as well for the connection to be made.

password = <value> (String)
Password for logging in to SQL database.

progress = true|false (Boolean)
If true, a spinner will be drawn on standard error which shows how many rows have been
updated so far.

[Default: true]

select = <select-stmt> (String)
Gives the full text (including "SELECT") of the SELECT statement to identify which rows
undergo updates.

user = <value> (String)
User name for logging in to SQL database. Defaults to the current username.

[Default: mbt]

B.23.2 Examples

Here are some examples of sqlupdate:

stilts -classpath lib/drivers/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
sqlupdate db='jdbc:mysql://localhost/RADIO' user=root
select='SELECT * from FIRST" \
assign='HTMID=htmIndex(20,POS_EQ_RA,POS_EQ_DEC)'

Fills in the HTMID column of a table called FIRST in the local MySQL database RADIO,
using HTM pixel indices based on the existing right ascension and declination columns in that
table. The HTMID column must exist prior to executing this command.

B.24 taplint: Tests TAP services

taplint runs a series of tests on a Table Access Protocol (TAP) service and reports the results.
Unlike most of the other tools in this package it is not likely to be of use to normal users; its
intended use is for people developing or operating TAP services to assess their services, perhaps
with a view to improving compliance.

Testing takes place in a number of stages; it is possible to choose which stages are run in by using
the stages parameter. The default output (format=text) is line-based text to standard output, and
each report line is of the (fairly greppable) form:

T-SSS-MMMMxN aaaaa...

where the parts have the following meanings:

• T: Report type, one of E(rror), W(arning), I(nfo), S(ummary), F(ailure). See the documentation
of the report parameter for further description of what these mean. The report parameter can
be used to suppress some of these; only E indicates actual service compliance errors, but
including the others may make it easier to see what's going on.

• SSS: Stage abbreviation, as used in the stages parameter. The stages parameter can be used to
select which stages are run.

SUN/256 521

• MMMM: Message label, which is always the same for messages generated by the same test, is
usually different for messages generated by different tests, and may be somewhat mnemonic.

• x: Continuation indicator, either "-" or "+". In most cases it is "-", indicating the first line of a
message, but multi-line messages (rare) use "-" for the first line and "+" for any continuation
lines.

• N: Sequence number, which is 1 for the first time message T-SSS-MMMM is reported, and
increases by one for each subsequent appearance. After a certain maximum (determined by the
maxrepeat parameter) additional reports with the same code are no longer output individually,
but a summary of the number of reports so discarded is written at the end of the section with
the character "x" instead of the sequence number. This behaviour prevents the output being
swamped by multiple reports of the same issue. If the maxrepeat parameter is increased above
9, more than one digit will be used here (so e.g. for maxrepeat=999, the format would be NNN

not N).
• aaaaa...: Message text, a free text description of what is being reported.

If you don't like that format, others may be selected using the format parameter, which currently
also supports JSON. For more flexible interaction with the output you can invoke taplint

programmatically and supply your own OutputReporter instance.

TAP is a complicated beast, referencing many standards (including TAP, UWS, VODataService,
ADQL, VOResource, VOSI, TAPRegExt, DALI, ObsCore, ObsLocTAP, EPN-TAP, VOTable,
UCD, VOUnits, SSO, SoftID, HTTP, RDFa Lite), and it is hard to write a validator which is
comprehensive, especially one which can provide useful output for services with a range of
compliance levels. This tool tries to make a wide range of tests, but does not claim to be
comprehensive. An idea of what tests it does perform can be gained from the stages listed in the
description of the stages parameter. It does make a fairly good job of checking that declared
metadata is consistent and matches the data actually returned from queries, it tests job submission in
most of the various ways permitted by the TAP standard, and it checks all returned VOTables by
effectively running them through votlint. Things it does not test much include complex ADQL
queries, coordinate/STC-related data types, queries in non-ADQL languages, and service
registration.

HTTP connections made by this validator are flagged in the User-Agent field with the token
"(IVOA-test)".

B.24.1 Usage

The usage of taplint is

stilts <stilts-flags> taplint stages=[+/-]XXX ... maxtable=<int-value>
tables=<name-list> format=text|json
report=[EWISF]+ maxrepeat=<int-value>
truncate=<int-value> debug=true|false
interface=tap1.0|tap1.1|cap
syncurl=<url-value> asyncurl=<url-value>
tablesurl=<url-value>
capabilitiesurl=<url-value>
availabilityurl=<url-value>
examplesurl=<url-value>
[tapurl=]<url-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TapLint.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

SUN/256 522

asyncurl = <url-value> (URL)
Sets the URL to use for the async endpoint of the TAP service. The default value would be
<tapurl>/async, but it may be influenced by the chosen interface value, and it can be
further overridden by setting this value.

availabilityurl = <url-value> (URL)
Sets the URL to use for the availability endpoint of the TAP service. The default value would
be <tapurl>/availability, but it may be influenced by the chosen interface value, and it
can be further overridden by setting this value.

capabilitiesurl = <url-value> (URL)
Sets the URL to use for the capabilities endpoint of the TAP service. The default value would
be <tapurl>/capabilities, but it may be influenced by the chosen interface value, and it
can be further overridden by setting this value.

debug = true|false (Boolean)
If true, debugging output including stack traces will be output along with the normal validation
messages.

[Default: false]

examplesurl = <url-value> (URL)
Sets the URL to use for the examples endpoint of the TAP service. The default value would be
<tapurl>/examples, but it may be influenced by the chosen interface value, and it can be
further overridden by setting this value.

format = text|json (OutputReporter)
Determines the format of the output. Possible values are text, json.

Note not all of the other parameters may be applicable to all output formats.

[Default: text]

interface = tap1.0|tap1.1|cap (String)
Defines how the service endpoints and the version of the TAP protocol to use for queries is
determined. This may take one of the following (case-insensitive) values:

• TAP1.0: The standard TAP endpoints are used, without examining the service's
capabilities document. The service is queried using version 1.0 of the TAP protocol.

• TAP1.1: The standard TAP endpoints are used, without examining the service's
capabilities document. The service is queried using version 1.1 of the TAP protocol.

• cap: The service's capabilities document is examined, and the endpoints listed there are
used.

The capabilities document, if used, is read from tapurl/capabilities unless the
capabilitiesurl parameter is defined, in which case that is used.

The baseline value of all the TAP service endpoints (sync, async, tables, capabilities,
examples) are determined by this parameter, but each of those endpoint values may be
overridden individually by other endpoint-specific parameters (syncurl, asyncurl, tablesurl,
capabilitiesurl, availabilityurl, examplesurl)

For default (unauthenticated) access, the default value is usually suitable.

[Default: cap]

maxrepeat = <int-value> (Integer)
Puts a limit on the number of times that a single message will be repeated. By setting this to
some reasonably small number, you can ensure that the output does not get cluttered up by
millions of repetitions of essentially the same error.

[Default: 9]

SUN/256 523

maxtable = <int-value> (Integer)
Limits the number of tables from the service that will be tested. Currently, this only affects
stage MDQ. If the value is left blank (the default), or if it is larger than the number of tables
actually present in the service, it will have no effect.

report = [EWISF]+ (String)
Letters indicating which message types should be listed. Each character of the string is one of
the letters E, W, I, S, F with the following meanings:

• E: Error in operation or standard compliance of the service.
• W: Warning that service behaviour is questionable, or contravenes a standard

recommendation, but is not in actual violation of the standard.
• I: Information about progress, for instance details of queries made.
• S: Summary of previous successful/unsuccessful reports.
• F: Failure of the validator to perform some testing. The cause is either some error internal

to the validator, or some error or missing functionality in the service which has already
been reported.

[Default: EWISF]

stages = [+/-]XXX ... (String[])
Determines the validation stages which the validator will peform. Each stage is represented by
a short code, as follows:

• TMV: Validate table metadata against XML schema
• TME: Check content of tables metadata from /tables
• TMS: Check content of tables metadata from TAP_SCHEMA
• TMC: Compare table metadata from /tables and TAP_SCHEMA
• UUC: Check column units and UCDs are legal
• CPV: Validate capabilities against XML schema
• CAP: Check TAP and TAPRegExt content of capabilities document
• AVV: Validate availability against XML schema
• QGE: Make ADQL queries in sync GET mode
• QPO: Make ADQL queries in sync POST mode
• QAS: Make ADQL queries in async mode
• UWS: Test asynchronous UWS/TAP behaviour
• MDQ: Check table query result columns against declared metadata
• OBS: Test implementation of ObsCore Data Model
• LOC: Test implementation of ObsLocTAP Data Model
• EPN: Test implementation of EPN-TAP tables (off)
• UPL: Make queries with table uploads
• EXA: Check content of examples document

This parameter can specify what stages to run in the following ways:

• if left blank, the default list of stages (which is most or all of them) will be run
• if the value is a space-separated list of three-letter codes, it lists the stages that will be run
• if the value is a space separated list of three-letter codes preceded by a "+" or "-"

character, the named stages will be removed or added to the default list

So "TME CAP" will run only Table Metadata and Capability stages, while "-EXA -UPL" will run
all the default stages apart from Examples and Upload. The order in which stages are listed is
not significant.

Note that removing some stages may affect the operation of others; for instance table metadata
is acquired from the metadata stages, and avoiding those will mean that later stages which use
the table metadata to pose queries will not be able to do so with knowledge of the database
schema.

syncurl = <url-value> (URL)

SUN/256 524

Sets the URL to use for the sync endpoint of the TAP service. The default value would be
<tapurl>/sync, but it may be influenced by the chosen interface value, and it can be further
overridden by setting this value.

tables = <name-list> (String)
If supplied, this specifies a list of tables to test. It may be set to a space- or comma-separated
list of table names for consideration; any tables not covered by this list are mostly ignored for
the purposes of reporting. Matching against table names is case-insensitive, and the asterisk
character "*" may be used as a wildcard to match any sequence of characters. Note that
matching is against the declared table name which may or may not include a schema name
prefix depending on service behaviour.

By default this parameter is not set, which means that all tables are considered.

tablesurl = <url-value> (URL)
Sets the URL to use for the tables endpoint of the TAP service. The default value would be
<tapurl>/tables, but it may be influenced by the chosen interface value, and it can be
further overridden by setting this value.

tapurl = <url-value> (URL)
The base URL of a Table Access Protocol service. This is the bare URL without a trailing
"/[a]sync".

In the usual case, the default values of the various endpoints (sync and async query
submission, tables metadata, service-provided examples etc) use this URL as a parent and
append standard sub-paths.

In some cases however, determination of the endpoints is more complicated, as determined by
the interface parameter which may cause endpoints to be read from the capabilities
document at tapurl/capabilities, and by other endpoint-specific parameters (syncurl,
asyncurl, tablesurl, capabilitiesurl, availabilityurl, examplesurl) for fine tuning.

truncate = <int-value> (Integer)
Limits the line length written to the output.

[Default: 640]

B.24.2 Examples

Here are some examples of taplint:

stilts taplint http://dc.g-vo.org/tap

Performs a default validation run against the TAP service based at the given URL.

stilts taplint tapurl=http://gaia.esac.esa.int/tap-server/tap
examplesurl=file://localhost/tmp/examples.xml
stages='TME CAP EXA'

Executes the EXAmples stage against the GACS TAP service at ESAC. Most of the service
endpoints (tables, capabilities, availability etc) are found at their default locations relative to
the given tapurl. However, the Examples document is loaded instead from the local file at the
URL that has been specified by the examplesurl parameter. This makes is possible to test a
non-deployed examples document against a deployed TAP service. It may also be used if
certain capabilities have been deployed at non-default locations to satisfy multiple security
models or for other reasons. You can play similar tricks with the other *url parameters like
capabilitiesurl and tablesurl, as listed in the documentation.

The TME (table metadata) and CAP (service capabilities) stages have been executed along with
EXA, since taplint needs to pick up the metadata and capabilities in order to be able to do some

SUN/256 525

of the checks on the examples it finds. If those stage names are not included in the stages

parameter, the output will include some messages noting that fact, and the tests will be less
rigorous.

stilts taplint tapurl=http://example.com/tap
report=EW stages='TMS UWS' truncate=80 maxrepeat=4

A validation run is done against the named TAP service. Only Error and Warning type
messages are output, only two validation stages are performed, lines are truncated to a
maximum of 80 characters, and each message is repeated a maximum of 4 times. An
invocation like this may be suitable if you find the default operation too verbose.

The output of this invocation might look like this:

Section TMS: Check content of tables metadata from TAP_SCHEMA
E-TMS-CINT-1 Column principal in TAP_SCHEMA.columns has wrong type char not int
E-TMS-CINT-2 Column std in TAP_SCHEMA.columns has wrong type char not int
W-TMS-CLUN-1 Unused entry in TAP_SCHEMA.columns table: ivoa.obscore

Section UWS: Test asynchronous UWS/TAP behaviour
E-UWS-GMIM-1 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-2 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-3 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-4 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-x (3 more)

Totals: Errors: 9; Warnings: 1

B.25 tapquery: Queries a Table Access Protocol server

tapquery can query remote databases using the Table Access Protocol (TAP) services by
submitting Astronomical Data Query Language queries to them and retrieving the results. TAP and
ADQL are Virtual Observatory protocols.

Queries can be submitted in either synchronous or asynchronous mode, as determined by the sync

parameter. In asynchronous mode, if the query has not been deleted by the time the command exits
(see the delete parameter), the result can be picked up at a later stage using the tapresume

command. Table uploads are supported, so it is possible (if the service supports this functionality),
to upload a local table to the remote database, perform a query involving it, such as a join with a
remote table of some sort, and receive the result. This powerful facility gives you crossmatches
between local and remote tables.

This command does not provide any facility for querying the service for either table or capability
metadata, so you will need to know about the service capabilities and database structure from some
other source (possibly TOPCAT).

Note: this command has been introduced at STILTS version 2.3, at which time most available TAP
services are quite new and may not fully conform to the standards, and usage patterns are still
settling down. For this reason you may find that some TAP services do not behave quite as
expected; it is also possible that in future versions the command behaviour or parameters will
change in line with changing service profiles or in the light of user experience.

B.25.1 Usage

The usage of tapquery is

stilts <stilts-flags> tapquery nupload=<count> ufmtN=<in-format>
uploadN=<tableN> ucmdN=<cmds> ocmd=<cmds>

SUN/256 526

omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
upnameN=<adql-identifier> tapurl=<url-value>
interface=tap1.0|tap1.1|cap
adql=<query-text> parse=true|false
sync=true|false maxrec=<nrow>
destruction=<iso8601>
executionduration=<seconds>
compress=true|false
upvotformat=TABLEDATA|BINARY|BINARY2
language=<lang-name> poll=<millisec>
progress=true|false
delete=finished|never|always|now

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TapQuerier.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

adql = <query-text> (String)
Astronomical Data Query Language string specifying the TAP query to execute. ADQL/S
resembles SQL, so this string will likely start with "SELECT".

compress = true|false (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzip", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: true]

delete = finished|never|always|now (DeleteMode)
Determines under what circumstances the UWS job is to be deleted from the server when its
data is no longer required. If it is not deleted, then the job is left on the TAP server and it can
be accessed via the normal UWS REST endpoints or using tapresume until it is destroyed by
the server.

Possible values:

• finished: delete only if the job finished, successfully or not
• never: do not delete
• always: delete on command exit
• now: delete and return immediately

[Default: finished]

destruction = <iso8601> (String)
Posts an updated value of the UWS DESTRUCTION parameter to the query job before it
starts. This only makes sense for asynchronous jobs (sync=false).

The supplied value should be an ISO-8601-like string, giving the new requested job
destruction time. The service is not obliged to honour this request. See UWS v1.0, sec 2.2.3.3.

executionduration = <seconds> (Long)
Posts an updated value of the UWS EXECUTIONDURATION parameter to the query job
before it starts. This only makes sense for asynchronous jobs (sync=false).

The supplied value is an integer giving the maximum number of wall-clock seconds for which
the job is permitted to execute before being forcibly terminated. A value of zero indicates
unlimited duration. The service is not obliged to honour this request. See UWS v1.0, sec
2.2.3.4.

SUN/256 527

interface = tap1.0|tap1.1|cap (String)
Defines how the service endpoints and the version of the TAP protocol to use for queries is
determined. This may take one of the following (case-insensitive) values:

• TAP1.0: The standard TAP endpoints are used, without examining the service's
capabilities document. The service is queried using version 1.0 of the TAP protocol.

• TAP1.1: The standard TAP endpoints are used, without examining the service's
capabilities document. The service is queried using version 1.1 of the TAP protocol.

• cap: The service's capabilities document is examined, and the endpoints listed there are
used.

The capabilities document, if used, is read from tapurl/capabilities unless the
capabilitiesurl parameter is defined, in which case that is used.

The baseline value of all the TAP service endpoints (sync, async, tables, capabilities,
examples) are determined by this parameter, but each of those endpoint values may be
overridden individually by other endpoint-specific parameters (syncurl, asyncurl, tablesurl,
capabilitiesurl, availabilityurl, examplesurl)

For default (unauthenticated) access, the default value is usually suitable.

[Default: tap1.0]

language = <lang-name> (String)
Language to use for the ADQL-like query. This will usually be "ADQL" (the default), but may
be set to some other value supported by the service, for instance a variant indicating a different
ADQL version. Note that at present, setting it to "PQL" is not sufficient to submit a PQL
query.

[Default: ADQL]

maxrec = <nrow> (Long)
Sets the requested maximum row count for the result of the query. The service is not obliged to
respect this, but in the case that it has a default maximum record count, setting this value may
raise the limit. If no value is set, the service's default policy will be used.

nupload = <count> (Integer)
The number of upload tables for this task. For each of the upload tables N there will be
associated parameters ufmtN, uploadN and ucmdN.

[Default: 0]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

SUN/256 528

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

parse = true|false (Boolean)
Determines whether an attempt will be made to check the syntax of the ADQL prior to
submitting the query. If this is set true, and if a syntax error is found, the task will fail with an
error before any attempt is made to submit the query.

[Default: false]

poll = <millisec> (Integer)
Interval to wait between polling attempts, in milliseconds. Asynchronous TAP queries can
only find out when they are complete by repeatedly polling the server to find out the job's
status. This parameter allows you to set how often that happens. Attempts to set it too low
(<50) will be rejected on the assumption that you're thinking in seconds.

[Default: 5000]

progress = true|false (Boolean)
If this parameter is set true, progress of the job is reported to standard output as it happens.

[Default: true]

sync = true|false (Boolean)
Determines whether the TAP query is submitted in synchronous or asynchronous mode.
Synchronous (true) means that the result is retrieved over the same HTTP connection that the
query is submitted from. This is uncomplicated, but means if the query takes a long time it

SUN/256 529

may time out and the results will be lost. Asynchronous (false) means that the job is queued
and results may be retrieved later. Normally this command does the necessary waiting around
and recovery of the result, though with appropriate settings you can get tapresume to pick it up
for you later instead. In most cases false (the default) is preferred.

[Default: false]

tapurl = <url-value> (URL)
The base URL of a Table Access Protocol service. This is the bare URL without a trailing
"/[a]sync".

In the usual case, the default values of the various endpoints (sync and async query
submission, tables metadata, service-provided examples etc) use this URL as a parent and
append standard sub-paths.

In some cases however, determination of the endpoints is more complicated, as determined by
the interface parameter which may cause endpoints to be read from the capabilities
document at tapurl/capabilities, and by other endpoint-specific parameters (syncurl,
asyncurl, tablesurl, capabilitiesurl, availabilityurl, examplesurl) for fine tuning.

ucmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on upload table #N as specified by parameter uploadN,
before any other processing has taken place. The value of this parameter is one or more of the
filter commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ufmtN = <in-format> (String)
Specifies the format of upload table #N as specified by parameter uploadN. The known
formats are listed in Section 5.1.1. This flag can be used if you know what format your table is
in. If it has the special value (auto) (the default), then an attempt will be made to detect the
format of the table automatically. This cannot always be done correctly however, in which
case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

uploadN = <tableN> (StarTable)
The location of upload table #N. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ufmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

upnameN = <adql-identifier> (String)
Identifier to use in server-side expressions for uploaded table #N. In ADQL expressions, the

SUN/256 530

table should be referred to as "TAP_UPLOAD.<label>".

The value must syntactically be an ADQL identifier ([A-Za-z][A-Za-z0-9_]*).

[Default: upN]

upvotformat = TABLEDATA|BINARY|BINARY2 (uk.ac.starlink.votable.VOTableWriter)
Determines how any uploaded tables will be serialized for transmission to the TAP server. The
supplied string is the name of one of the defined VOTable serialization formats. The choice
shouldn't affect any results, though it may affect required bandwidth, and some services may
(though should not) have non-standard requirements for serialization format.

[Default: TABLEDATA]

B.25.2 Examples

Here are some examples of tapquery:

stilts tapquery tapurl='http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap'
adql='SELECT TOP 1000 * FROM ppmxl.main'
out=ppmxl.fits

Executes the given ADQL query on the service referenced by the URL and writes the result to
a FITS file.

stilts tapquery
tapurl='http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap'
adql="SELECT *

FROM twomass.data AS t
JOIN TAP_UPLOAD.up1 AS s
ON 1=CONTAINS(POINT('ICRS', t.RAJ2000, t.DEJ2000),

CIRCLE('ICRS', s.ra2000, s.dec2000, 5./3600.))"
nupload=1 upload1=6dfgs_E7.fits ucmd1='select BMAG-RMAG<0'
maxrec=20000
ocmd='tablename 2mass_x_6df' omode=topcat

The local table 6dfgs_E7 is filtered to contain only rather blue objects, and the resulting
selection is uploaded to the TAP server. A positional crossmatch with 5 arcsec tolerance is
then performed on the server between this uploaded table and the twomass.data table held by
the service. The adjusted maxrec parameter ensures that the result will not be artificially
truncated to shorter than 20000 rows (assuming the service limits permit this). When the result
is received, it is loaded directly into TOPCAT with the name "2mass_x_6df".

B.26 tapresume: Resumes a previous query to a Table Access Protocol server

tapresume can resume monitoring and data retrieval from an asynchronous Table Access Protocol
query which has already been submitted. TAP is a Virtual Observatory protocol. Such a
pre-existing query may have been submitted by the tapquery command or by some completely
different mechanism. It essentially does the same job as tapquery but without the job submission
stage. It waits until the query has completed, and then retrieves the table result and processes it in
accordance with the supplied parameters. The query may or may not be deleted from the server as
part of the operation.

B.26.1 Usage

The usage of tapresume is

stilts <stilts-flags> tapresume joburl=<url-value> compress=true|false
poll=<millisec> progress=true|false

SUN/256 531

delete=finished|never|always|now
ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TapResume.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

compress = true|false (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzip", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: true]

delete = finished|never|always|now (DeleteMode)
Determines under what circumstances the UWS job is to be deleted from the server when its
data is no longer required. If it is not deleted, then the job is left on the TAP server and it can
be accessed via the normal UWS REST endpoints or using tapresume until it is destroyed by
the server.

Possible values:

• finished: delete only if the job finished, successfully or not
• never: do not delete
• always: delete on command exit
• now: delete and return immediately

[Default: finished]

joburl = <url-value> (URL)
The URL of a job created by submission of a TAP query which was created earlier and has not
yet been deleted (by the client) or destroyed (by the server). This will usually be of the form
<tap-url>/async/<job-id>. You can also find out, and possibly retrieve results from the job
by pointing a web browser at this URL.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

SUN/256 532

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

poll = <millisec> (Integer)
Interval to wait between polling attempts, in milliseconds. Asynchronous TAP queries can
only find out when they are complete by repeatedly polling the server to find out the job's
status. This parameter allows you to set how often that happens. Attempts to set it too low
(<50) will be rejected on the assumption that you're thinking in seconds.

[Default: 5000]

progress = true|false (Boolean)
If this parameter is set true, progress of the job is reported to standard output as it happens.

[Default: true]

B.26.2 Examples

Here are some examples of tapresume:

stilts tapresume joburl='http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap/async/d4ENGR'
out=result.csv ofmt=csv

Resumes waiting for the output of a query on a job with ID d4ENGR which was previously
started on the GAVO TAP server. When it has completed the output table will be written as a

SUN/256 533

comma-separated value file.

B.27 tapskymatch: Crossmatches table on sky position against TAP table

tapskymatch allows you to perform a positional crossmatch of a local table with one held in a
remote TAP service, as long as that TAP supports upload queries. This task does three main jobs.
First, it prepares the ADQL queries and TAP negotiations for you so that you don't need to
remember the syntax for performing positional crossmatches against a TAP service. Second, it
organises data transfer so that only those columns required (basically the positional ones) are
transmitted to and from the service, to save on bandwidth. And third it divides the job up into
chunks, so that the TAP service only has to perform a manageable-sized query at a time. If the job
is large this chunking can be useful to monitor progress of the job, and it also allows you to perform
a match which would otherwise hit the upload or output limits imposed by the service.

The positional match may be done in any spherical coordinate system, it's up to the user to ensure
that the same coordinates are provided for the local and remote tables.

Note that cdsskymatch provides similar functionality by accessing a different external service,
which is usually much faster; if the table you wish to match is part of the VizieR database, you may
wish to use that command instead.

B.27.1 Usage

The usage of tapskymatch is

stilts <stilts-flags> tapskymatch ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
inlon=<expr/deg> inlat=<expr/deg>
tapurl=<url-value>
interface=tap1.0|tap1.1|cap
taptable=<name> taplon=<column>
taplat=<column> tapcols=<colname,...>
sr=<expr/deg>
find=all|best|each|each-dist
blocksize=<int-value> maxrec=<int-value>
sync=true|false blockmaxrec=<nrow>
compress=true|false fixcols=none|dups|all
suffixin=<label> suffixremote=<label>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools.task.TapUploadSkyMatch.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

blockmaxrec = <nrow> (Long)
Sets the MAXREC parameter passed to the TAP service for each uploaded block. This allows
you to request that the service overrides its default limit for the number of rows output from a
single query. The service may still impose some "hard" limit beyond which the output row
count cannot be increased.

Note this differs from the maxrec parameter, which gives the maximum total number of rows
to be returned from this command.

blocksize = <int-value> (Integer)

SUN/256 534

The number of rows uploaded in each TAP query. TAP services may have limits on the
number of rows in a table uploaded for matching. This command can therefore break up input
tables into blocks and make a number of individual TAP queries to generate the result. This
parameter controls the maximum number of rows uploaded in each individual request. For an
input table with fewer rows than this value, the whole thing is done as a single query.

[Default: 5000]

compress = true|false (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzip", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: true]

find = all|best|each|each-dist (UserFindMode)
Determines which pair matches are included in the result.

• all: All matches
• best: Matched rows, best remote row for each input row
• each: One row per input row, contains best remote match or blank
• each-dist: One row per input row, column giving distance only for best match

Note only the all mode is symmetric between the two tables.

[Default: all]

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

SUN/256 535

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

inlat = <expr/deg> (String)
Longitude in degrees for the position of each row in the input table. This may simply be a
column name, or it may be an algebraic expression as explained in Section 10. The coordinate
system must match that used for the coordinates in the remote table.

inlon = <expr/deg> (String)
Longitude in degrees for the position of each row in the input table. This may simply be a
column name, or it may be an algebraic expression as explained in Section 10. The coordinate
system must match that used for the coordinates in the remote table.

interface = tap1.0|tap1.1|cap (String)
Defines how the service endpoints and the version of the TAP protocol to use for queries is
determined. This may take one of the following (case-insensitive) values:

• TAP1.0: The standard TAP endpoints are used, without examining the service's
capabilities document. The service is queried using version 1.0 of the TAP protocol.

• TAP1.1: The standard TAP endpoints are used, without examining the service's
capabilities document. The service is queried using version 1.1 of the TAP protocol.

• cap: The service's capabilities document is examined, and the endpoints listed there are
used.

The capabilities document, if used, is read from tapurl/capabilities unless the
capabilitiesurl parameter is defined, in which case that is used.

The baseline value of all the TAP service endpoints (sync, async, tables, capabilities,
examples) are determined by this parameter, but each of those endpoint values may be
overridden individually by other endpoint-specific parameters (syncurl, asyncurl, tablesurl,
capabilitiesurl, availabilityurl, examplesurl)

For default (unauthenticated) access, the default value is usually suitable.

[Default: tap1.0]

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

maxrec = <int-value> (Integer)
Limit to the number of rows resulting from this operation. If the value is negative (the default)
no limit is imposed. Note however that there can be truncation of the result if the number of

SUN/256 536

records returned from a single chunk exceeds limits imposed by the service.

[Default: -1]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

SUN/256 537

[Default: -]

sr = <expr/deg> (String)
Maximum distance in degrees from the local table (lat,lon) position at which counterparts from
the remote table will be identified. This is an ADQL expression interpreted within the TAP
service, so it may be a constant value or may involve columns in the remote table.

suffixin = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: _in]

suffixremote = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the TAP result table.

[Default: _tap]

sync = true|false (Boolean)
Determines whether the TAP queries are submitted in synchronous or asynchronous mode.
Since this command uses chunking to keep requests to a reasonable size, hopefully requests
will not take too long to execute, therefore the default is synchronous (true).

[Default: true]

tapcols = <colname,...> (String[])
Comma-separated list of column names to retrieve from the remote table. If no value is
supplied (the default), all columns from the remote table will be returned.

taplat = <column> (String)
Latitude in degrees for the position of each row in the remote table. This is an ADQL
expression interpreted within the TAP service, typically just a column name. The coordinate
system must match that used for the input table.

taplon = <column> (String)
Longitude in degrees for the position of each row in the remote table. This is an ADQL
expression interpreted within the TAP service, typically just a column name. The coordinate
system must match that used for the input table.

taptable = <name> (String)
Name of the table in the given TAP service against which the matching will be performed.

tapurl = <url-value> (URL)
The base URL of a Table Access Protocol service. This is the bare URL without a trailing
"/[a]sync".

In the usual case, the default values of the various endpoints (sync and async query
submission, tables metadata, service-provided examples etc) use this URL as a parent and
append standard sub-paths.

In some cases however, determination of the endpoints is more complicated, as determined by
the interface parameter which may cause endpoints to be read from the capabilities
document at tapurl/capabilities, and by other endpoint-specific parameters (syncurl,
asyncurl, tablesurl, capabilitiesurl, availabilityurl, examplesurl) for fine tuning.

B.27.2 Examples

Here are some examples of tapskymatch:

SUN/256 538

stilts tapskymatch tapurl=http://dc.g-vo.org/tap
taptable=twomass.data taplon=raj2000 taplat=dej2000
in=dr5qso.fits inlon=RA inlat=DEC sr=0.00027 find=all
out=qso_2mass.fits

Matches a local catalogue dr5qso.fits against the table named twomass.data in the GAVO
TAP service. The search radius is 1/3600 degrees (1 arcsecond) and all 2MASS sources within
the radius of each input source are returned.

If you run the command with "stilts -verbose ..." the text of the ADQL query submitted
to the TAP service will (amongst other things) be logged on the console, and you will also see
the number of rows uploaded and matched in each chunk.

stilts tapskymatch tapurl=http://dc.g-vo.org/tap
taptable=rave.dr3 taplon=raj2000 taplat=dej2000
tapcols=name,raj2000,dej2000,pmra,pmde
in=hip_main.fits inlon=RAdeg inlat=DEdeg
icmd='keepcols "HIP RAdeg DEdeg pmra pmde"'
sr=0.00027
icmd='select nearMoc(\"III/265/ravedr3\",RAdeg,DEdeg,.00027)'
icmd=cache icmd=progress
blocksize=5000
fixcols=all suffixin=_hip suffixremote=_rave
find=best
omode=topcat

This matches a local copy of the Hipparcos survey against a remote copy of the RAVE survey
with a 1-arcsecond radius. The output table contains only the identifier, position and proper
motion columns from both the input table (by using the keepcols filter) and the remote table
(by specifying tapcols); the other columns are discarded. The fixcols and suffix*
parameters ensure that a suffix is added to all the output column names, _hip for the input
(Hipparcos) columns and _rave for the remote (RAVE) ones.

Before uploading, the input table is preprocessed by selecting only those rows that fall within
the actual footprint of the RAVE survey, by filtering with a MOC giving RAVE coverage (the
RAVE dr3 MOC is also available at this URL). This step reduces the amount of data that
needs to be uploaded, since only those rows in the given coverage region stand a chance of
having a match in the remote table. Note use of the nearMoc function with the value of the
match radius as the fourth parameter; this includes those objects which may be outside the
actual MOC region but close enough that a match could still result.

The blocksize parameter determines the number of rows uploaded at a time. If you receive
warnings that the output has been truncated, you should decrease this number.

Progress is displayed as the match continues. The cache filter must be applied upstream of
(before) the progress filter itself for this to work, since otherwise the match processing reads
all the input rows before the actual work is done, and the progress monitor completes before
the match actually starts.

B.28 tcat: Concatenates multiple similar tables

tcat is a tool for concatenating any number of similar tables one after the other. The tables must be
of similar form to each other (same number and types of columns). Preprocessing of the tables may
be done using the icmd parameter, which will operate in the same way on all the input tables. Table
parameters of the output table will be taken from the first of the input tables.

Subject to some constraints on the details of the input and output formats and processing, tcat is
capable of joining an unlimited number of tables together to produce an output table of unlimited
length, without large memory requirements. If there are very many input files, it may be necessary
to set the lazy parameter so that they are not all kept open at once.

SUN/256 539

If you have heterogeneous tables, in different formats or requiring different preprocessing steps
from each other before they can be concatenated, use tcatn instead.

B.28.1 Usage

The usage of tcat is

stilts <stilts-flags> tcat in=<table> [<table> ...] ifmt=<in-format>
multi=true|false istream=true|false icmd=<cmds>
ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
seqcol=<colname> loccol=<colname>
uloccol=<colname> lazy=true|false
countrows=true|false

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableCat.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

countrows = true|false (Boolean)
Whether to count the rows in the table before starting the output. This is essentially a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required
for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set this true or false is to try it both ways

[Default: false]

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on each input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

The same format parameter applies to all the tables specified by in.

[Default: (auto)]

in = <table> [<table> ...] (TableProducer[])
Locations of the input tables. Either specify the parameter multiple times, or supply the input
tables as a space-separated list within a single use.

SUN/256 540

The following table location forms are allowed:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

Compression in any of the supported compression formats (Unix compress, gzip or bzip2) is
expanded automatically.

A list of input table locations may be given in an external file by using the indirction character
'@'. Thus "in=@filename" causes the file filename to be read for a list of input table locations.
The locations in the file should each be on a separate line.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

The same streaming flag applies to all the tables specified by in.

[Default: false]

lazy = true|false (Boolean)
Whether to perform table resolution lazily. If true, each table is only accessed when the time
comes to add its rows to the output; if false, then all the tables are accessed up front. This is
mostly a tuning parameter, and on the whole it doesn't matter much how it is set, but for
joining an enormous number of tables setting it true may avoid running out of resources.

[Default: false]

loccol = <colname> (String)
Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

multi = true|false (Boolean)
Determines whether all tables, or just the first one, from input table files will be used. If set
false, then just the first table from each file named by in will be used. If true, then all tables
present in those input files will be used. This only has an effect for file formats which are
capable of containing more than one table, which effectively means FITS and VOTable and
their variants.

[Default: false]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter

SUN/256 541

commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

seqcol = <colname> (String)
Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

uloccol = <colname> (String)
Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to all the locations. For example, if the input tables are
"/data/cat_a1.fits" and "/data/cat_b2.fits" then the output table will contain a new column

SUN/256 542

<colname> which takes the value "a1" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

B.28.2 Examples

Here are some examples of tcat:

stilts tcat ifmt=ascii in=t1.txt in=t2.txt in=t3.txt out=table.txt

Concatenates the three named ASCII format tables to produce an output table. All three must
have compatible numbers and types of columns.

stilts tcat ifmt=ascii in="t1.txt t2.txt t3.txt" out=table.txt

Has exactly the same effect as the previous example.

stilts tcat ifmt=ascii in=@inlist.lis out=table.txt

This will have the same effect as the previous two examples if a file name "inlist.lis" in the
current directory contains three lines, "t1.txt", "t2.txt" and "t3.txt".

stilts tcat in=@infits.lis out=gaia_source.colfits
lazy=true countrows=true

Concatenates the contents of all the files listed in "infits.lis" to one large output colfits file. The
lazy=true is a good idea if there is a large number of input files listed.

stilts tcat in=r368776.fits#1 in=r368776#2 in=r368776.fits#3 in=r368776.fits#4
out=r368776_all.fits

Concatenates the contents of four tables (the first four extension HDUs) from a
multi-extension FITS file to produce a single FITS table. Many Unix shells (csh, bash) will
allow you to list the input files using the following shorthand: "in=r368776.fits#{1,2,3,4}".

stilts tcat in=r368776.fits multi=true out=r368776_all.fits

Concatenates all the tables in the named file together. Setting multi=true means that instead
of picking the first table from each named in table, all tables will be selected. So, if the input
FITS file in this example has just four table HDUs, then this example does exactly the same as
the previous one, but with less typing. The same thing works with multi-TABLE VOTable
documents, but most other file formats (CSV etc) do not have the facility for storing multiple
tables in a single file.

stilts tcat in=r368776.fits multi=true out=r368776_all.fits
icmd=progress seqcol=ID

Does the same as the previous example with a couple of additions. Firstly, progress through
each of the input files will be reported to the console. Secondly, an additional column "ID" will
be appended to the output which contains 1 for all the rows from the first input table, 2 for the
rows from the second one and so on.

stilts tcat in='rA.csv rB.csv rC.csv' ifmt=csv \
icmd='keepcols "RA DEC FLUX"' icmd='sorthead 10 FLUX' \
ocmd='sort FLUX'

Takes the 10 rows with highest FLUX values from each of three input tables (in

SUN/256 543

comma-separated value format) and joins them together to produce a 30-row output table. This
is then sorted in FLUX order, and the resulting table is output to the console in text format.
Only the columns RA, DEC and FLUX are output; any other columns are discarded. The input
tables don't need to have identical forms to each other, but each must have at least an RA, DEC
and FLUX column.

stilts tcat in=vizier.xml multi=true
icmd='keepcols "ucd$RECORD ucd$POS_EQ_RA_MAIN ucd$POS_EQ_DEC_MAIN"'
uloccol=TID out=all.csv

This processes a VOTable file which may have multiple TABLEs in it, but for which each of
the tables is known to have columns with the UCDs RECORD, POS_EQ_RA_MAIN and
POS_EQ_DEC_MAIN (this is typical of VOTables retrieved from CDS's VizieR service). It
retains only those columns from each table and writes the result as a single concatenated table
to a CSV file.

B.29 tcatn: Concatenates multiple tables

tcatn is a tool for concatenating a number of tables one after the other. Each table can be
manipulated separately prior to the concatenatation. If you have two tables T1 and T2 which
contain similar columns, and you want to treat them as a single table, you can use tcatn to produce
a new table whose metadata (row headings etc) comes from T1 and whose data consists of all the
rows of T1 followed by all the rows of T2.

For this concatenation to make sense, each column of T1 must be compatible with the
corresponding column of T2 - they must have compatible types and, presumably, meanings. If this
is not the case for the tables that you wish to concatenate, for instance the columns are in different
orders, or the units differ between a column in T1 and its opposite number in T2, you can use the
icmd1 and/or icmd2 parameters to manipulate the input tables so that the column sequences are
compatible. See Appendix B.29.2 for some examples.

If the tables are similar to each other (same format, same columns, same preprocessing stages
required if any), you may find it easier to use tcat instead.

B.29.1 Usage

The usage of tcatn is

stilts <stilts-flags> tcatn nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
seqcol=<colname> loccol=<colname>
uloccol=<colname> countrows=true|false

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableCatN.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

countrows = true|false (Boolean)
Whether to count the rows in the table before starting the output. This is essentially a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required

SUN/256 544

for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set this true or false is to try it both ways

[Default: false]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on input table #N as specified by parameter inN, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of input table #N as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <tableN> (StarTable)
The location of input table #N. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

loccol = <colname> (String)
Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

nin = <count> (Integer)
The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character

SUN/256 545

'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

seqcol = <colname> (String)
Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

uloccol = <colname> (String)
Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to all the locations. For example, if the input tables are

SUN/256 546

"/data/cat_a1.fits" and "/data/cat_b2.fits" then the output table will contain a new column
<colname> which takes the value "a1" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

B.29.2 Examples

Here are some examples of tcatn:

stilts tcatn nin=2 in1=obs1.fits in2=obs2.fits out=combined.fits

Concatenates two similar observation catalogues to form a combined one. In this case, both
input and output tables are FITS files.

stilts tcatn nin=3 omode=stats in1=obs1.txt ifmt1=ascii
in2=obs2.xml ifmt2=votable
in3=obs3.fit ifmt3=fits

Three catalogues with similar forms but in different data formats are joined. Instead of writing
the result to an output file, the resulting joined catalogue is examined to calculate its statistics,
which are written to standard output.

stilts tcatn nin=2 in1=survey.vot.gz ifmt2=csv in2=more_data.csv
icmd1='addskycoords fk5 galactic RA2000 DEC2000 GLON GLAT' \
icmd1='keepcols "OBJ_ID GLON GLAT"' \
icmd2='keepcols "ident gal_long gal_lat"' \
loccol=FILENAME
omode=topcat

In this case we are trying to concatenate results from two tables which are quite dissimilar to
each other. In the first place, one is a VOTable (no ifmt1 parameter is required since
VOTables can be detected automatically), and the other is a comma-separated-values file (for
which the ifmt2=csv parameter must be given). In the second place, the column structure of
the two tables may be quite different. By pre-processing the two tables using the icmd1 &
icmd2 parameters, we produce in each case an input table which consists of three columns of
compatible types and meanings: an integer identifier and floating point galactic longitude and
latitude coordinates. The second table contains such columns to start with, but the first table
requires an initial step to convert FK5 J2000.0 coordinates to galactic ones. tcatn joins the
two doctored tables together, to produce a table which contains only these three columns, with
all the rows from both input tables, and sends the result directly to a new or running instance of
TOPCAT. An additional column named FILENAME is appended to the table before sending
it; this contains "survey.vot.gz" for all the columns from the first table and "more_data.csv" for
all the columns from the second one.

B.30 tcopy: Converts between table formats

tcopy is a table copying tool. It simply copies a table from one place to another, but since you can
specify the input and output formats as desired, it works as a converter from any of the supported
input formats (Section 5.1.1) to any of the supported output formats (Section 5.1.2).

tcopy is just a stripped-down version of tpipe - it doesn't do anything that tpipe can't, but the
usage is slightly simplified. It is provided as a drop-in replacement for the old tablecopy

(uk.ac.starlink.table.TableCopy) tool which was supplied with earlier versions of STIL and
TOPCAT - it has the same arguments and behaviour as tablecopy, but is implemented somewhat
differently and will in some cases be more efficient.

SUN/256 547

B.30.1 Usage

The usage of tcopy is

stilts <stilts-flags> tcopy ifmt=<in-format> ofmt=<out-format>
[in=]<table> [out=]<out-table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableCopy.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (auto)]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

[Default: -]

B.30.2 Examples

Here are some examples of tcopy in use:

SUN/256 548

stilts tcopy stars.fits stars.xml

Copies a FITS table to a VOTable. Since no input format is specified, the format is
automatically detected (FITS is one of the formats for which this is possible). Since no output
format is specified, the stars.xml filename is examined to make a guess at the kind of output
to write: the .xml ending is taken to mean a TABLEDATA-encoded VOTable.

stilts tcopy stars.fits stars.xml ifmt=fits ofmt=votable

Does the same as the previous example, but the input and output formats have been specified
explicitly.

stilts tcopy ofmt=text http://remote.host/data/vizer.xml.gz#4 -

Prints the contents of a remote, compressed VOTable to the terminal in a human-readable
form. The #4 at the end of the URL indicates that the data from the fifth TABLE element in the
remote document are to be used. The gzip compression of the table is taken care of
automatically.

stilts tcopy ifmt=csv ofmt=latex spec.csv

Converts a comma-separated values file to a LaTeX table environment, writing the result to
standard output.

stilts -classpath /usr/local/jars/pg73jdbc3.jar \
-Djdbc.drivers=org.postgresql.Driver \
tcopy in="jdbc:postgresql://localhost/imsim#SELECT ra, dec, Imag FROM dqc" \

ofmt=fits wfslist.cat

Makes an SQL query on a PostgreSQL database and writes the results to a FITS file. The
whole command is shown here, to show that the classpath is augmented to include the
PostgreSQL driver class, and the driver class is named using the jdbc.drivers system
property. As you can see, using SQL from Java is a bit fiddly, and there are other ways to
perform this setup than on the command line - see Section 3.4 and tpipe's omode=tosql output
mode.

B.31 tcube: Calculates N-dimensional histograms

tcube constructs an N-dimensional histogram, or density map, from N columns of an input table,
and writes it out as an N-dimensional data cube. The parameters you supply define which N
numeric columns of the input table you want to use and the dimensions (bounds and pixel sizes) of
the output grid, as well as any weighting to be applied to each point and how the weighted
quantities in a single bin are to be aggregated together. Each table row then defines a point in
N-dimensional space. The program goes through each row, and if the point that row defines falls
within the bounds of the output grid you have defined, associates the weight value with the relevant
pixel in the output grid. When all the input values have been processed, the weights in each pixel
are aggregated according to the requested combination method.

The resulting N-dimensional array, whose pixel values represent an aggregation of the rows
associated with that region of the N-dimensional space, is then written out as a FITS file. In one
dimension, this gives you a normal histogram of a given variable. In two dimensions it might
typically be used to plot the density or weighted density on the sky of objects from a catalogue.

As with some of the other generic table commands, you can perform extensive pre-processing on
the input table by use of the icmd parameter before the actual cube counts are calculated.

See also tgridmap, which does a similar job to this command but writes the output in table format.

SUN/256 549

B.31.1 Usage

The usage of tcube is

stilts <stilts-flags> tcube cols=<expr> ifmt=<in-format>
istream=true|false icmd=<cmds>
bounds=[<lo>]:[<hi>] ... binsizes=<size> ...
nbins=<num> ...
combine=sum|sum-per-unit|count|count-per-unit|mean|median|Q1|Q3|min|max|stdev|stdev_pop|hit
out=<out-file>
otype=byte|short|int|long|float|double
scale=<expr>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableCube.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

binsizes = <size> ... (Double[])
Gives the extent of of the data bins (cube pixels) in each dimension in data coordinates. The
form of the value is a space-separated list of values, giving a list of extents for the first, second,
... dimension. Either this parameter or the nbins parameter must be supplied.

bounds = [<lo>]:[<hi>] ... (double[][])
Gives the bounds for each dimension of the cube in data coordinates. The form of the value is
a space-separated list of words, each giving an optional lower bound, then a colon, then an
optional upper bound, for instance "1:100 0:20" to represent a range for two-dimensional
output between 1 and 100 of the first coordinate (table column) and between 0 and 20 for the
second. Either or both numbers may be omitted to indicate that the bounds should be
determined automatically by assessing the range of the data in the table. A null value for the
parameter indicates that all bounds should be determined automatically for all the dimensions.

If any of the bounds need to be determined automatically in this way, two passes through the
data will be required, the first to determine bounds and the second to populate the cube.

cols = <expr> (String[])
Columns to use for this task. One or more <expr> elements, separated by spaces, should be
given. Each one represents a numeric value from the table, provided as a column name or
algebraic expression.

The number of columns listed in the value of this parameter defines the dimensionality of the
output data cube.

combine =

sum|sum-per-unit|count|count-per-unit|mean|median|Q1|Q3|min|max|stdev|stdev_pop|hit

(Combiner)
Defines how values contributing to the same density map bin are combined together to
produce the value assigned to that bin. Possible values are:

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)
• mean: the mean of the combined values
• median: the median
• Q1: first quartile
• Q3: third quartile

SUN/256 550

• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

[Default: sum]

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

nbins = <num> ... (Integer[])
Gives the number of bins (cube pixels) in each dimension. The form of the value is a
space-separated list of integers, giving the number of pixels for the output cube in the first,

SUN/256 551

second, ... dimension. Either this parameter or the binsizes parameter must be supplied.

otype = byte|short|int|long|float|double (Class)
The type of numeric value which will fill the output array. If no selection is made, the output
type will be determined automatically as the shortest type required to hold all the values in the
array. Currently, integers are always signed (no BSCALE/BZERO), so for instance the largest
value that can be recorded in 8 bits is 127.

out = <out-file> (uk.ac.starlink.util.Destination)
The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

The output cube is currently written as a single-HDU FITS file.

[Default: -]

scale = <expr> (String)
Optionally gives a weight for each entry contributing to histogram bins. The value of this
expression is accumulated, in accordance with the combine parameter, into the bin defined by
its coordinates. If no expression is given, the value 1 is assumed.

B.31.2 Examples

stilts tcube in=2QZ_6QZ_pubcat.fits out=ccm.fits \
cols='Bj_R U_Bj Bj' binsizes='0.05 0.05 0.5' bounds='-2:1 -3:2 :'

Calculates a 3-dimensional colour-colour-magnitude grid from three existing columns in a
table. The bin (pixel) sizes are specified. The data bounds are specified explicitly for the (first
two) colour dimensions, but for the (third) magnitude dimension it is determined from the
minimum and maximum values the data in that column of the table. The output is a
three-dimensional FITS cube containing the number of points in each cell.

stilts tcube in=iras_psc.vot out=flux60_map.fits \
icmd='addskycoords fk5 galactic ra dec glat glon' \
cols='glat glon' nbins='400 200' \
scale=Fnu_60 combine=sum

Calculates a map of integrated fluxes in galactic coordinates from a catalogue of IRAS point
sources. The output is a two-dimensional FITS image representing the sky in galactic
coordinates, with each pixel containing the sum of Fnu_60 fluxes from objects in that rectangle
of (glat,glon> space. Bounds are determined automatically from the data, and the number of
pixels in each dimension (400 in latitude and 200 in longitude) are specified, which means that
the pixel sizes don't have to be. Since the input table contains sky positions in equatorial
coordinates rather than galactic ones, the addskycoords filter is used to preprocess the data
before the cube generation step (see Section 6.1).

B.32 tloop: Generates a single-column table from a loop variable

tloop generates a one-column table where the values in the column are effectively populated from a
for loop (start, end, step). This may be useful as it is, or it can be postprocessed with ocmd

parameters to add more columns etc.

B.32.1 Usage

The usage of tloop is

SUN/256 552

stilts <stilts-flags> tloop ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
forcefloat=true|false
[colname=]<value> [start=]<float-value>
[end=]<float-value> [step=]<float-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableLoop.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

colname = <value> (String)
Gives the name of the single column produced by this command.

[Default: i]

end = <float-value> (Double)
Gives the value which the loop variable will not exceed. Exceeding is in the positive or
negative sense according to the sense of the step parameter, as usual for a for-type loop.

forcefloat = true|false (Boolean)
Affects the data type of the loop variable column. If true, the column is always floating point.
If false, and if the other parameters are all of integer type, the column will be an integer
column.

[Default: false]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional

SUN/256 553

parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

start = <float-value> (Double)
Gives the starting value of the loop variable. This will the the value in the first row of the table.

[Default: 0.0]

step = <float-value> (Double)
Amount by which the loop variable will be incremented at each iteration, i.e. each table row.

[Default: 1.0]

B.32.2 Examples

stilts tloop COUNTER 0 1000

Generates a table with a single column, named COUNTER, and a thousand rows. The value in the
first row is 0 and in the last row is 999. The table is written to standard output.

stilts tloop time 0 10 0.25 out=times.csv

Generates a table with one column time counting from 0 to 9.75 in steps of 0.25. Output is to a
CSV file. The parameters here are specified in order, but could equivalently be given by name:
"stilts tloop var=time start=0 end=10 step=0.26".

stilts tloop x start=1 end=11 ocmd='addcol x2 x*x' ocmd='addcol x3 x*x*x'
ocmd='stats name sum'

Generates a table with a column x running from 1 to 10 inclusive. The addcol filters then
append two further columns, giving the squares and cubes of these values respectively, giving
a table of 10 rows and 3 columns. Finally this table is piped through a stats filter to calculate
the sums of the values, squares and cubes in this range.

SUN/256 554

B.33 tgridmap: Calculates N-dimensional density maps

tgridmap scans an input table to create one or more N-dimensional density maps, or equivalently
N-dimensional histograms, of the values in an input table, and outputs the result as an, optionally
sparse, table containing a row for each grid cell. The maps/histograms can optionally be weighted
by some quantity from the input table, and various options such as summing, averaging and
counting are available for aggregation of inputs into the output bins.

The supplied coords parameter defines which N numeric columns of the input table form the
coordinates of the bin grid, and the cols parameter defines which quantities are aggregated into
each bin. Either the binsizes or nbins parameter must be supplied to define the extents of the bins
on each axis. The output table contains a row for each bin, with columns giving the central (and
upper/lower bound) values of each grid coordinate, and a column for each aggregated value. The
rows are output in first-coordinate-slowest sequence, and the sparse parameter determines whether
a row is written for every cell in the hypercube defined by the grid dimensions, or only for those
cells with non-blank data.

The tabular form of the output may not be the most appropriate or compact way to write a density
map, especially for multi-dimensional grids, but it means the output can be manipulated later by
other STILTS commands or by TOPCAT. To do a similar job with more compact output, see
tcube. See also tskymap, which does the same thing for sky geometry (and is probably a better
choice if you find yourself accumulating onto a longitude-latitude grid).

B.33.1 Usage

The usage of tgridmap is

stilts <stilts-flags> tgridmap ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
coords=<expr> ... logs=true|false ...
bounds=[<lo>]:[<hi>] ... binsizes=<size> ...
nbins=<num> ...
cols=<expr>[;<combiner>[;<name>]] ...
combine=sum|sum-per-unit|count|count-per-unit|mean|median|Q1|Q3|min|max|stdev|stdev_pop|hit
sparse=true|false
runner=sequential|parallel|parallel<n>|partest
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.GridDensityMap.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

binsizes = <size> ... (Double[])
Gives the extent of of the data bins in each dimension in data coordinates. The form of the
value is a space-separated list of values, giving a list of extents for the first, second, ...
dimension. Either this parameter or the nbins parameter must be supplied.

If supplied, this parameter must have the same number of words as the coords parameter.

bounds = [<lo>]:[<hi>] ... (double[][])
Gives the bounds for each dimension of the cube in data coordinates. The form of the value is
a space-separated list of words, each giving an optional lower bound, then a colon, then an
optional upper bound, for instance "1:100 0:20" to represent a range for two-dimensional

SUN/256 555

output between 1 and 100 of the first coordinate (table column) and between 0 and 20 for the
second. Either or both numbers may be omitted to indicate that the bounds should be
determined automatically by assessing the range of the data in the table. A null value for the
parameter indicates that all bounds should be determined automatically for all the dimensions.

If any of the bounds need to be determined automatically in this way, two passes through the
data will be required, the first to determine bounds and the second to calculate the map.

If supplied, this parameter must have the same number of words as the coords parameter.

cols = <expr>[;<combiner>[;<name>]] ... (String[])
Defines the quantities to be calculated. The value is a space-separated list of items, one for
each aggregated column in the output table.

Each item is composed of one, two or three tokens, separated by semicolon (";") characters:

• <expr>: (required) column name or expression using the expression language for the
quantity to be aggregated.

• <combiner>: (optional) combination method, using the same options as for the combine

parameter. If omitted, the value specified for that parameter will be used.
• <name>: (optional) name of output column; if omitted, the <expr> value (perhaps

somewhat sanitised) will be used.

It is often sufficient just to supply a space-separated list of input table column names for this
parameter, but the additional syntax may be required for instance if it's required to calculate
both a sum and mean of the same input column.

The default value is "1;count;COUNT" which simply provides an unweighted histogram, i.e. a
count of the rows in each bin (aggregation of the value "1" using the combination method
"count", yielding an output column named "COUNT").

[Default: 1;count;COUNT]

combine =

sum|sum-per-unit|count|count-per-unit|mean|median|Q1|Q3|min|max|stdev|stdev_pop|hit

(Combiner)
Defines the default way that values contributing to the same density map bin are combined
together to produce the value assigned to that bin. Possible values are:

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)
• mean: the mean of the combined values
• median: the median
• Q1: first quartile
• Q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

Note this value may be overridden on a per-column basis by the cols parameter.

[Default: mean]

coords = <expr> ... (String[])
Defines the dimensions of the grid over which accumulation will take place. The form of this
value is a space-separated list of words each giving a column name or algebraic expression
defining one of the dimensions of the output grid. For a 1-dimensional histogram, only one
value is required.

SUN/256 556

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

logs = true|false ... (Boolean[])
Determines whether each coordinate axis is linear or logarithmic. By default the grid axes are
linear, but if this parameter is supplied with one or more true values, the bins on the
corresponding axes are assigned logarithmically instead.

If supplied, this parameter must have the same number of words as the coords parameter.

nbins = <num> ... (Integer[])
Gives the approximate number of bins in each dimension. The form of the value is a
space-separated list of integers, giving the number of bins for the output histogram in the first,
second, ... dimension. An attempt is made to use round numbers for bin sizes so the bin counts

SUN/256 557

may not be exactly as specified. Either this parameter or the binsizes parameter must be
supplied.

If supplied, this parameter must have the same number of words as the coords parameter.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

SUN/256 558

This parameter must only be given if omode has its default value of "out".

[Default: -]

runner = sequential|parallel|parallel<n>|partest (RowRunner)
Selects the threading implementation, i.e. to what extent processing is done in parallel. The
options are currently:

• sequential: runs using only a single thread
• parallel: runs using multiple threads for large tables, with parallelism given by the

number of available processors
• parallel<n>: runs using multiple threads for large tables, with parallelism given by the

supplied value <n>

• partest: runs using multiple threads even when tables are small (only intended for
testing purposes)

Using parallel processing can speed up execution considerably; however, depending on the I/O
operations required, it can also slow it down by disrupting patterns of disk access. If the
content of a file is on a solid state disk, or is already in cache for instance because a similar
command has been run recently, then parallel will probably be faster. However, if the data is
being read directly from a spinning disk, for instance because the file is too large to fit in
RAM, then sequential or parallel<n> with a small <n> may be faster.

The value of this parameter should make only very tiny differences to the output table. If you
notice significant discrepancies please report them.

[Default: parallel]

sparse = true|false (Boolean)
Determines whether a row is written for every cell in the defined grid, or only for those cells in
which data appears in the input. The result will usually be more compact if this is set false, but
if you want to compare results from different runs it may be convenient to set it true.

[Default: true]

B.33.2 Examples

Here are some examples of using tgridmap:

stilts tgridmap in=ravedr4.fits coords=HRV nbins=20

Calculates a simple 1-dimensional unweighted histogram of the HRV column from the input
table ravedr4.fits. The output is a table with columns HRV, giving the central value of each
bin, and COUNT, giving the number of input rows with HRV values in that bin; additional
columns HRV_lo and HRV_hi give the lower and upper bounds of the bin. The bin size is
determined from the actual range of the HRV values in the input table, combined with the
requested bin count of 20; however, the bin size will be chosen as some round number, so the
bin count (number of rows in the output table) may not be exactly as requested.

stilts tgridmap in=ravedr4.fits coords=HRV
binsizes=100 bounds=-450:450 sparse=false

Produces a similar histogram to the previous example, but the bin dimensions, ranges and
alignments are specified explicitly rather than being worked out from the data. There will be 9
output bins, [-450,-350), [-350,-250), ..., [350,450); any values outside of these bins will be
ignored. The sparse=false parameter means that rows will be output for all 9 bins, even if
some of them are empty. Note supplying bin geometry in this way allows control of bin
boundaries; in this case HRV=0 is in the middle of a bin not at a bin boundary. This will also
be faster, since no initial scan to determine actual data ranges has to be performed.

SUN/256 559

stilts tgridmap in=edr3-local.fits
icmd='addcol nobs astrometric_n_good_obs_al'
icmd='addcol g_abs phot_g_mean_mag+5*log10(parallax*0.01)'
coords='bp_rp g_abs'
binsizes='0.125 0.5' bounds='-1:6 -5:20'
cols='1;count;NUM nobs;sum;SUM_NOBS nobs;mean;MEAN_NOBS'
out=grid-stats.vot sparse=false

This assembles a table containing three weighted histograms on a 2-d colour vs.
absolute-magnitude grid. The output table contains columns giving bp_rp and g_abs

coordinate values for each grid point, as well as columns NUM containing source density, and
columns SUM_NOBS and MEAN_NOBS containing respectively the sum and mean of the
nobs column in each grid cell. Since sparse=false the number and arrangement of output
rows is determined by the binsizes and bounds (57*51 rows) independent of the input data, and
could be compared with similar runs on different input tables. The icmd=addcol... parameters
prepare values for accumulation ahead of the actual gridding step for convenience though this
isn't essential, the relevant expressions could be used directly in the coords and cols

parameters if preferred.

B.34 tgroup: Calculates aggregate functions on groups of rows

tgroup identifies groups of rows in a table based on the values in a given column or columns, and
calculates statistical quantities or otherwise collapses down the multiple values from other columns
into single values representing each group. It does the same job as a SELECT ... GROUP BY

statement with aggregate functions in ADQL/SQL.

The keys parameter defines how input rows are grouped, and the aggcols parameter defines what
quantities to aggregate from the rows in each group. keys specifies one or more values (column
names or expresssions) that must be the same for rows grouped together, while aggcols specifies
zero or more columns to be added based on the content of rows in each group. The output table
therefore contains one column for each entry in keys and one column for each entry in aggcols,
and has one row for each group identified.

This command can therefore be used to count rows or calculate statistical quantities per group. A
number of statistical aggregation methods are provided such as mean, median, minimum, maximum
etc. For more specialised requirements, for instance quantiles or custom statistics, you can also use
the array aggregators which generate an array containing all of the values in the group, and operate
on the resulting column using one of the functions in the Arrays class.

By way of comparison, the tgroup invocation:

stilts tgroup in=t
keys="year detector"
aggcols="0;count;num gmag;min;min_gmag gmag;mean"

corresponds roughly to the ADQL query:

SELECT COUNT(*) AS num, MIN(gmag) AS min_gmag, MEAN(gmag),
FROM t
GROUP BY year, detector

See also the tgridmap and tskymap commands, which provide similar functionality where the
grouping is over evenly spaced numeric/coordinate values.

B.34.1 Usage

The usage of tgroup is

SUN/256 560

stilts <stilts-flags> tgroup ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
keys=<expr> ...
aggcols=<expr>;<aggregator>[;<name>] ...
runner=sequential|parallel|parallel<n>|partest
sort=true|false cache=true|false
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableGroup.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

aggcols = <expr>;<aggregator>[;<name>] ... (String[])
Defines the aggregate quantities to be calculated for each group of input rows. Each quantity is
defined by one entry in this list; entries are space-separated, or can be given by multiple
instances of this parameter on the command line.

Each entry is composed of two or three tokens, separated by semicolon (";") characters:

• <expr>: (required) column name, or expression using the expression language, for the
quantity to be aggregated

• <aggregator>: (required) aggregation method
• <name>: (optional) name of output column; if omitted, a name based on the <expr> value

will be used

The available <aggregator> values are as follows:

• count: counts the number of rows
• ngood: counts the number of non-blank items
• sum: the sum of all the combined values per bin
• mean: the mean of the combined values
• median: the median
• stdev: the sample standard deviation of the combined values
• stdev-pop: the population standard deviation of the combined values
• max: records the maximum value
• min: records the minimum value
• array: collects all non-blank values into an array
• array-withblanks: collects all values into an array; blank values are represented as zero

for integers
• count-long: counts the number of rows, works for >2 billion
• ngood-long: counts the number of non-blank items, works for >2 billion

cache = true|false (Boolean)
Determines whether the results of the aggregation operation will be cached in random-access
storage before output. This is set true by default, since accessing rows of the calculated table
may be somewhat expensive, and most uses of the results will need all of the cells. But if you
anticipate making only a small number of accesses to the output table cells, it could be more
efficient to set this false.

[Default: true]

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by

SUN/256 561

semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

keys = <expr> ... (String[])
List of one or more space-separated words defining the groups within which aggregation
should be done. Each word can be a column name or an expression using the expression
language. Each expression will appear as one of the columns in the output table. This list
corresponds to the contents of an ADQL/SQL GROUP BY clause.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character

SUN/256 562

'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

runner = sequential|parallel|parallel<n>|partest (RowRunner)
Selects the threading implementation, i.e. to what extent processing is done in parallel. The
options are currently:

• sequential: runs using only a single thread
• parallel: runs using multiple threads for large tables, with parallelism given by the

number of available processors
• parallel<n>: runs using multiple threads for large tables, with parallelism given by the

supplied value <n>

• partest: runs using multiple threads even when tables are small (only intended for

SUN/256 563

testing purposes)

Using parallel processing can speed up execution considerably; however, depending on the I/O
operations required, it can also slow it down by disrupting patterns of disk access. If the
content of a file is on a solid state disk, or is already in cache for instance because a similar
command has been run recently, then parallel will probably be faster. However, if the data is
being read directly from a spinning disk, for instance because the file is too large to fit in
RAM, then sequential or parallel<n> with a small <n> may be faster.

The value of this parameter should make only very tiny differences to the output table. If you
notice significant discrepancies please report them.

[Default: parallel]

sort = true|false (Boolean)
Determines whether an attempt is made to sort the output table by the values of the keys

expressions. This may not be possible if no sort order is defined on the keys.

In most cases such sorting will be a small overhead on the rest of the work done by this task,
so the default is true but if ordering by key is not useful you may save some resources by
setting it false. If no sorting is done, the output row order is undefined.

[Default: true]

B.34.2 Examples

Here are some examples of using tgroup:

stilts tgroup in=B_sn.vot keys='MType' aggcols='null;count' out=type_counts.csv

This produces an output table with two columns: the first column (defined by the keys

parameter) gives all the distinct values of the MType column in the input table, and the second
column (defined by the aggcols parameter) gives a count of how many rows in the input table
have that MType value. The output is written to a CSV file.

Since the count aggregator pays no attention to the values it is counting, the quantity before
the semicolon is irrelevant in this case, so for instance "0;count", "100;count" or
"MType;count" would work just as well. If the aggcols parameter is omitted altogether, the
output table will be the same but without the count column, i.e. it will just list all the distinct
values of the MType column.

stilts tgroup in=B_sn.vot
icmd='colmeta -name Discoverer disc' icmd='select MaxMag<20'
keys='Discoverer' aggcols='0;count;SNae'
ocmd='sorthead -down 10 SNae'

This does a similar job to the previous example, but with some additional pre- and
post-processing, to produce a league table of discoverers of bright supernovae. The icmd

parameters define pre-processing filters that rename one column, and select only those rows
for which the MaxMag column is below a certain threshold. The keys parameter groups rows by
the contents of the Discoverer (née disc) column, and the aggcols parameter counts how
many sources are listed for each discoverer, naming the resulting column "SNae". Finally, the
ocmd filter sorts the results by the count column, listing only the top ten to standard output.

stilts tgroup in=exomercat.fits
keys='discovery_method status'
aggcols='null;count mass;mean mass;stdev r;max;max_radius r;ngood;num_radii'
ocmd='sort "discovery_method status"'

In this case there are two columns listed in the keys parameter, which means each output row

SUN/256 564

groups all the input rows with the same discovery_method and status values. For each such
group several values are calculated and output in separate columns: number of entries, mean
mass, standard deviation of mass, maximum radius, and number of entries with a non-blank
radius.

stilts tgroup in=dr16qso.fits
icmd='addcol -units yr year (int)mjdToDecYear(mjd)'
keys='year'
aggcols='z;ngood;nz'
aggcols='z;array;z_values'
ocmd='addcol z_q1 quantile(z_values,0.25)'
ocmd='addcol z_q2 quantile(z_values,0.50)'
ocmd='addcol z_q3 quantile(z_values,0.75)'
ocmd='delcols z_values'
out=zq-by-year.fits

This groups the rows in an input table by calendar year, and for each year calculates the
number of non-blank items, and the quartiles, of the values in the z column. Since no quartile
aggregator is provided, aggregation is first done to an array of all the z values per year, and
quartiles are calculated using the quantile function, which takes an array value as well as the
quantile point required. Before writing the output, the bulky array column is removed.

In this example, the aggcols parameter has been given three times for the three aggregated
values. This is just another way to specify multiple entries, and it could equally have been
written in one go with a space as a delimiter, i.e. "aggcols='z;ngood;nz
z;array;z_values'".

Note that since the grouped quantity here is numeric and evenly spaced, this job could equally
have been done using the tgridmap command, like

stilts tgridmap in=dr16qso.fits
icmd='addcol -units yr year mjdToDecYear(mjd)'
coords=year binsizes=1
cols='1;count;nz z;Q1;z_q1 z;median;z_q2 z;Q3;z_q3'

B.35 tjoin: Joins multiple tables side-to-side

tjoin performs a trivial side-by-side join of multiple tables. The N'th row of the output table
consists of the N'th row of the first input table, followed by the N'th row of the second input table,
... and so on. It is suitable if you want to amalgamate two or more tables whose row orderings
correspond exactly to each other.

For the (more usual) case in which the rows of the tables to be joined are not already in the right
order, use one of the crossmatching commands (Section 7).

B.35.1 Usage

The usage of tjoin is

stilts <stilts-flags> tjoin nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
fixcols=none|dups|all suffixN=<label>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableJoinN.

SUN/256 565

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on input table #N as specified by parameter inN, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of input table #N as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <tableN> (StarTable)
The location of input table #N. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

nin = <count> (Integer)
The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken

SUN/256 566

place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

suffixN = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended

SUN/256 567

to all renamed columns from table N.

[Default: _N]

B.35.2 Examples

Here are some examples of using tjoin:

stilts tjoin nin=2 in1=positions.fit in2=fluxes.fits out=combined.fits

Takes two input FITS files and sticks them together side by side, writing the result as a third
FITS file. The output will have the same number of rows as each of the input catalogues, and a
number of columns equal to the sum of those in the two input catalogues.

stilts tjoin nin=3 fixcols=all \
ifmt1=ascii in1=t1.txt suffix1=_T1 \
ifmt2=ascii in2=t2.txt suffix2=_T2 \
ifmt3=ascii in3=t3.txt suffix3=_T3 \
ocmd='select FLAG_T1==0' \
omode=stats

This joins three ascii tables together. Each column of the output table is renamed by appending
a string to it ("_T1" for the first table, "_T2" for the second...). Only those rows of the output
for which the FLAG column in the first input table, and hence the FLAG_T1 column in the
output table, have the value zero are selected. Statistics are calculated for all the columns of
these selected rows, and written to the output.

B.36 tmatch1: Performs a crossmatch internal to a single table

tmatch1 performs efficient and flexible crossmatching between the rows of a single table. It can
match rows on the basis of their relative position in the sky, or alternatively using many other
criteria such as separation in in some isotropic or anisotropic Cartesian space, identity of a key
value, or some combination of these; the full range of match criteria is dicussed in Section 7.1.

The basic task performed by the intra-table matcher is to identify groups of rows within the table
which match each other. See Section 7.2 for an explanation of exactly what consitutes a match
group. The result of identifying these groups is expressed as an output table in one of a variety of
ways, specified by the action parameter. These options include marking group membership in
added columns and eliminating some or all rows which form part of a match group.

B.36.1 Usage

The usage of tmatch1 is

stilts <stilts-flags> tmatch1 matcher=<matcher-name> params=<match-params>
tuning=<tuning-params> values=<expr-list>
action=identify|keep0|keep1|wide2|wideN
progress=none|log|time|profile
runner=parallel|parallel<n>|parallel-all|sequential|classic|partest
ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableMatch1.

SUN/256 568

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

action = identify|keep0|keep1|wide2|wideN (Match1Type)
Determines the form of the table which will be output as a result of the internal match.

• identify: The output table is the same as the input table except that it contains two
additional columns, GroupID and GroupSize, following the input columns. Each group of
rows which matched is assigned a unique integer, recorded in the GroupID column, and
the size of each group is recorded in the GroupSize column. Rows which don't match any
others (singles) have null values in both these columns.

• keep0: The result is a new table containing only "single" rows, that is ones which don't
match any other rows in the table. Any other rows are thrown out.

• keep1: The result is a new table in which only one row (the first in the input table order)
from each group of matching ones is retained. A subsequent intra-table match with the
same criteria would therefore show no matches.

• wideN: The result is a new "wide" table consisting of matched rows in the input table
stacked next to each other. Only groups of exactly N rows in the input table are used to
form the output table; each row of the output table consists of the columns of the first
group member, followed by the columns of the second group member and so on. The
output table therefore has N times as many columns as the input table. The column names
in the new table have _1, _2, ... appended to them to avoid duplication.

[Default: identify]

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

SUN/256 569

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

matcher = <matcher-name> (MatchEngine)
Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the params, values* and tuning parameter(s).

[Default: sky]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

SUN/256 570

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

params = <match-params> (String[])
Determines the parameters of this match. This is typically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the matcher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted' or "quoted".

progress = none|log|time|profile (String)
Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can also be useful as a performance diagnostic.

The options are:

• none: no progress is shown
• log: progress information is shown
• time: progress information and some time profiling information is shown
• profile: progress information and limited time/memory profiling information are shown

[Default: log]

runner = parallel|parallel<n>|parallel-all|sequential|classic|partest

(RowRunner)
Selects the threading implementation. The options are currently:

• parallel: uses multithreaded implementation for large tables, with default parallelism,
which is the smaller of 6 and the number of available processors

• parallel<n>: uses multithreaded implementation for large tables, with parallelism given
by the supplied value <n>

• parallel-all: uses multithreaded implementation for large tables, with a parallelism
given by the number of available processors

• sequential: uses multithreaded implementation but with only a single thread
• classic: uses legacy sequential implementation
• partest: uses multithreaded implementation even when tables are small

The parallel* options should normally run faster than sequential or classic (which are
provided mainly for testing purposes), at least for large matches and where multiple processing
cores are available.

SUN/256 571

The default value "parallel" is currently limited to a parallelism of 6 since larger values yield
diminishing returns given that some parts of the matching algorithms run sequentially
(Amdahl's Law), and using too many threads can sometimes end up doing more work or
impacting on other operations on the same machine. But you can experiment with other
concurrencies, e.g. "parallel16" to run on 16 cores (if available) or "parallel-all" to run on
all available cores.

The value of this parameter should make no difference to the matching results. If you notice
any discrepancies please report them.

[Default: parallel]

tuning = <tuning-params> (String[])
Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the matcher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted". If this optional parameter is not supplied, sensible defaults will be
chosen.

values = <expr-list> (String[])
Defines the values from the input table which are used to determine whether a match has
occurred. These will typically be coordinate values such as RA and Dec and perhaps some
per-row error values as well, though exactly what values are required is determined by the kind
of match as determined by matcher. Depending on the kind of match, the number and type of
the values required will be different. Multiple values should be separated by whitespace; if
whitespace occurs within a single value it must be 'quoted' or "quoted". Elements of the
expression list are commonly just column names, but may be algebraic expressions calculated
from zero or more columns as explained in Section 10.

B.36.2 Examples

Here are some examples of using tmatch1:

stilts tmatch1 matcher=sky values="RA2000 DE2000" params=20 \
action=keep0 in=crowded.vot out=sparse.vot

Copies an input catalogue "crowded.vot" to an output catalogue "sparse.vot", but omitting any
objects (rows) which are within 20 arcsec of other objects. The output catalogue will contain
no near neighbours.

stilts tmatch1 matcher=skyerr values="RA2000 DE2000 RADIUS*4" params=40 \
action=keep0 in=crowded.vot out=sparse.vot

This is similar to the previous example, but uses the skyerr matcher which determines the
proximity threshold on a row-by-row basis from values in the table - in this case 4 times the
value of the RADIUS column (this value must be in arc seconds). The params=40 value does
not affect the result, but it gives the algorithm an idea of the rough scale of object separation.

stilts tmatch1 matcher=3d values="XPIX YPIX ZPIX" params=10 action=identify \
in=state.fit ocmd='select GroupSize>3' out=groups3+.fit

Uses the "3d" matcher to identify groups of objects in terms of their proximity in a
3-dimensional Cartesian space, with positions given by the XPIX, YPIX and ZPIX columns in
the input table. The action=identify parameter means that the input table is written out with
the same rows, but with additional columns indicating which rows are associated with each
other. One of these columns, "GroupSize" gives the number of objects in each group. The
postprocessing filter ocmd='select GroupSize>3' selects only those rows which are part of
groups of three objects or larger; singletons and pairs are discarded before writing the output

SUN/256 572

file.

stilts tmatch1 matcher=sky values="ra dec" params=3 action=wide2 \
ocmd='keepcols "id_1 ra_1 dec_1 id_2 ra_2 dec_2"'
in=galaxy.fits out=binaries.txt ofmt=ascii

Identifies pairs of objects within 3 arcsec of each other from an input catalogue. Singles, and
groups of three or more, will be discarded. The output table generated is a double-width
version of the input table with pairs of objects next to each other on the same row. Here, the
ocmd post-processing filter discards all of the columns except the identifiers and sky positions
for each object. The output is to a text file.

B.37 tmatch2: Crossmatches 2 tables using flexible criteria

tmatch2 is an efficient and highly configurable tool for crossmatching pairs of tables. It can match
rows between tables on the basis of their relative position in the sky, or alternatively using many
other criteria such as separation in some isotropic or anisotropic Cartesian space, identity of a key
value, or some combination of these; the full range of match criteria is discussed in Section 7.1.
You can choose whether you want to identify all the matches or only the closest, and what form the
output table takes, for instance matched rows only, or all rows from one or both tables, or only the
unmatched rows.

If you simply want to match two tables based on sky position with a fixed maximum separation,
you may find the tskymatch2 command easier to use.

Note: the duptag1 and duptag2 parameters have been replaced at version 1.4 by suffix1 and
suffix2 for consistency with other table join tasks.

B.37.1 Usage

The usage of tmatch2 is

stilts <stilts-flags> tmatch2 ifmt1=<in-format> ifmt2=<in-format>
icmd1=<cmds> icmd2=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
matcher=<matcher-name> values1=<expr-list>
values2=<expr-list> params=<match-params>
tuning=<tuning-params>
join=1and2|1or2|all1|all2|1not2|2not1|1xor2
find=all|best|best1|best2
fixcols=none|dups|all suffix1=<label>
suffix2=<label> scorecol=<col-name>
progress=none|log|time|profile
runner=parallel|parallel<n>|parallel-all|sequential|classic|partest
[in1=]<table1> [in2=]<table2>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableMatch2.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

find = all|best|best1|best2 (PairMode)
Determines what happens when a row in one table can be matched by more than one row in
the other table. The options are:

• all: All matches. Every match between the two tables is included in the result. Rows

SUN/256 573

from both of the input tables may appear multiple times in the result.
• best: Best match, symmetric. The best pairs are selected in a way which treats the two

tables symmetrically. Any input row which appears in one result pair is disqualified from
appearing in any other result pair, so each row from both input tables will appear in at
most one row in the result.

• best1: Best match for each Table 1 row. For each row in table 1, only the best match
from table 2 will appear in the result. Each row from table 1 will appear a maximum of
once in the result, but rows from table 2 may appear multiple times.

• best2: Best match for each Table 2 row. For each row in table 2, only the best match
from table 1 will appear in the result. Each row from table 2 will appear a maximum of
once in the result, but rows from table 1 may appear multiple times.

The differences between best, best1 and best2 are a bit subtle. In cases where it's obvious
which object in each table is the best match for which object in the other, choosing betwen
these options will not affect the result. However, in crowded fields (where the distance
between objects within one or both tables is typically similar to or smaller than the specified
match radius) it will make a difference. In this case one of the asymmetric options (best1 or
best2) is usually more appropriate than best, but you'll have to think about which of them
suits your requirements. The performance (time and memory usage) of the match may also
differ between these options, especially if one table is much bigger than the other.

[Default: best]

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmd1 = <cmds> (ProcessingStep[])
Specifies processing to be performed on the first input table as specified by parameter in1,
before any other processing has taken place. The value of this parameter is one or more of the
filter commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

icmd2 = <cmds> (ProcessingStep[])
Specifies processing to be performed on the second input table as specified by parameter in2,
before any other processing has taken place. The value of this parameter is one or more of the
filter commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A

SUN/256 574

backslash character '\' at the end of a line joins it with the following line.

ifmt1 = <in-format> (String)
Specifies the format of the first input table as specified by parameter in1. The known formats
are listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it
has the special value (auto) (the default), then an attempt will be made to detect the format of
the table automatically. This cannot always be done correctly however, in which case the
program will exit with an error explaining which formats were attempted. This parameter is
ignored for scheme-specified tables.

[Default: (auto)]

ifmt2 = <in-format> (String)
Specifies the format of the second input table as specified by parameter in2. The known
formats are listed in Section 5.1.1. This flag can be used if you know what format your table is
in. If it has the special value (auto) (the default), then an attempt will be made to detect the
format of the table automatically. This cannot always be done correctly however, in which
case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

in1 = <table1> (StarTable)
The location of the first input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt1 parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

in2 = <table2> (StarTable)
The location of the second input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt2 parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

join = 1and2|1or2|all1|all2|1not2|2not1|1xor2 (JoinType)
Determines which rows are included in the output table. The matching algorithm determines
which of the rows from the first table correspond to which rows from the second. This
parameter determines what to do with that information. Perhaps the most obvious thing is to
write out a table containing only rows which correspond to a row in both of the two input
tables. However, you may also want to see the unmatched rows from one or both input tables,
or rows present in one table but unmatched in the other, or other possibilities. The options are:

SUN/256 575

• 1and2: An output row for each row represented in both input tables (INNER JOIN)
• 1or2: An output row for each row represented in either or both of the input tables (FULL

OUTER JOIN)
• all1: An output row for each matched or unmatched row in table 1 (LEFT OUTER

JOIN)
• all2: An output row for each matched or unmatched row in table 2 (RIGHT OUTER

JOIN)
• 1not2: An output row only for rows which appear in the first table but are not matched in

the second table
• 2not1: An output row only for rows which appear in the second table but are not matched

in the first table
• 1xor2: An output row only for rows represented in one of the input tables but not the

other one

[Default: 1and2]

matcher = <matcher-name> (MatchEngine)
Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the params, values* and tuning parameter(s).

[Default: sky]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

SUN/256 576

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

params = <match-params> (String[])
Determines the parameters of this match. This is typically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the matcher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted' or "quoted".

progress = none|log|time|profile (String)
Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can also be useful as a performance diagnostic.

The options are:

• none: no progress is shown
• log: progress information is shown
• time: progress information and some time profiling information is shown
• profile: progress information and limited time/memory profiling information are shown

[Default: log]

runner = parallel|parallel<n>|parallel-all|sequential|classic|partest

(RowRunner)
Selects the threading implementation. The options are currently:

• parallel: uses multithreaded implementation for large tables, with default parallelism,
which is the smaller of 6 and the number of available processors

• parallel<n>: uses multithreaded implementation for large tables, with parallelism given
by the supplied value <n>

• parallel-all: uses multithreaded implementation for large tables, with a parallelism
given by the number of available processors

• sequential: uses multithreaded implementation but with only a single thread
• classic: uses legacy sequential implementation
• partest: uses multithreaded implementation even when tables are small

The parallel* options should normally run faster than sequential or classic (which are
provided mainly for testing purposes), at least for large matches and where multiple processing
cores are available.

SUN/256 577

The default value "parallel" is currently limited to a parallelism of 6 since larger values yield
diminishing returns given that some parts of the matching algorithms run sequentially
(Amdahl's Law), and using too many threads can sometimes end up doing more work or
impacting on other operations on the same machine. But you can experiment with other
concurrencies, e.g. "parallel16" to run on 16 cores (if available) or "parallel-all" to run on
all available cores.

The value of this parameter should make no difference to the matching results. If you notice
any discrepancies please report them.

[Default: parallel]

scorecol = <col-name> (String)
Gives the name of a column in the output table to contain the "match score" for each pairwise
match. The meaning of this column is dependent on the chosen matcher, but it typically
represents a distance of some kind between the two matching points. If a null value is chosen,
no score column will be inserted in the output table. The default value of this parameter
depends on matcher.

[Default: Score]

suffix1 = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table 1.

[Default: _1]

suffix2 = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table 2.

[Default: _2]

tuning = <tuning-params> (String[])
Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the matcher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted". If this optional parameter is not supplied, sensible defaults will be
chosen.

values1 = <expr-list> (String[])
Defines the values from table 1 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by matcher. Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within a single value it must be 'quoted' or "quoted". Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 10.

values2 = <expr-list> (String[])
Defines the values from table 2 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by matcher. Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within a single value it must be 'quoted' or "quoted". Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 10.

SUN/256 578

B.37.2 Examples

Here are some examples of using tmatch2:

stilts tmatch2 in1=obs_v.xml in2=obs_i.xml out=obs_iv.xml \
matcher=sky values1="ra dec" values2="ra dec" params="2"

Takes two input catalogues (VOTables), one with observations in the V band and the other in
the I band, and performs a match to find objects within 2 arcseconds of each other. The result
is a new table containing only rows where a match was found.

stilts tmatch2 survey.fits ifmt2=csv mycat.csv \
icmd1='addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \
matcher=skyerr \
params=10 values1="RA2000 DEC2000 POS_ERR" values2="RA DEC 0" \
join=2not1 omode=count

Here a comma-separated-values file is being compared with a FITS catalogue representing
some survey results. Positions in the survey catalogue use the FK4 B1950.0 system, and so a
preprocessing step is inserted to create new position columns in the first input table using the
FK5 J2000.0 system, which is what the other input table uses. The survey catalogue contains a
POS_ERR column which gives the positional uncertainty of its entries, so the skyerr matcher
is used, which takes account of this; the third entry in the values1 parameter is the POS_ERR
column (in arcsec). Since the second input table has no positional uncertainty information, 0 is
used as the third entry in values2. The params gives a rough idea of the scale of the object
separations, but its value does not affect the result. The join type is 2not1, which means the
output table will only contain those entries which are in the second input table but not in the
first one. The output table is not stored, but the number of rows it contains (the number of
objects represented in the CSV file but not the survey) is written to the screen.

stilts tmatch2 ifmt1=ascii ifmt2=ascii in1=cat-a.txt in2=cat-b.txt \
matcher=2d values1='X Y' values2='X Y' params=5 join=1and2 \
suffix1=_a suffix2=_b \
ocmd='addcol XDIFF X_a-X_b; addcol YDIFF Y_a-Y_b' \
ocmd'keepcols "XDIFF YDIFF"' omode=stats

Two ASCII-format catalogues are matched, where rows are considered to match if their X,Y
positions are within 5 units of each other in some Cartesian space. The result of the matching
operation is a table of all the matched rows, containing columns named X_a, Y_a, X_b and
Y_b (along with any others in the input tables) - the suffix* parameters describe how the
input X and Y columns are to be renamed to avoid duplicate column names in the output table.
To this result are added two new columns, representing the X and Y positional difference
between the rows from one input table and those from the other. The keepcols filter then
throws all the other columns away, retaining only these difference columns. The final
two-column table is not stored anywhere, but (omode=stats) statistics including mean and
standard deviation are calculated on its columns and displayed to the screen. Having done all
this, you can examine the average X and Y differences between the two input tables for
matched rows, and if they differ significantly from zero, you can conclude that there is a
systematic error between the positions in the two input files.

stilts tmatch2 in1=mgc.fits in2=6dfgs.xml join=1and2 find=all \
matcher=sky+1d params='3 0.5' \
values1='ra dec bmag' values2='RA2000 DEC2000 B_MAG" \
out=pairs.fits

This performs a match with a matcher that combines sky and 1d match criteria. This means
that the only rows which match are those which are both within 3 arcsec of each other on the
sky and and within 0.5 blue magnitudes. Note that for both the params and the values1 and

SUN/256 579

values2 parameters, the items for the sky matcher (RA and DEC) are listed first, followed by
those for the 1d matcher (in this case, blue magnitude).

B.38 tmatchn: Crossmatches multiple tables using flexible criteria

tmatchn performs efficient and flexible crossmatching between multiple tables. It can match rows
on the basis of their relative position in the sky, or alternatively using many other criteria such as
separation in in some isotropic or anisotropic Cartesian space, identity of a key value, or some
combination of these; the full range of match criteria is dicussed in Section 7.1.

Since the match criteria define what counts as a match between two objects, it is not immediately
obvious what is meant by a multi-table match. In fact the command can work in one of two distinct
modes, controlled by the multimode parameter. In pairs mode, one table (by default the first input
table) is designated the reference table, and pair matches between each of the other tables and that
one are identified. In group mode groups of objects from all the input tables are identified, as
discussed in Section 7.2. Currently, in both cases an output matched row cannot contain more than
one object from each input table. Options for output of multiple rows per input table per match may
be forthcoming in future releases if there is demand.

tmatchn is intended for use with more than two input tables - see tmatch1 and tmatch2 for 1- and
2-table crossmatching respectively.

B.38.1 Usage

The usage of tmatchn is

stilts <stilts-flags> tmatchn nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
multimode=pairs|group iref=<table-index>
matcher=<matcher-name> params=<match-params>
tuning=<tuning-params> valuesN=<expr-list>
joinN=default|match|nomatch|always
fixcols=none|dups|all suffixN=<label>
progress=none|log|time|profile
runner=parallel|parallel<n>|parallel-all|sequential|classic|partest

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TableMatchN.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

fixcols = none|dups|all (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on input table #N as specified by parameter inN, before

SUN/256 580

any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of input table #N as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <tableN> (StarTable)
The location of input table #N. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

iref = <table-index> (Integer)
If multimode=pairs this parameter gives the index of the table in the input table list which is
to serve as the reference table (the one which must be matched by other tables). Ignored in
other modes.

Row ordering in the output table is usually tidiest if the default setting of 1 is used (i.e. if the
first input table is used as the reference table).

[Default: 1]

joinN = default|match|nomatch|always (MultiJoinType)
Determines which rows from input table N are included in the output table. The matching
algorithm determines which of the rows in each of the input tables correspond to which rows
in the other input tables, and this parameter determines what to do with that information.

The default behaviour is that a row will appear in the output table if it represents a match of
rows from two or more of the input tables. This can be altered on a per-input-table basis
however by choosing one of the non-default options below:

• match: Rows are included only if they contain an entry from input table N.
• nomatch: Rows are included only if they do not contain an entry from input table N.
• always: Rows are included if they contain an entry from input table N (overrides any

match and nomatch settings of other tables).
• default: Input table N has no special effect on whether rows are included.

SUN/256 581

[Default: default]

matcher = <matcher-name> (MatchEngine)
Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the params, values* and tuning parameter(s).

[Default: sky]

multimode = pairs|group (String)
Defines what is meant by a multi-table match. There are two possibilities:

• pairs: Each output row corresponds to a single row of the reference table (see parameter
iref) and contains entries from other tables which are pair matches to that. If a reference
table row matches multiple rows from one of the other tables, only the best one is
included.

• group: Each output row corresponds to a group of entries from the input tables which are
mutually linked by pair matches between them. This means that although you can get
from any entry to any other entry via one or more pair matches, there is no guarantee that
any entry is a pair match with any other entry. No table has privileged status in this case.
If there are multiple entries from a given table in the match group, an arbitrary one is
chosen for inclusion (there is no unique way to select the best). See Section 7.2 for more
discussion.

Note that which rows actually appear in the output is also influenced by the joinN parameter.

[Default: pairs]

nin = <count> (Integer)
The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that

SUN/256 582

the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

params = <match-params> (String[])
Determines the parameters of this match. This is typically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the matcher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted' or "quoted".

progress = none|log|time|profile (String)
Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can also be useful as a performance diagnostic.

The options are:

• none: no progress is shown
• log: progress information is shown
• time: progress information and some time profiling information is shown
• profile: progress information and limited time/memory profiling information are shown

[Default: log]

runner = parallel|parallel<n>|parallel-all|sequential|classic|partest

(RowRunner)
Selects the threading implementation. The options are currently:

• parallel: uses multithreaded implementation for large tables, with default parallelism,
which is the smaller of 6 and the number of available processors

• parallel<n>: uses multithreaded implementation for large tables, with parallelism given
by the supplied value <n>

• parallel-all: uses multithreaded implementation for large tables, with a parallelism

SUN/256 583

given by the number of available processors
• sequential: uses multithreaded implementation but with only a single thread
• classic: uses legacy sequential implementation
• partest: uses multithreaded implementation even when tables are small

The parallel* options should normally run faster than sequential or classic (which are
provided mainly for testing purposes), at least for large matches and where multiple processing
cores are available.

The default value "parallel" is currently limited to a parallelism of 6 since larger values yield
diminishing returns given that some parts of the matching algorithms run sequentially
(Amdahl's Law), and using too many threads can sometimes end up doing more work or
impacting on other operations on the same machine. But you can experiment with other
concurrencies, e.g. "parallel16" to run on 16 cores (if available) or "parallel-all" to run on
all available cores.

The value of this parameter should make no difference to the matching results. If you notice
any discrepancies please report them.

[Default: parallel]

suffixN = <label> (String)
If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table N.

[Default: _N]

tuning = <tuning-params> (String[])
Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the matcher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted". If this optional parameter is not supplied, sensible defaults will be
chosen.

valuesN = <expr-list> (String[])
Defines the values from table N which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by matcher. Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within a single value it must be 'quoted' or "quoted". Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 10.

B.38.2 Examples

Here are some examples of using tmatchn:

stilts tmatchn multimode=pairs nin=4 matcher=sky params=5 \
in1=transients.txt ifmt1=ascii values1='alpha delta' \
in2=2mass_virgo.fits values2='ra2000 dec2000' \
in3=sdss_virgo.fits values3='ra dec' \
in4=first_virgo.fits values4='pos_eq_ra pos_eq_dec' \
out=matches.xml ofmt=votable-binary

Compares a text-format table "transients.txt" against each of three other catalogues covering
the same region of sky, and outputs a table which contains a row for each row of
"transients.txt" which matches (is within 5 arcsec) of an object in any of the other tables.

SUN/256 584

stilts tmatchn multimode=pairs nin=4 matcher=sky params=5 \
in1=transients.txt ifmt1=ascii suffix1='_t' values1='alpha delta' \
in2=2mass_virgo.fits suffix2='_2mass' values2='ra2000 dec2000' \
in3=sdss_virgo.fits suffix3='_sdss' values3='ra dec' \
in4=first_virgo.fits suffix4='_first' values4='pos_eq_ra pos_eq_dec' \
fixcols=all join1=always \
ocmd='keepcols "*_t designation_2mass SDSSName_sdss id_field_first"' \
out=matches.xml ofmt=votable-binary

Similar to the previous example but with some doctoring of what the output table will look
like. The fixcols=all and suffixN assignments mean that all the columns from the input
tables will be renamed for output by adding the given suffixes. The keepcols filter applied to
the output table throws out all the columns except the ones from the reference table (*_t) and
one column from each of the other table giving object identifiers. This output table will
probably be easier to read (though contain less information) than that from the previous
example). Additionally, the join1=always assignment means that the output table will have
one row for each row of the reference table (transients.txt), even if no matches are found for it.

stilts tmatchn multimode=group nin=3 matcher=skyerr params=8 \
in1=Hband.fits values1='RA DEC SEEING*2' \
in2=Jband.fits values2='RA DEC SEEING*2' \
in3=Kband.fits values3='RA DEC SEEING*2' \
omode=topcat

Performs a group-mode match. There is no reference table, so that an output row will result for
each object which is represented in any two of the input catalogues. The match takes account
of per-object errors equivalent to twice the recorded seeing, which is in the region of 8 arcsec.
Note that this may not operate as expected if the catalogues contain multiple distinct objects
too close (in comparison to the declared separation) to each other. The resulting matched table
is sent directly to TOPCAT (if available).

B.39 tmulti: Writes multiple tables to a single container file

tmulti takes multiple input tables and writes them as separate tables to a single output container
file. The container file must be of some format which can contain more than one table, for instance
a FITS file (which can contain multiple extensions) or a VOTable document (which can contain
multiple TABLE elements). Filtering may be performed on the tables prior to writing them. It is not
necessary that all the tables are similar (e.g. that they all have the same type and number of
columns), but the same processing commands will be applied to all of them. For more individual
control, use the tmultin task.

B.39.1 Usage

The usage of tmulti is

stilts <stilts-flags> tmulti in=<table> [<table> ...] ifmt=<in-format>
multi=true|false istream=true|false
icmd=<cmds> out=<out-file> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.MultiCopy.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on each input table as specified by parameter in, before

SUN/256 585

any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

The same format parameter applies to all the tables specified by in.

[Default: (auto)]

in = <table> [<table> ...] (TableProducer[])
Locations of the input tables. Either specify the parameter multiple times, or supply the input
tables as a space-separated list within a single use.

The following table location forms are allowed:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

Compression in any of the supported compression formats (Unix compress, gzip or bzip2) is
expanded automatically.

A list of input table locations may be given in an external file by using the indirction character
'@'. Thus "in=@filename" causes the file filename to be read for a list of input table locations.
The locations in the file should each be on a separate line.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

The same streaming flag applies to all the tables specified by in.

[Default: false]

multi = true|false (Boolean)
Determines whether all tables, or just the first one, from input table files will be used. If set
false, then just the first table from each file named by in will be used. If true, then all tables

SUN/256 586

present in those input files will be used. This only has an effect for file formats which are
capable of containing more than one table, which effectively means FITS and VOTable and
their variants.

[Default: false]

ofmt = <out-format> (String)
Specifies the format in which the output tables will be written (one of the ones in Section 5.1.2
- matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

Not all output formats are capable of writing multiple tables; if you choose one that is not, an
error will result.

[Default: (auto)]

out = <out-file> (uk.ac.starlink.util.Destination)
The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

B.39.2 Examples

Here are some examples of using tmulti:

stilts tmulti ifmt=ascii in=t1.txt in=t2.txt in=t3.txt
ofmt=fits out=tables.fits

Takes the three named ASCII format tables and writes them into a multi-extension FITS file,
as three separate BINTABLE HDUs. These tables do not need to be of the same shape or
otherwise similar.

stilts tmulti ifmt=ascii in="t1.txt t2.txt t3.txt"
ofmt=fits out=tables.fits

Does exactly the same as the previous example.

stilts tmulti ifmt=ascii in=@inlist.lis
ofmt=fits out=tables.fits

This will have the same effect as the previous two examples if a file name "inlist.lis" in the
current directory contains three lines, "t1.txt", "t2.txt" and "t3.txt".

stilts tmulti in=extract.fits multi=true out=extract.vot

This takes the table extensions from a multi-extension FITS file and writes them out as a
multi-TABLE VOTable document. The multi=true setting is required, since this means that
all the tables from the input file are used as input; if it was set false, only the first table HDU
from the input file would be used.

stilts tmulti in=extract.fits multi=true out=extract.vot
icmd='badval -999 *MAG'

Does the same as the previous example, but additionally replaces with a blank value
occurrences of the value "-999" in columns whose name ends with "MAG" in any of the input
tables before copying them.

SUN/256 587

B.40 tmultin: Writes multiple processed tables to single container file

tmultin takes multiple input tables and writes them to a single output container file. The container
file must be of some format which can contain more than one table, for instance a FITS file (which
can contain multiple extensions) or a VOTable document (which can contain multiple TABLE
elements). Individual filtering may be performed on the tables prior to writing them, and their
formats may be specified individually. If you want to apply the same pre-processing to all the input
tables, you may find the tmulti command more convenient.

B.40.1 Usage

The usage of tmultin is

stilts <stilts-flags> tmultin nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> out=<out-file> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.MultiCopyN.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on input table #N as specified by parameter inN, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmtN = <in-format> (String)
Specifies the format of input table #N as specified by parameter inN. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

inN = <tableN> (StarTable)
The location of input table #N. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmtN parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

SUN/256 588

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

nin = <count> (Integer)
The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ofmt = <out-format> (String)
Specifies the format in which the output tables will be written (one of the ones in Section 5.1.2
- matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

Not all output formats are capable of writing multiple tables; if you choose one that is not, an
error will result.

[Default: (auto)]

out = <out-file> (uk.ac.starlink.util.Destination)
The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

B.40.2 Examples

Here are some examples of using tmultin:

stilts tmultin nin=3 in1=t1.xml ifmt1=votable
in2=t2.fit ifmt2=fits
in3=t3.txt ifmt3=ascii
out=tables.fits

Takes three input tables in different formats, and writes them out as a single multi-extension
FITS file.

stilts tmultin nin=3 in1=data.fits icmd1='every 10; head 100'
in2=data.fits icmd2='every 100; head 100'
in3=data.fits icmd3='every 1000; head 100'
out=samples.xml ofmt=votable

Writes three hundred-row tables as separate TABLE elements in a single output VOTable
document. Each of the output tables is a sample from the same input table, but sampled
differently; the first is every tenth row, the second every hundredth, and the third every
thousandth.

B.41 tpipe: Performs pipeline processing on a table

tpipe performs all kinds of general purpose manipulations which take one table as input. It is
extremely flexible, and can do the following things amongst others:

• calculate statistics
• display metadata
• select rows in various ways, including algebraically
• define new columns as algebraic functions of old ones

SUN/256 589

• delete or rearrange columns
• sort rows
• convert between table formats

and combine these operations. You can think of it as a supercharged table copying tool.

The basic operation of tpipe is that it reads an input table, performs zero or more processing steps
on it, and then does something with the output. There are therefore three classes of things you need
to tell it when it runs:

Input table location
Specified by the in, ifmt and istream parameters.

Processing steps
Either provide a string giving steps as the value of one or more cmd parameters, or the name of
a file containing the steps using the script parameter. The steps that you can perform are
described in Section 6.1.

Output table destination
What happens to the output table is determined by the value of the omode parameter. By
default, omode=out, in which case the table is written to a new table file in a format determined
by ofmt. However, you can do other things with the result such as calculate the per-column
statistics (omode=stats), view only the table and column metadata (omode=meta), display it
directly in TOPCAT (omode=topcat) etc.

See Section 6 for a more detailed explanation of these ideas.

The parameters mentioned above are listed in detail in the next section.

B.41.1 Usage

The usage of tpipe is

stilts <stilts-flags> tpipe ifmt=<in-format> istream=true|false cmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.TablePipe.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

cmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)

SUN/256 590

Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

SUN/256 591

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

B.41.2 Examples

Here are some examples of tpipe in use with explanations of what's going on. For simplicity these
examples assume that you have the stilts script installed and are using a Unix-like shell; see
Section 3 for an explanation of how to invoke the command if you just have the Java classes.

stilts tpipe cat.fits

Writes a FITS table to standard output in human-readable form. Since no mode specifier is
given, omode=out is assumed, and output is to standard output in text format.

stilts tpipe cmd='head 5' cat.fits.gz

Does the same as the last example, but with one processing step: only the first five rows of the
table are output. In this case, the input file is compressed using gzip - this is automatically
detected.

stilts tpipe ifmt=csv xxx.csv \
cmd='keepcols "index ra dec"' \
omode=out ofmt=fits xxx.fits

Reads from a comma-separated values file, writes to a FITS file, and discards all columns in
the input table apart from INDEX, RA and DEC. Note the quoting in the cmd argument: the
outer quotes are so that the argument of the cmd parameter itself (keepcols "index ra dec")
is not split up by spaces (to protect it from the shell), and the inner quotes are to keep the
colid-list argument of the keepcols command together.

stilts tpipe ifmt=votable \
cmd='addcol IV_SUM "(IMAG+VMAG)"' \
cmd='addcol IV_DIFF "(IMAG-VMAG)"' \
cmd='delcols "IMAG VMAG"' \
omode=out ofmt=votable \

< tab1.vot \
> tab2.vot

Replaces two columns by their sum and difference in a VOTable. Since neither the in nor out
parameters have been specified, the input and output are actually byte streams on standard
input and standard output of the tpipe command in this case. The processing steps first add a
column representing the sum, then add a column representing the difference, then delete the

SUN/256 592

original columns.

stilts tpipe cmd='addskycoords -inunit sex fk5 gal \
RA2000 DEC2000 GAL_LONG GAL_LAT' \

6dfgs.fits 6dfgs+gal.fits

Adds columns giving galactic coordinates to a table. Both input and output tables are FITS
files. The galactic coordinates, stored in new columns named GAL_LONG and GAL_LAT,
are calculated from FK5 J2000.0 coordinates given in the existing columns named RA2000
and DEC2000. The input (FK5) coordinates are represented as sexagesimal strings (hh:mm:ss,
dd:mm:ss), and the output ones are numeric degrees.

stilts -disk tpipe 2dfgrs_ngp.fits \
cmd='keepcols "SEQNUM AREA ECCENT"' \
cmd='sort -down AREA' \
cmd='head 20'

Displays selected columns for the 20 rows with largest values in the AREA column of a FITS
table. First the columns of interest are selected, then the rows are sorted into descending order
by the value of the AREA column, then the first 20 rows of the resulting table are selected, and
the result is written to standard output. Since a sort is being performed here, it's not possible to
do all the processing a row at a time, since all the AREA values must be available for
comparison during the sort. Two things are done here to accommodate this fact: first the
column selection is done before the sort, so that it's only a 3-column table which needs to be
available for random access, reducing the temporary storage required. Secondly the -disk flag
is supplied, which means that temporary disk files rather than memory will be used for caching
table data.

stilts tpipe 2dfgrs_ngp.fits \
cmd='keepcols "SEQNUM AREA ECCENT"' \
cmd='sorthead -down 20 AREA'

Has exactly the same effect as the previous example. However, the algorithm used by the
sorthead filter is in most cases faster and cheaper on memory (only 20 rows ever have to be
stored in this case), so this is generally a better approach than combining the sort and head

filters.

stilts tpipe omode=meta cmd=@commands.lis http://archive.org/data/survey.vot.Z

Outputs column and table metadata about a table. In this case the table is a compressed
VOTable at the end of a URL. Processing is performed according to the commands contained
in a file named "commands.lis" in the current directory.

stilts tpipe in=survey.fits
cmd='select "skyDistanceDegrees(hmsToDegrees(RA),dmsToDegrees(DEC), \

hmsToDegrees(2,28,11),dmsToDegrees(-6,49,45)) \
< 5./60."' \

omode=count

Counts the number of rows within a given 5 arcmin cone of sky in a FITS table. The
skyDistanceDegrees function is an expression which calculates the distance between the
position specified in a row (as given by its RA and DEC columns) and a given point on the sky
(here, 02:28:11,-06:49:45). Since skyDistanceDegrees's arguments and return value are in
decimal degrees, some conversions are required: the RA and DEC columns are sexagesimal
strings which are converted using the hmsToDegrees and dmsToDegrees functions respectively.
Different versions of these functions (ones which take numeric arguments) are used to convert
the coordinates of the fixed point to degrees. The result is compared to a constant expression
representing 5 arcminutes in degrees. Any rows of the input table for which this comparison is
true are included in the output. An alternative function, skyDistanceRadians which works in
radians, is also available. These functions and constants used here are described in detail in

SUN/256 593

Section 10.7.5 and Section 10.7.6.

stilts tpipe ifmt=ascii survey.txt \
cmd='select "OBJTYPE == 3 && Z > 0.15"' \
cmd='keepcols "IMAG JMAG KMAG"' \
omode=stats

Calculate statistics on the I, J and K magnitudes of selected objects from a catalogue. Only
those rows with the given OBJTYPE and in the given Z range are included. The minimum,
maximum, mean, standard deviation etc of the IMAG, JMAG and KMAG columns will be
written to standard output.

stilts -classpath lib/drivers/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
tpipe in=x.fits cmd="explodeall" omode=tosql \

protocol=mysql host=localhost db=ASTRO1 dbtable=TABLEX \
write=dropcreate user=mbt

Writes a FITS table to an SQL table, converting array-valued columns to scalar ones. To make
the SQL connection work properly, the classpath is augmented to include the path of the
MySQL JDBC driver and the jdbc.drivers system property is set to the JDBC driver class
name. The output will be written as a new table named TABLEX in the MySQL database
named ASTRO1 on a MySQL server on the local host. The password, if required, will be
prompted for, as would any of the other required parameters if they had not been given on the
command line. Any existing table in ASTRO1 with the name TABLEX is overwritten. The
only processing done here is by the explodeall command, which takes any columns which
have fixed-size array values and replaces them in the output with multiple scalar columns.

java -classpath stilts.jar:lib/drivers/mysql-connector-java.jar
-Djdbc.drivers=com.mysql.jdbc.Driver \
uk.ac.starlink.ttools.Stilts \
tpipe in=x.fits \

cmd=explodeall \
omode=out \
out="jdbc:mysql://localhost/ASTRO1?user=mbt#TABLEX"

This does exactly the same as the previous example, but achieves it in a slightly different way.
In the first place, java is invoked directly with the necessary flags rather than getting the
stilts script to do it. Note that you cannot use java's -jar flag in this case, because doing it
like that would not permit access to the additional classes that contain the JDBC driver. In the
second place we use omode=out rather than omode=tosql. For this we need to supply an out

value which encodes the information about the SQL connection and table in a special
URL-like format. As you can see, this is a bit arcane, which is why the omode=tosql mode can
be a help.

stilts tpipe USNOB.FITS cmd='every 1000000' omode=stats

Calculates statistics on a selection of the rows in a catalogue, and writes the result to the
terminal. In this example, every millionth row is sampled.

B.42 tskymap: Calculates sky density maps

tskymap calculates a weighted density map (or, to put it another way, a histogram) on the sky from
columns of an input table. The sky is divided up into some discrete set of tiles according to a
specified tessellation scheme (currently HEALPix or HTM are supported), and the required
quantities are aggregated into bins corresponding to these tiles. The output table has a column
giving the pixel index identifying each tile, plus one or more columns each representing an
aggregation of a quantity from the input table.

SUN/256 594

By default the number of rows from the input table falling within each tile is included as the first
column in the output table. But by specifying the cols and combine parameters you can add more
columns giving the sum, mean, median or other statistics of input table columns or expressions as
well.

The output table can then, for instance, be plotted using plot2sky's healpix layer type (though an
alternative is to do that plot directly using a skydensity layer).

In the case of HEALPix tiling, the result can also be output in a FITS file suitable for use by
external applications that understand the semi-standard FITS-Healpix convention. Note in this case,
for maximum compatibility, the fits-healpix output format should in general be used.

See also tgridmap, which does the same thing for N-dimensional grid geometry.

B.42.1 Usage

The usage of tskymap is

stilts <stilts-flags> tskymap ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
lon=<expr/deg> lat=<expr/deg>
tiling=hpx<K>|healpixnest<K>|healpixring<K>|htm<K>
count=true|false
cols=<expr>[;<combiner>[;<name>]] ...
combine=sum|sum-per-unit|count|count-per-unit|mean|median|Q1|Q3|min|max|stdev|stdev_pop|hit
perunit=steradian|degree2|arcmin2|arcsec2|mas2|uas2
complete=true|false
runner=sequential|parallel|parallel<n>|partest
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.SkyDensityMap.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

cols = <expr>[;<combiner>[;<name>]] ... (String[])
Defines the quantities to be calculated. The value is a space-separated list of items, one for
each aggregated column in the output table.

Each item is composed of one, two or three tokens, separated by semicolon (";") characters:

• <expr>: (required) column name or expression using the expression language for the
quantity to be aggregated.

• <combiner>: (optional) combination method, using the same options as for the combine

parameter. If omitted, the value specified for that parameter will be used.
• <name>: (optional) name of output column; if omitted, the <expr> value (perhaps

somewhat sanitised) will be used.

It is often sufficient just to supply a space-separated list of input table column names for this
parameter, but the additional syntax may be required for instance if it's required to calculate
both a sum and mean of the same input column.

combine =

sum|sum-per-unit|count|count-per-unit|mean|median|Q1|Q3|min|max|stdev|stdev_pop|hit

(Combiner)
Defines the default way that values contributing to the same density map bin are combined
together to produce the value assigned to that bin. Possible values are:

SUN/256 595

• sum: the sum of all the combined values per bin
• sum-per-unit: the sum of all the combined values per unit of bin size
• count: the number of non-blank values per bin (weight is ignored)
• count-per-unit: the number of non-blank values per unit of bin size (weight is ignored)
• mean: the mean of the combined values
• median: the median
• Q1: first quartile
• Q3: third quartile
• min: the minimum of all the combined values
• max: the maximum of all the combined values
• stdev: the sample standard deviation of the combined values
• stdev_pop: the population standard deviation of the combined values
• hit: 1 if any values present, NaN otherwise (weight is ignored)

For density-like values (count-per-unit, sum-per-unit) the scaling is additionally influenced
by the perunit parameter.

Note this value may be overridden on a per-column basis by the cols parameter.

[Default: mean]

complete = true|false (Boolean)
Determines whether the output table contains a row for every pixel in the tiling, or only the
rows for pixels in which some of the input data fell.

The value of this parameter may affect performance as well as output. If you know that most
pixels on the sky will be covered, it's probably a good idea to set this true, and if you know that
only a small patch of sky will be covered, it's better to set it false.

[Default: false]

count = true|false (Boolean)
Controls whether a COUNT column is added to the output table along with any other columns
that may have been requested. If included, this reports the number of rows from the input table
that fell within the corresponding bin.

[Default: true]

icmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter in, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up a list of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ifmt = <in-format> (String)
Specifies the format of the input table as specified by parameter in. The known formats are
listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it has
the special value (auto) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted. This parameter is ignored for
scheme-specified tables.

[Default: (auto)]

SUN/256 596

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt parameter. Note that not all formats can be streamed in this way.
• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream = true|false (Boolean)
If set true, the input table specified by the in parameter will be read as a stream. It is necessary
to give the ifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable). This parameter is
ignored for scheme-specified tables.

[Default: false]

lat = <expr/deg> (String)
Latitude in degrees for the position of each row in the input table. This may simply be a
column name, or it may be an algebraic expression as explained in Section 10. The sky system
used here will determine the grid on which the output map is built.

lon = <expr/deg> (String)
Longitude in degrees for the position of each row in the input table. This may simply be a
column name, or it may be an algebraic expression as explained in Section 10. The sky system
used here will determine the grid on which the output map is built.

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alternatively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons, and lines which are blank or which start with a '#' character are ignored. A
backslash character '\' at the end of a line joins it with the following line.

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

SUN/256 597

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

perunit = steradian|degree2|arcmin2|arcsec2|mas2|uas2 (SolidAngleUnit)
Defines the unit of sky area used for scaling density-like combinations (e.g.
combine=count-per-unit or sum-per-unit). If the combination mode is calculating values
per unit area this configures the area scale in question. For non-density-like combination
modes (e.g. combine=sum or mean) it has no effect.

Possible values are:

• steradian: steradian
• degree2: square degree
• arcmin2: square arcminute
• arcsec2: square arcsecond
• mas2: square milliarcsec
• uas2: square microarcsec

[Default: degree2]

runner = sequential|parallel|parallel<n>|partest (RowRunner)
Selects the threading implementation, i.e. to what extent processing is done in parallel. The
options are currently:

• sequential: runs using only a single thread
• parallel: runs using multiple threads for large tables, with parallelism given by the

number of available processors
• parallel<n>: runs using multiple threads for large tables, with parallelism given by the

supplied value <n>

• partest: runs using multiple threads even when tables are small (only intended for

SUN/256 598

testing purposes)

Using parallel processing can speed up execution considerably; however, depending on the I/O
operations required, it can also slow it down by disrupting patterns of disk access. If the
content of a file is on a solid state disk, or is already in cache for instance because a similar
command has been run recently, then parallel will probably be faster. However, if the data is
being read directly from a spinning disk, for instance because the file is too large to fit in
RAM, then sequential or parallel<n> with a small <n> may be faster.

The value of this parameter should make only very tiny differences to the output table. If you
notice significant discrepancies please report them.

[Default: parallel]

tiling = hpx<K>|healpixnest<K>|healpixring<K>|htm<K> (SkyTiling)
Describes the sky tiling scheme that is in use. One of the following values may be used:

• hpxK: alias for healpixnestK
• healpixnestK: HEALPix using the Nest scheme at order K
• healpixringK: HEALPix using the Ring scheme at order K
• htmK: Hierarchical Triangular Mesh at level K

So for instance hpx5 or healpixnest5 would both indicate the HEALPix NEST tiling scheme
at order 5.

At level K, there are 12*4^K HEALPix pixels, or 8*4^K HTM pixels on the sky. More
information about these tiling schemes can be found at the HEALPix and HTM web sites.

[Default: hpx5]

B.42.2 Examples

Here are some examples of using tskymap:

stilts tskymap in=iras_psc.fits lon=RA lat=DEC out=iras_map.csv

Writes a table representing a density map of IRAS point sources on the sky. The output is a
2-column CSV file: the first column is pixel index, and the second column is the number of
rows in the input table whose (RA,DEC) positions fall within that pixel. The default tiling is
used (currently level 5 HEALPix, which has 12288 pixels).

stilts tskymap in=iras_psc.fits lon=RA lat=DEC tiling=hpx6
ocmd='healpixmeta -csys C'
ofmt=fits-healpix out=iras_map.fits

This does a similar job to the previous example, but explicitly requests HEALPix level 6 tiling,
and outputs to a FITS variant that other applications such as Aladin understand as containing a
HEALPix map. The output format is specified with ofmt=fits-healpix, which writes a FITS
file following the HEALPix-FITS convention. An additional filter "healpixmeta -csys C" is
also supplied here: this indicates that the HEALPix pixels in the output file are to be
considered in the Celestial (=equatorial) sky system. If this is not done, Aladin assumes the
coordinate system to be Galactic and will align the results incorrectly on the sky.

stilts tskymap in=2mpz.fits icmd='addskycoords fk5 galactic ra dec glon glat'
lon=glon lat=glat tiling=hpx6
cols='jCorr-hCorr hCorr-kCorr jCorr-kCorr' combine=median
count=false
complete=true
out=2mpzColors.fits

Writes a table with columns giving median J-H, H-K and J-K colours, but no source count

SUN/256 599

column, from the sources in the file 2mpz.fits, aggregated over each tile of a level 6 HEALPix
grid. The input table has equatorial coordinates, but the addskycoords filter has been used so
that the grid is laid on the sky with galactic coordinates. Setting complete=true guarantees
that a row is written to the output file for every sky pixel, including empty ones. Note in this
case that the output format is not specified explicitly, so it will be inferred from the filename,
to be "normal" FITS, rather than healpix-fits. The output data will still be present, but
external applications may not automatically identify the pixel column.

stilts tskymap in=tgas_source.fits tiling=hpx7 lon=l lat=b count=false
cols=phot_g_n_obs combine=sum-per-unit perunit=arcmin2
ofmt=fits-healpix ocmd='healpixmeta -csys G'
out=obs-density.fits

Calculates a level-7 HEALPix map where each cell contains the local number of observations
per square arcminute, as determined by summing all the phot_g_n_obs values from the input
table that fall into each tile and applying a suitable scaling factor. The grid coordinate system
is explicitly labelled as Galactic.

stilts tskymap in=gaia_source.colfits tiling=hpx8 lon=l lat=b count=true
cols='bp_rp;mean phot_bp_mean_flux;sum phot_rp_mean_flux;sum'
out=gaia-stats.fits

Simultaneously calculates the mean value of the bp_rp column and the summed values of the
phot_bp_mean_flux and phot_rp_mean_flux columns for each HEALPix level 8 tile, as well
as the source density.

stilts tskymap in=gums_lmc.fits lon=alpha lat=delta
tiling=hpx14 complete=false omode=count

This prepares a source count map at healpix level 14 (3 billion pixels) from the given input
table. Since complete=false, only rows for non-empty pixels are included in the output table.
Then, since the output mode is count, these rows are just counted, discarding the pixels
themselves, giving the number of level-14 healpix pixels touched by the sources in this input
file. Note this is not necessarily the most efficient way to calculate coverage information.

B.43 tskymatch2: Crossmatches 2 tables on sky position

tskymatch2 performs a crossmatch of two tables based on the proximity of sky positions. You
specify the columns or expressions giving right ascension and declination in degrees for each input
table, and a maximum permissible separation in arcseconds, and the resulting joined table is output.

If you omit expressions for the RA and Dec, an attempt is made to identify the columns to use using
column Unified Content Descriptors (UCDs) or names. First columns bearing appropriate UCD1 or
UCD1+ values (POS_EQ_RA, POS_EQ_RA_MAIN, pos.eq.ra or pos.eq.ra;meta.main and their
equivalents for declination) are sought. If these cannot be found, columns named something like
"RA" or "RA2000" are sought. If either is found, the column units are consulted and radian->degree
conversions are performed if necessary (degrees are assumed if no unit value is given). If nothing
likely can be found, then the command will fail with an error message. This search logic is intended
as a convenience only; it is somewhat ad hoc and subject to change. To make sure that the correct
angle values are being used, specify the ra and dec position parameters explicitly.

tskymatch2 is simply a cut-down version, provided for convenience, of the more general matching
task tmatch2. If you want more match options or otherwise more configurability, you can probably
find it by using tmatch2.

B.43.1 Usage

SUN/256 600

The usage of tskymatch2 is

stilts <stilts-flags> tskymatch2 ifmt1=<in-format> ifmt2=<in-format>
omode=out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui
out=<out-table> ofmt=<out-format>
ra1=<expr> dec1=<expr> ra2=<expr>
dec2=<expr> error=<value/arcsec>
tuning=<healpix-k>
join=1and2|1or2|all1|all2|1not2|2not1|1xor2
find=all|best|best1|best2
runner=parallel|parallel<n>|parallel-all|sequential|classic|partest
[in1=]<table1> [in2=]<table2>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.SkyMatch2.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

dec1 = <expr> (String)
Declination in degrees for the position of each row of table 1. This may simply be a column
name, or it may be an algebraic expression calculated from columns as explained in Section
10. If left blank, an attempt is made to guess from UCDs, column names and unit annotations
what expression to use.

dec2 = <expr> (String)
Declination in degrees for the position of each row of table 2. This may simply be a column
name, or it may be an algebraic expression calculated from columns as explained in Section
10. If left blank, an attempt is made to guess from UCDs, column names and unit annotations
what expression to use.

error = <value/arcsec> (Double)
The maximum separation permitted between two objects for them to count as a match. Units
are arc seconds.

find = all|best|best1|best2 (PairMode)
Determines what happens when a row in one table can be matched by more than one row in
the other table. The options are:

• all: All matches. Every match between the two tables is included in the result. Rows
from both of the input tables may appear multiple times in the result.

• best: Best match, symmetric. The best pairs are selected in a way which treats the two
tables symmetrically. Any input row which appears in one result pair is disqualified from
appearing in any other result pair, so each row from both input tables will appear in at
most one row in the result.

• best1: Best match for each Table 1 row. For each row in table 1, only the best match
from table 2 will appear in the result. Each row from table 1 will appear a maximum of
once in the result, but rows from table 2 may appear multiple times.

• best2: Best match for each Table 2 row. For each row in table 2, only the best match
from table 1 will appear in the result. Each row from table 2 will appear a maximum of
once in the result, but rows from table 1 may appear multiple times.

The differences between best, best1 and best2 are a bit subtle. In cases where it's obvious
which object in each table is the best match for which object in the other, choosing betwen
these options will not affect the result. However, in crowded fields (where the distance
between objects within one or both tables is typically similar to or smaller than the specified
match radius) it will make a difference. In this case one of the asymmetric options (best1 or
best2) is usually more appropriate than best, but you'll have to think about which of them
suits your requirements. The performance (time and memory usage) of the match may also

SUN/256 601

differ between these options, especially if one table is much bigger than the other.

[Default: best]

ifmt1 = <in-format> (String)
Specifies the format of the first input table as specified by parameter in1. The known formats
are listed in Section 5.1.1. This flag can be used if you know what format your table is in. If it
has the special value (auto) (the default), then an attempt will be made to detect the format of
the table automatically. This cannot always be done correctly however, in which case the
program will exit with an error explaining which formats were attempted. This parameter is
ignored for scheme-specified tables.

[Default: (auto)]

ifmt2 = <in-format> (String)
Specifies the format of the second input table as specified by parameter in2. The known
formats are listed in Section 5.1.1. This flag can be used if you know what format your table is
in. If it has the special value (auto) (the default), then an attempt will be made to detect the
format of the table automatically. This cannot always be done correctly however, in which
case the program will exit with an error explaining which formats were attempted. This
parameter is ignored for scheme-specified tables.

[Default: (auto)]

in1 = <table1> (StarTable)
The location of the first input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt1 parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

in2 = <table2> (StarTable)
The location of the second input table. This may take one of the following forms:

• A filename.
• A URL.
• The special value "-", meaning standard input. In this case the input format must be given

explicitly using the ifmt2 parameter. Note that not all formats can be streamed in this
way.

• A scheme specification of the form :<scheme-name>:<scheme-args>.
• A system command line with either a "<" character at the start, or a "|" character at the

end ("<syscmd" or "syscmd|"). This executes the given pipeline and reads from its
standard output. This will probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

join = 1and2|1or2|all1|all2|1not2|2not1|1xor2 (JoinType)
Determines which rows are included in the output table. The matching algorithm determines
which of the rows from the first table correspond to which rows from the second. This
parameter determines what to do with that information. Perhaps the most obvious thing is to
write out a table containing only rows which correspond to a row in both of the two input
tables. However, you may also want to see the unmatched rows from one or both input tables,

SUN/256 602

or rows present in one table but unmatched in the other, or other possibilities. The options are:

• 1and2: An output row for each row represented in both input tables (INNER JOIN)
• 1or2: An output row for each row represented in either or both of the input tables (FULL

OUTER JOIN)
• all1: An output row for each matched or unmatched row in table 1 (LEFT OUTER

JOIN)
• all2: An output row for each matched or unmatched row in table 2 (RIGHT OUTER

JOIN)
• 1not2: An output row only for rows which appear in the first table but are not matched in

the second table
• 2not1: An output row only for rows which appear in the second table but are not matched

in the first table
• 1xor2: An output row only for rows represented in one of the input tables but not the

other one

[Default: 1and2]

ofmt = <out-format> (String)
Specifies the format in which the output table will be written (one of the ones in Section 5.1.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = out|meta|stats|count|checksum|cgi|discard|topcat|samp|plastic|tosql|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• checksum

• cgi

• discard

• topcat

• samp

• plastic

• tosql

• gui

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

SUN/256 603

This parameter must only be given if omode has its default value of "out".

[Default: -]

ra1 = <expr> (String)
Right ascension in degrees for the position of each row of table 1. This may simply be a
column name, or it may be an algebraic expression calculated from columns as explained in
Section 10. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

ra2 = <expr> (String)
Right ascension in degrees for the position of each row of table 2. This may simply be a
column name, or it may be an algebraic expression calculated from columns as explained in
Section 10. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

runner = parallel|parallel<n>|parallel-all|sequential|classic|partest

(RowRunner)
Selects the threading implementation. The options are currently:

• parallel: uses multithreaded implementation for large tables, with default parallelism,
which is the smaller of 6 and the number of available processors

• parallel<n>: uses multithreaded implementation for large tables, with parallelism given
by the supplied value <n>

• parallel-all: uses multithreaded implementation for large tables, with a parallelism
given by the number of available processors

• sequential: uses multithreaded implementation but with only a single thread
• classic: uses legacy sequential implementation
• partest: uses multithreaded implementation even when tables are small

The parallel* options should normally run faster than sequential or classic (which are
provided mainly for testing purposes), at least for large matches and where multiple processing
cores are available.

The default value "parallel" is currently limited to a parallelism of 6 since larger values yield
diminishing returns given that some parts of the matching algorithms run sequentially
(Amdahl's Law), and using too many threads can sometimes end up doing more work or
impacting on other operations on the same machine. But you can experiment with other
concurrencies, e.g. "parallel16" to run on 16 cores (if available) or "parallel-all" to run on
all available cores.

The value of this parameter should make no difference to the matching results. If you notice
any discrepancies please report them.

[Default: parallel]

tuning = <healpix-k> (Integer)
Tuning parameter that controls the pixel size used when binning the rows. The legal range is
from 0 (corresponding to pixel size of about 60 degrees) to 20 (about 0.2 arcsec). The value of
this parameter will not affect the result but may affect the performance in terms of CPU and
memory resources required. A default value will be chosen based on the size of the error

parameter, but it may be possible to improve performance by adjusting the default value. The
value used can be seen by examining the progress output. If your match is taking a long time
or is failing from lack of memory it may be worth trying different values for this parameter.

B.43.2 Examples

Here are some examples of using tskymatch2:

SUN/256 604

stilts tskymatch2 in1=obs_v.xml in2=obs_i.xml out=obs_iv.xml \
ra1=OBS_RA dec1=OBS_DEC ra2=OBS_RA dec2=OBS_DEC error=2

Takes two input catalogues (VOTables), one with observations in the V band and the other in
the I band, and performs a match to find objects within 2 arcseconds of each other. The result
is a new VOTable containing only rows where a match was found.

stilts tskymatch2 in1=obs_v.xml in2=obs_i.xml out=obs_iv.xml \
error=2

This is the same as the previous example but without explicit specification of the sky position
columns in either table. It will work only if those columns are identified with appropriate
UCDs, for instance pos.eq.ra;meta.main and pos.eq.dec:meta.main. If no suitable UCDs
are in place this invocation will fail with an error.

stilts tskymatch2 in1=virgo1.txt ifmt1=ascii in2=mgc.fits \
ra1='radiansToDegrees(raRad)' dec1='radiansToDegrees(deRad)' \
ra2=MGC_ALPHA_J2000 dec2=MGC_DELTA_J2000 \
error=10 join=2not1 omode=count

Object positions in the text file virgo1.txt are compared to those in the FITS file mgc.fits. The
angles have been recorded in the text file in radians, so they are converted to degrees here
before use. Use of the join=2not1 parameter causes the command to identify all the objects in
the first list which do not have counterparts within 10 arcsec in the second list. The number of
such objects found is simply output to the terminal.

B.44 votcopy: Transforms between VOTable encodings

The VOTable standard provides for three basic encodings of the actual data within each table:
TABLEDATA, BINARY and FITS. TABLEDATA is a pure-XML encoding, which is relatively
easy for humans to read and write. However, it is verbose and not very efficient for transmission
and processing, for which reason the more compact BINARY format has been defined. FITS format
shares the advantages of BINARY, but is more likely to be used where a VOTable is providing
metadata 'decoration' for an existing FITS table. In addition, the BINARY and FITS encodings may
carry their data either inline (as the base64-encoded text content of a STREAM element) or externally
(referenced by a STREAM element's href attribute).

These different formats have their different advantages and disadvantages. Since, to some extent,
programmers are humans too, much existing VOTable software deals in TABLEDATA format even
though it may not be the most efficient way to proceed. Conversely, you might wish to examine the
contents of a BINARY-encoded table without use of any software more specialised than a text
editor. So there are times when it is desirable to convert from one of these encodings to another.

votcopy is a tool which translates between these encodings while making a minimum of other
changes to the VOTable document. The processing may result in some changes to lexical details
such as whitespace in start tags, but the element structure is not modified. Unlike tpipe it does not
impose STIL's model of what constitutes a table on the data between reading it in and writing it out,
so subtleties dependent on the exact structure of the VOTable document will not be mangled. The
only important changes should be the contents of DATA elements in the document.

B.44.1 Usage

The usage of votcopy is

stilts <stilts-flags> votcopy version=1.0|1.1|1.2|1.3|1.4|1.5
charset=<xml-encoding> cache=true|false
href=true|false nomagic=true|false

SUN/256 605

base=<location>
[in=]<location> [out=]<location>
[format=]TABLEDATA|BINARY|BINARY2|FITS

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.VotCopy.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

base = <location> (String)
Determines the name of external output files written when the href flag is true. Normally these
are given names based on the name of the output file. But if this flag is given, the names will
be based on the <location> string. This flag is compulsory if href is true and out=- (output is
to standard out), since in this case there is no default base name to use.

cache = true|false (Boolean)
Determines whether the input tables are read into a cache prior to being written out. The
default is selected automatically depending on the input table; so you should normally leave
this flag alone.

charset = <xml-encoding> (Charset)
Selects the Unicode encoding used for the output XML. The available options are dependent
on your JVM, use help=charset for a full listing. Setting the value null will use the JVM's
system default.

[Default: UTF-8]

format = TABLEDATA|BINARY|BINARY2|FITS (uk.ac.starlink.votable.DataFormat)
Determines the encoding format of the table data in the output document. If null is selected,
then the tables will be data-less (will contain no DATA element), leaving only the document
structure. Data-less tables are legal VOTable elements.

The BINARY2 format is only available for version=1.3

[Default: TABLEDATA]

href = true|false (Boolean)
In the case of BINARY or FITS encoding, this determines whether the STREAM elements
output will contain their data inline or externally. If set false, the output document will be
self-contained, with STREAM data inline as base64-encoded characters. If true, then for each
TABLE in the document the binary data will be written to a separate file and referenced by an
href attribute on the corresponding STREAM element. The name of these files is usually
determined by the name of the main output file; but see also the base flag.

in = <location> (String)
Location of the input VOTable. May be a URL, filename, or "-" to indicate standard input. The
input table may be compressed using one of the known compression formats (Unix compress,
gzip or bzip2).

[Default: -]

nomagic = true|false (Boolean)
Eliminate the null attributes of VALUES elements where they are no longer required. In
VOTable versions <=1.2, the only way to specify null values for integer-type scalar columns
was to use the null attribute of the VALUES element to indicate an in-band magic value
representing null. From VOTable v1.3, null values can be represented using empty <TD>

elements or flagged specially in BINARY2 streams. In these cases, it is recommended (though
not required) not to use the VALUES/null mechanism.

If this parameter is set true, then any VALUES/null attributes will be removed in VOTable 1.3

SUN/256 606

BINARY2 or TABLEDATA output. If this results in an empty VALUES element, it too will be
removed.

This parameter is ignored if the output VOTable version is lower than 1.3 or if
format=BINARY/FITS.

[Default: true]

out = <location> (String)
Location of the output VOTable. May be a filename or "-" to indicate standard output.

[Default: -]

version = 1.0|1.1|1.2|1.3|1.4|1.5 (uk.ac.starlink.votable.VOTableVersion)
Determines the version of the VOTable standard to which the output will conform. If null (the
default), the output table will have the same version as the input table.

B.44.2 Examples

Normal use of votcopy is pretty straightforward. We give here a couple of examples of its input and
output.

Here is an example VOTable document, cat.vot:

<VOTABLE>
<RESOURCE>

<TABLE name="Authors">
<FIELD name="AuthorName" datatype="char" arraysize="*"/>
<DATA>
<TABLEDATA>
<TR><TD>Charles Messier</TD></TR>
<TR><TD>Mark Taylor</TD></TR>
</TABLEDATA>
</DATA>
</TABLE>

<RESOURCE>
<COOSYS equinox="J2000.0" epoch="J2000.0" system="eq_FK4"/>
<TABLE name="Messier Objects">
<FIELD name="Identifier" datatype="char" arraysize="10"/>
<FIELD name="RA" datatype="double" units="degrees"/>
<FIELD name="Dec" datatype="double" units="degrees"/>
<DATA>
<TABLEDATA>
<TR> <TD>M51</TD> <TD>202.43</TD> <TD>47.22</TD> </TR>
<TR> <TD>M97</TD> <TD>168.63</TD> <TD>55.03</TD> </TR>
</TABLEDATA>
</DATA>
</TABLE>
</RESOURCE>

</RESOURCE>
</VOTABLE>

Note that it contains more structure than just a flat table: there are two TABLE elements, the
RESOURCE element of the second one being nested in the RESOURCE of the first. Processing this
document using a generic table tool such as tpipe or tcopy would lose this structure.

To convert the data encoding to BINARY format, we simply execute

stilts votcopy format=binary cat.vot

and the output is

<?xml version="1.0"?>
<VOTABLE>

SUN/256 607

<RESOURCE>

<TABLE name="Authors">
<FIELD name="AuthorName" datatype="char" arraysize="*"/>
<DATA>
<BINARY>
<STREAM encoding='base64'>
AAAAD0NoYXJsZXMgTWVzc2llcgAAAAtNYXJrIFRheWxvcg==
</STREAM>
</BINARY>
</DATA>
</TABLE>

<RESOURCE>
<COOSYS equinox="J2000.0" epoch="J2000.0" system="eq_FK4"/>
<TABLE name="Messier Objects">
<FIELD name="Identifier" datatype="char" arraysize="10"/>
<FIELD name="RA" datatype="double" units="degrees"/>
<FIELD name="Dec" datatype="double" units="degrees"/>
<DATA>
<BINARY>
<STREAM encoding='base64'>
TTUxAAAAAAAAAEBpTcKPXCj2QEecKPXCj1xNOTcAAAAAAAAAQGUUKPXCj1xAS4PX
Cj1wpA==
</STREAM>
</BINARY>
</DATA>
</TABLE>
</RESOURCE>

</RESOURCE>
</VOTABLE>

Note that both tables in the document have been translated to BINARY format. The basic structure
of the document is unchanged: the only differences are within the DATA elements. If we ran

stilts votcopy format=tabledata

on either this output or the original input then the output would be identical (apart perhaps from
whitespace) to the input table, since the data are originally in TABLEDATA format.

To generate a VOTable document with the data in external files, the href parameter is used. We
will output in FITS format this time. Executing:

stilts votcopy format=fits href=true cat.vot fcat.vot

writes the following to the file fcat.vot:

...
<DATA>
<FITS>
<STREAM href="fcat-1.fits"/>
</FITS>
</DATA>
...
<DATA>
<FITS>
<STREAM href="fcat-2.fits"/>
</FITS>
</DATA>
...

(the unchanged parts of the document have been skipped here for brevity). The actual data are
written in two additional files in the same directory as the output file, fcat-1.fits and
fcat-2.fits. These filenames are based on the main output filename, but can be altered using the
base flag if required. Note this has also given you FITS binary table versions of all the tables in the
input VOTable document, which can be operated on by normal FITS-aware software quite
separately from the VOTable if required.

SUN/256 608

B.45 votlint: Validates VOTable documents

The VOTable standard, while not hugely complicated, has a number of subtleties and it's not
difficult to produce VOTable documents which violate it in various ways. In some cases the errors
are small and a parser is likely to process the document without noticing the trouble. In other cases,
the errors are so serious that it's hard for any software to make sense of it. In many cases in
between, different software will react in different ways, in the worst case appearing to parse a
VOTable but in fact understanding the wrong data.

votlint is a program which can check a VOTable document and spot places where it does not
conform to the VOTable standard, or places which look like they may not mean what the author
intended. It is meant for use in two main scenarios:

1. For authors of VOTables and VOTable-producing software, to check that the documents they
produce are legal and problem-free.

2. For users of VOTables (including authors of VOTable-processing software) who are having
problems with one and want to know whether it is the data or the software at fault.

Validating a VOTable document against the VOTable schema or DTD of course goes a long way
towards checking a VOTable document for errors, but it by no means does the whole job, simply
because the schema/DTD specification languages don't have the facilities to understand the data
structure of a VOTable document. For instance the VOTable schema will allow any plain text
content in a TD element, but whether this makes sense in a VOTable depends on the datatype

attribute of the corresponding FIELD element. There are many other examples. votlint tackles this
by parsing the VOTable document in a way which understands its structure and assessing the
content as critically as it can. For any incorrect or questionable content it finds, it will output a short
message describing the problem and giving its location in the document. What you do with this
information is then up to you.

Using votlint is very straightforward. The votable argument gives the location (filename or URL)
of a VOTable document. Otherwise, the document will be read from standard input. Error and
warning messages will be written on standard output. Each message is prefixed with the location at
which the error was found (if possible the line and column are shown, though this is dependent on
your JVM's default XML parser). If multiple instances of the same problem are found, by default
only a few repeats of the message are reported; this can be controlled with the maxrepeat

parameter. The processing is SAX-based, so arbitrarily long tables can be processed without heavy
memory use.

votlint can't guarantee to pick up every possible error in a VOTable document, but it ought to pick
up many of the most serious errors that are commonly made in authoring VOTables.

Note: votlint's handling of XML namespaces seems to be somewhat dependent on the XML
parser in use. As far as I can see, Crimson (the default in many JREs) works for any namespace
arrangements, but Xerces seems to have problems when validating documents which use
namespace prefixes. Not sure about other parsers. This probably won't cause you trouble, but if it
does you may need to set validate=false to work around it. Contact the author if this seems to be
a serious issue for you.

B.45.1 Usage

The usage of votlint is

stilts <stilts-flags> votlint ucd=true|false unit=true|false
maxrepeat=<int-value> validate=true|false
version=1.0|1.1|1.2|1.3|1.4|1.5

SUN/256 609

out=<location>
[votable=]<location>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.VotLint.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

maxrepeat = <int-value> (Integer)
Puts a limit on the number of times that the same issue will be reported. With this set to a
relatively small number, the output is not cluttered with many repetitions of the same problem.

[Default: 4]

out = <location> (uk.ac.starlink.util.Destination)
Destination file for output messages. May be a filename or "-" to indicate standard output.

[Default: -]

ucd = true|false (Boolean)
If true, the ucd attributes on FIELD and PARAM elements etc are checked for conformance
against the UCD1+ standard or a list of known UCD1 terms.

[Default: true]

unit = true|false (Boolean)
If true, the unit attributes on FIELD and PARAM elements are checked for conformance
against the VOUnits standard; if false, no such checks are made.

The VOTable standard version 1.4 and later recommends use of VOUnits (there are some
inconsistencies in the text on this topic in VOTable 1.4, but these are cleared up in V1.5).
Earlier VOTable versions refer to a different (CDS) unit syntax, which is not checked by
votlint. So by default unit syntax is checked when the VOTable is 1.4 or greater, and not for
earlier versions, but that can be overridden by giving a true or false value for this parameter.

The wording of the VOTable and VOUnit standards do not strictly require use of VOUnit
syntax even at VOTable 1.4, so failed checks result in Warning rather than Error reports.

validate = true|false (Boolean)
Whether to validate the input document aganist the VOTable DTD. If true (the default), then as
well as votlint's own checks, it is validated against an appropriate version of the VOTable
DTD which picks up such things as the presence of unknown elements and attributes, elements
in the wrong place, and so on. Sometimes however, particularly when XML namespaces are
involved, the validator can get confused and may produce a lot of spurious errors. Setting this
flag false prevents this validation step so that only votlint's own checks are performed. In this
case many violations of the VOTable standard concerning document structure will go
unnoticed.

[Default: true]

version = 1.0|1.1|1.2|1.3|1.4|1.5 (uk.ac.starlink.votable.VOTableVersion)
Selects the version of the VOTable standard which the input table is supposed to exemplify.
The version may also be specified within the document using the "version" attribute of the
document's VOTABLE element; if it is and it conflicts with the value specified by this flag, a
warning is issued.

If no value is provided for this parameter (the default), the version will be determined from the
VOTable itself.

votable = <location> (InputStream)
Location of the VOTable to be checked. This may be a filename, URL or "-" (the default), to

SUN/256 610

indicate standard input. The input may be compressed using one of the known compression
formats (Unix compress, gzip or bzip2).

B.45.2 Items Checked

Votlint checks that the XML input is well-formed, and, unless the valid=false parameter is
supplied, that it validates against the 1.0 DTD or 1.1, 1.2, 1.3 or 1.4 schema as appropriate. Some of
the validity checks are also done by votlint internally, so that some validity-type errors may give
rise to more than one warning. In general, the program errs on the side of verbosity.

In addition to these checks, the following checks are carried out, and lead to ERROR reports if
violations are found:

• TD contents incompatible datatype/arraysize attributes declared in FIELD

• BINARY/BINARY2 data streams which don't match metadata declared in FIELD

• PARAM values incompatible with declared datatype/arraysize
• Meaningless arraysize declarations
• Array-valued TD elements with the wrong number of elements
• Array-valued PARAM values with the wrong number of elements
• nrows attribute on TABLE element different from the number of rows actually in the table
• VOTABLE version attribute is unknown
• ref attributes without matching ID elements elsewhere in the document
• Same ID attribute value on multiple elements.
• Attributes defined by external vocabularies have permitted values; hard-coded lists of known

permitted values are stored internally, but the external vocabularies are consulted if necessary
to check for values added after build time (currently only applies to TIMESYS attributes).

• Values marked by xtype values as defined in DALI are checked for formal compliance with
DALI requirements.

Additionally, the following conditions, which are not actually forbidden by the VOTable standard,
will generate WARNING reports. Some of these may result from harmless constructions, but it is
wise at least to take a look at the input which caused them:

• Wrong number of TD elements in row of TABLEDATA table
• Mismatch between VOTable and FITS column metadata for FITS data encoding
• TABLE with no FIELD elements
• Use of deprecated attributes
• FIELD or PARAM elements with datatype of either char or unicodeChar and undeclared

arraysize - this is a common error which can result in ignoring all but the first character in TD

elements from a column
• ref attributes which reference other elements by ID where the reference makes no, or

questionable sense (e.g. FIELDref references FIELD in a different table)
• Multiple sibling elements (such as FIELDs, though not INFOs) with the same name attributes
• TIMESYS elements never referenced.
• ucd attribute values are not legal UCD1+ strings (if parameter ucd=true)
• unit attribute values are not legal VOUnit strings (if parameter unit=true)

B.45.3 Examples

Here is a brief example of running votlint against a (very short) imperfect VOTable document. If
the document looks like this:

<VOTABLE version="1.1">
<RESOURCE>
<TABLE nrows="2">

SUN/256 611

<FIELD name="Identifier" datatype="char"/>
<FIELD name="RA" datatype="double"/>
<FIELD name="Dec" datatype="double"/>
<DESCRIPTION>A very small table</DESCRIPTION>
<DATA>
<TABLEDATA>
<TR>
<TD>Fomalhaut</TD>
<TD>344.48</TD>
<TD>-29.618</TD>
<TD>HD 216956</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>

</RESOURCE>
</VOTABLE>

then the output of a votlint run looks like this:

INFO (l.4): No arraysize for character, FIELD implies single character
ERROR (l.7): Element "TABLE" does not allow "DESCRIPTION" here.
WARNING (l.11): Characters after first in char scalar ignored (missing arraysize?)
WARNING (l.15): Wrong number of TDs in row (expecting 3 found 4)
ERROR (l.18): Row count (1) not equal to nrows attribute (2)

(Note that the details of the reports will vary according to the XML parser/validator that forms part
of your Java installation.)

Note also that the warning at line 11 has resulted from the same error as the one at line 4 - because
the FIELD element has no arraysize attribute, arraysize="1" (single character) is assumed, while
the author almost certainly intended arraysize="*" (unknown length string).

By examining these warnings you can see what needs to be done to fix this table up. Here is what it
should look like:

<VOTABLE version="1.1">
<RESOURCE>
<TABLE nrows="1"> <!-- change row count -->
<DESCRIPTION>A very small table</DESCRIPTION> <!-- move DESCRIPTION -->
<FIELD name="Identifier" datatype="char"

arraysize="*"/> <!-- add arraysize -->
<FIELD name="RA" datatype="double"/>
<FIELD name="Dec" datatype="double"/>
<DATA>
<TABLEDATA>
<TR>
<TD>Fomalhaut</TD>
<TD>344.48</TD>
<TD>-29.618</TD>

</TR> <!-- remove extra TD -->
</TABLEDATA>

</DATA>
</TABLE>

</RESOURCE>
</VOTABLE>

When fed this version, votlint gives no warnings.

B.46 xsdvalidate: Validates against XML Schema

xsdvalidate is a utility for validating XML documents against XML Schemas. This is not very
specific to STILTS, and does not claim to do a better job than other XSD validators out there, so if
you can find another one that suits your purposes, please use it. It was added to the package
however since it seems hard to find suitable tools that do this job.

The schema is not specified by runtime parameters, elements in a given XML document are
validated against any schemas associated with the namespaces defined in that document. However,

SUN/256 612

it is possible to override the locations of schemas using runtime parameters. By using the
schemaloc parameter, you can tell the validator to validate against a local copy of a schema or one
at a given URL, rather than the copy that is referenced by xsi:schemaLocation attributes in the
document itself. That can be convenient when developing a schema with a public namespace that is
fixed, but content which is still subject to change. Moreover, some local copies of W3C and IVOA
schemas are kept within the application, so that external network accesses are not required during
validation.

By default, successful validation results in no output and a success exit status, but if there are
validation errors then some indication of what went wrong is printed to standard output and the
command exits with an error. This makes it suitable for use in makefiles.

B.46.1 Usage

The usage of xsdvalidate is

stilts <stilts-flags> xsdvalidate schemaloc=<namespace>=<location> ...
topel=[{<ns-uri>}][<local-name>]
verbose=true|false uselocals=true|false
[doc=]<location>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is uk.ac.starlink.ttools.task.XsdValidate.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

doc = <location> (InputStream)
Location of XML document to validate.

schemaloc = <namespace>=<location> ... (String[])
Assignments of override schema locations to XML namespaces. One or more assignments may
be supplied, each of the form <namespace>=<location> where the location may be a filename
or URL. Multiple assignments may be made by supplying the parameter multiple times, or
using a space character as a separator.

Each assignment causes any reference to the given namespace in the validated document to be
validated with reference to the XSD schema at the given location rather than to a schema
acquired in the default way (using xsi:schemaLocation attributes or using the namespace as a
retrieval URL).

topel = [{<ns-uri>}][<local-name>] (String)
Local name of the top-level element expected in the parsed document. If the actual parsed
top-level element has a local name differing from this, an error will be reported. If no value is
specified (the default) no checking is done.

uselocals = true|false (Boolean)
Whether to use local copies of VO schemas where available. If true, copies of some IVOA
schemas stored within the application are used instead of retrieving them from their
http://www.ivoa.net/ URLs. Setting this true is generally faster and more robust against
network issues, though it may risk retrieving out of date copies of the schemas.

[Default: false]

verbose = true|false (Boolean)
If true, some INFO reports will be displayed alongside any ERROR reports resulting from the
parse. This may be useful for diagnosis or reassurance.

[Default: false]

SUN/256 613

B.46.2 Examples

Here are some examples of using xsdvalidate:

stilts xsdvalidate example-voresource.xml

Validates the given file against whatever schemas it declares. Success is indicated with a
non-error exit.

stilts xsdvalidate
doc=example-voresource.xml
schemaloc='http://www.ivoa.net/xml/VOResource/v1.0=vor-local.xsd'
topel='{http://www.ivoa.net/xml/RegistryInterface/v1.0}Resource'
verbose=true

Validates the named file against whatever schemas it declares, but uses the local file
"vor-local.xsd" in the current directory as the schema associated with the
"http://www.ivoa.net/xml/VOResource/v1.0" namespace, rather than using any schema
location given in the validated file. It also requires that the top-level element has the given URI
and local name; if not, the validation will fail. The verbose=true parameter provides some
diagnostics to standard output, including indications of which schemas were used and where
they were acquired from.

SUN/256 614

C Release Notes

This is STILTS, Starlink Tables Infrastructure Library Tool Set. It is a collection of non-GUI
utilites for general purpose table manipulation.

Author
Mark Taylor (Bristol University)

Email
m.b.taylor@bristol.ac.uk

WWW
http://www.starlink.ac.uk/stilts/

User comments, suggestions, requests and bug reports to the above address are welcomed.

C.1 Acknowledgements

The initial development of STILTS was done under the UK's Starlink project (1980-2005, R.I.P.).
Since then it has been supported by grant PP/D002486/1 from the UK's Particle Physics and
Astronomy Research Council, the VOTech project (from EU FP6), the AstroGrid project (from
PPARC/STFC), the AIDA project (from EU FP7), grants ST/H008470/1, ST/I00176X/1,
ST/J001414/1, ST/L002388/1, ST/M000907/1, ST/R000700/1 and ST/S001980/1 from the UK's
Science and Technology Facilities Council (STFC), the GAVO project (BMBF
Bewilligungsnummer 05A08VHA), the European Space Agency, and the EU FP7-2013-Space
project GENIUS. All of this support is gratefully acknowledged.

Apart from the excellent Java 2 Standard Edition itself, the following external libraries provide
important parts of STILTS's functionality:

• JEL (GNU) for algebraic expression evaluation
• cds-healpix-java (CDS) for HEALPix manipulation
• iText (1T3XT BVBA) for PDF output
• JFreeSVG for SVG output
• EPSGraphics2D (Jibble) for encapsulated postscript output
• MOC (CDS) for Multi-Order Coverage map manipulation
• ADQL (CDS) for ADQL parsing in TAP query preparation
• Skyview in a Jar (NASA) for sky axis drawing
• JLaTeXMath (Scilab) for LaTeX typesetting in plots
• GifEncoder (Acme) for GIF output
• HTM (Sloan Digital Sky Survey) for HTM-based celestial sphere row matching (now

deprecated within STILTS)

Thanks in particular to Nickolai Kouropatkine and Chris Stoughton of Fermilab for writing the
PixTools specially for use in STIL.

Many people have contributed ideas and advice to the development of STILTS and its related
products. A list of some of them can be found in the TOPCAT user document, SUN/253.

If you use this software in published work, the following citation would be appreciated:

2006ASPC..351..666T: M. B. Taylor, "STILTS - A Package for Command-Line Processing
of Tabular Data", in Astronomical Data Analysis Software and Systems XV, eds. C. Gabriel
et al., ASP Conf. Ser. 351, p. 666 (2006)

C.2 Version History

SUN/256 615

Releases to date have been as follows:

Version 0.1b (29 April 2005)
First public release

Version 0.2b (30 June 2005)

• Added Times func class for MJD-ISO8601 time conversions.
• Fixed bug when doing NULL_ test expressions on first column in table.

Version 1.0b (30 September 2005)
This is the first non-experimental release of STILTS, and it incorporates major changes and
backward incompatibilities since version 0.2b.

Parameter system
The parameter system has undergone a complete rewrite; there is now only a single
command "stilts", invoked using the stilts script or the stilts.jar jar file, and the
various tasks are named as subsequent arguments on the command line. Command
arguments are supplied after that. The new invocation syntax is described in detail
elsewhere in this document. As well as invocation features such as improved on-line help,
optional prompting, parameter defaulting, and more uniform access to common features,
this will make it more straightforward to wrap these tasks for use in non-command-line
environments, such as behind a SOAP or CORBA interface, or in a CEA-like execution
environment.

Crossmatching
A new command tmatch2 has been introduced. This provides flexible and efficient
crossmatching between two input tables. Future releases will provide commands for
intra-table and multi-table matching.

Concatentation
A new command tcat has been introduced, which allows two tables to be glued together
top-to-bottom. This is currently working but very rudimentary - improvements will be
forthcoming in future releases.

Calculator
A new utility command calc has been introduced, which performs one-line expression
evaluations from the command line.

Pipeline filters
The following new filter commands for use in tpipe and other commands have been
introduced:

• addskycoords: calculates new celestial coordinate pair from existing ones (FK4,
FK5, ecliptic, galactic, supergalactic)

• replacecol: replaces column data, using existing metadata
• badval: replaces given 'magic' value with null
• replaceval: replaces given 'magic' value with any specified value
• tablename: edits table name
• explodecols and explodecols commands replace explode

The new stream parameter of tpipe now allows you to write filter commands in an
external file, to facilitate more manageable command lines.

Wildarding for column specification is now allowed for some filter commands.

Algebraic functions

• New functions for converting time values between different coordinate systems
(Modified Julian Date, ISO-8601, Julian Epoch and Besselian Epoch).

• New RANDOM special function.

SUN/256 616

Documentation
SUN/256 has undergone many changes. Much of the tool documentation is now
automatically generated from the code itself, which goes a long way to ensuring that the
documentation is correct with respect to the current state of the code.

Version 1.0-1b (7 October 2005)
Fixed jar file manifest bug which prevented working on Java 1.5

Version 1.1 (10 May 2006)
A number of new features and capabilities have been introduced:

tcube Command
The new tcube (Appendix B.31) command calculates N-dimensional histograms (density
maps) from N columns of an input table and writes the result to a FITS file.

Processing Filters
The following new filters have been added:

• stats filter provides the same information as the old stats output mode, but allows
much more flexible use of the results. It can also calculate many new quantities,
including quantiles, skew and kurtosis.

• meta filter provides the same information as the old meta output mode, but allows
much more flexible use of the results.

• assert filter provides in-pipeline logical assertions.
• uniq filter collapses multiple adjacent identical or similar rows.
• sorthead filter provides a (usually) more efficient method of doing what you could

previously do by combining sort and head filters.
• colmeta filter adds/modifies metadata for selected columns.
• check filter checks table in stream - for debugging purposes only.

Additionally usage of the sort filter has been changed so that it can now do everything
that sortexpr used to be able to do; sortexpr is now withdrawn.

Output Modes
The following new output modes have been introduced:

• plastic mode broadcasts the table to one or all registered PLASTIC listeners.
• cgi mode writes the table to standard output in a form suitable for output from a CGI

script.
• discard mode throws away the table.

and usage of the following has been modified:

• topcat mode now attempts to use PLASTIC (amongst other methods) to contact
TOPCAT.

• stats and meta modes are mildly deprecated in favour of the corresponding new
filters (see above).

Other new features

• New IPAC table format input handler added.
• New csv-noheader format variant output handler added.
• roundDecimal and formatDecimal functions introduced for more control over visual

appearance of numeric values.
• Experimental facilities for automatically generating a CEA application description

file.

Bug fixes and minor improvements

• Now copes with 'K'-format FITS binary table columns (64-bit integers).

SUN/256 617

• Improved, though still imperfect, retention of table-wide metadata in VOTables.
• Distinctions between null and false values in boolean columns are handled more

carefully for FITS and VOTable files.
• Efficiency improvement when writing FITS-plus format (now only requires a

maximum of two passes rather than three of the input rows).
• Added the mark.workaround system property which can optionally work around a

bug in some input streams ("Resetting to invalid mark" errors).
• Fixed a bug in Cartesian matching which failed to match if the required error in any

dimension was zero.
• Fixed erroneous reports about unknown ucd and utype attributes of TABLE element

in votlint.
• When joining tables, column name comparison to determine whether deduplication

is required is now case-insensitive.
• Error message improved when no automatic format detection is attempted for

streamed tables.
• Setting istream=true is now less likely to cause a "Can't re-read stream" error.

Version 1.2 (7 July 2006)

Column-oriented Storage
New features for permitting column-oriented storage (colfits format, new
startable.storage policy "sideways") have been introduced. These can provide
considerable efficiency improvements for certain tasks when working with very large
(and especially wide) tables.

New VO commands
Added two new commands for querying Virtual Observatory services:

• multicone - Makes multiple cone search queries to the same service
• regquery - Queries the VO registry

These tasks are experimental and may be modified or renamed in future releases.

Other items

• transpose filter added.
• Added flux conversion functions (Jansky<->magnitude).
• ISO-8601 strings now permit times of 24:00:00 as they should.

Version 1.2-1 (3 August 2006)

• Tab-Separated Table (TST) format now supported for reading and writing.
• New setparam and clearparams filters.
• Added ICRS coordinate system for addskycoords.
• TUCDnn header cards now used in FITS files to transmit UCDs (non-standard

mechanism).
• Efficiency improvements for column-oriented access.

Version 1.3 (5 October 2006)

Table Concatenation
The old tcat command has been replaced by more capable tcat and tcatn commands.
Between them these provide concatenation of an unlimited number of homogeneous or
heterogeneous input tables. Additional columns may be added to indicate which of the
input tables given output rows originated from.

Parameter value indirection
Certain parameters (in in tcat, cmd and friends) may now be specified in the form
"@filename". This indicates that the value for the parameter is to be obtained by reading

SUN/256 618

it from the named file. This is useful if a very long value is required for the parameter in
question. The script parameter of tpipe has therefore been withdrawn, since it did just
the same thing.

MySpace access
Direct access to the MySpace virtual file system is now provided by use of ivo:- or
myspace:-type URLs.

Conversion functions

• Time conversion functions between MJD and Decimal Year have been added
(Section 10.7.20).

• toHex and fromHex numeric conversion functions have been added (Section 10.7.4).

Documentation improvements

• The HTML version of SUN/256 now uses CSS to provide better highlighting of
commands etc.

• The Output Modes and Processing Filter sections are now split into subsections to
make the table of contents clearer.

• The Command Reference section now has only one level of subsection listed in the
table of contents to make it clearer.

Other new features and improvements

• Added -J flag to stilts script for passing flags directly to Java.
• Added new out parameter to votlint.
• Added -ifndim and -ifshape flags to explodeall filter.
• The exact match mode in tmatch2 now copes with array-valued columns.
• Added force parameter to multicone task as a workaround for some broken

services.
• Added Sample (as opposed to Population) Standard Deviation/Variance calculation

options to the stats filter.
• Improved CEA description file output - now contains details of all tasks rather than

just a few, as well as various improvements in documentation etc.

Bug fixes

• Fixed erroneous complaints from votlint about utype attribute on RESOURCE
elements.

• Fixed a couple of minor crossmatching bugs (which wouldn't have affected results).

Version 1.3-1 (Starlink Hokulei release)

• New command tjoin introduced.
• Output to MySpace can now be streamed, if running under J2SE1.5 or later.
• Slight changes to parameters for votlint and votcopy.
• Fixed bug in handling of single quotes in FITS file metadata.
• Added -bench flag to stilts command.
• Various scalability improvements for use with very large (Tb?) files.
• Improved efficiency for text and ascii output formats (now one-pass not two-pass).
• Improved CEA app-description file, including especially option lists for things like input

and output formats.
• Added README.cea file to distribution.
• Fixed problem which could mis-report VOTable out of memory errors as Broken Pipe.
• Added Vega<->AB magnitude conversion constants to Fluxes functions.
• Added duptag parameters to tmatch2 task for customised renaming of columns with

duplicated names.

SUN/256 619

• Added hyperbolic trig functions to Maths class (sinh, cosh, tanh and inverses).
• Added cosmology distance calculations in class Distances.
• Added funcs task, a browser for expression language function documentation.
• Added -checkversion to list of stilts flags.

Version 1.3-2 (6 July 2007)

• Added optional table parameter to calc command (for access to table parameters).
• Can use table parameter names in expressions using param$ notation (Section 10.2).
• Can reference columns/parameters by UCD by using ucd$ notation in expressions

(Section 10.1) and as column identifiers (Section 6.2).
• Improved deduplication of column names when joining tables.
• Fix error in output of FITS table TNULL n header cards - write them as numeric not string

values.
• Improve error message for broken CSV files.
• Modified JDBC handling so that MySQL and PostgreSQL do not run out of heap memory

when streaming large datasets for input. Think I've done the same for SQL Server, but
this is not tested.

• Improve error reporting in the presence of a deficient JVM (such as GNU gcj).
• Add locale-specific formatDecimalLocal functions in class Formats.
• Add fluxToLuminosity and luminosityToFlux functions in class Fluxes.
• Fix bug which was causing NullPointerExceptions in the transpose filter.

Version 1.3-3 (4 Sep 2007)

• Experimental, and currently undocumented, sqlcone task introduced, along with some
classes in package uk.ac.starlink.ttools.cone designed for library use by AstroGrid
DSA code.

• CEA description of tmatch2 params parameter now has minoccurs=0, since that can be
true for exact matches.

Version 1.3-4 (10 Sep 2007)

• Fixed VotCopy bug.

Version 1.3-5 (30 Oct 2007)

• Added -stdout and -stderr flags to stilts command.
• Some bugs fixed in generation of CEA app-description.xml file.
• Documentation provided for sqlcone command.
• Fixed error in fluxToLuminosity function.

Version 1.4 (6 December 2007)

Table joins
This version provides more cross matching functionality. Added to the existing tmatch2

command are new tasks:

• tskymatch2: stripped down version of tmatch2 for ease of use when matching with
sky coordinates.

• tmatch1: internal matcher, finds groups of objects within a table.
• tmatchn: finds group or multiple-pair matches between multiple (>2) tables.

Two tasks have been renamed for improved clarity and consistency:

• multicone is now named coneskymatch

• sqlcone is now named sqlskymatch

There has also been some enhancement and rationalisation of parameters for all table join
tools (tmatch* as well as tjoin, coneskymatch and sqlskymatch):

SUN/256 620

• All table join commands now use similar fixcols and suffix* parameters to control
renaming of duplicated columns in output tables (note this replaces the old duptag*

parameters in tmatch2).
• Crossmatching tasks have a new progress parameter which allows you to configure

whether progress is reported to the console.
• The copycols parameter of coneskymatch and sqlskymatch now defaults to "*"

(include all columns from input table in the output).

Section 7 of the manual has been somewhat rearranged and improved.

Other enhancements

• FITS reader now imports table HDU header cards as table parameters.
• CeaWriter can now output CEA service definition XML config file as well as

app-description file (experimental - may be withdrawn).

Bug fixes

• Embedded spaces in output ASCII format table column names are now substituted
with underscores.

• Fix a bug which caused an infinite number of dots to be printed when attempting a
crossmatch with an empty input table.

• Corrected votlint handling of TABLEDATA-type multi-dimensional
char/unicodeChar arrays. These are now split up into strings by counting characters
rather than using whitespace delimiters. I think it's doing the right thing now.

Version 1.4-1 (28 January 2008)

New RDBMS-related features

• New command sqlclient, which is a general JDBC-based SQL command-line
client.

• New command sqlupdate, which allows updates to existing rows in SQL tables.
• Some changes to tosql output mode:

• choice of options for how to write to the database output table, controlled by
new associated parameter write (can be create, dropcreate or append)

• associated parameter newtable renamed dbtable

• associated parameter database renamed db for consistency with other
commands

Local and service-based matching command enhancements

• New parameter scorecol added to tmatch2, coneskymatch and sqlskymatch

commands, which controls adding a new column to match output tables containing a
goodness-of-match value.

• New parameter parallel added to coneskymatch task which allows multiple cone
searches to be carried out in parallel.

• New parameter erract added to coneskymatch which controls response to isolated
failures in individual cone search queries.

General improvements

• Improved error reporting (reasons for errors are now reported even without the
-debug flag).

• Add new help option help='*' which prints help for all parameters of a task at once.
• Added (mostly undocumented) +verbose flag for reducing verbosity level.
• Minor improvements to CEA app-description.
• Downgraded from WARNING to INFO log messages about the (extremely

SUN/256 621

common) VOTable syntax error of omitting a FIELD/PARAM element's datatype

attribute.

Version 1.4-2 (26 March 2008)

Minor enhancements:

• Add progress parameter to tmatchn.
• Add emptyok parameter to coneskymatch.

Bugfixes:

• Fixed pair matching performance bug (slower if tables were not given in the right
order) introduced at v1.4.

• Fixed null handling error in calc task.
• Fixed error in stats filter cardinality value calculation.
• Fixed minor bugs in suffix addition for matching commands fixcols.
• Removed unformatted XML output in stats filter usage message.
• Try to avoid exponential format in cone search URLs (some endpoints seem to

require fixed point format).
• Minor CEA fixes.

Version 2.0b (23 October 2008)
This version contains two new major items, plotting and server mode. Both work, but are
missing desirable features and have not had extensive testing in the field, so should be
considered experimental at this stage.

Plotting
Two table plotting commands are now provided:

• plot2d: Old-style 2D Scatter Plot
• plot3d: Old-style 3D Scatter Plot
• plothist: Old-style Histogram

See also the new Plotting (Section 9) section in the manual.

Server/Servlet Mode
A new command server is provided which allows STILTS commands to be executed via
HTTP. One purpose of this is to facilitate server-side use of the plotting commands
co-located with data to generate on-the-fly graphical summaries of server-held datasets.

Smaller enhancements and bugfixes

• Efficiency improvements (~25%? in both CPU time and memory usage) for
HEALPix-based sky crossmatching (thanks to Nikolay Kouropatkine at Fermilab for
a new version of the PixTools library).

• New class Arrays added to algebraic functions.
• New Appendix Commands by Category (Appendix A) added to manual.
• Add minReal and maxReal functions (max/min ignoring blank values) in class

Arithmetic.
• Sexagesimal field identification for ASCII input files is less stringent (now permits

minutes or seconds equal to 60).
• Minor CEA fixes.
• HEALPix bug fix (PixTools bug fix update).
• Fix bug in use of tcat's loccol parameter.

Version 2.0-1 (23 December 2008)

SUN/256 622

• Can reference columns/parameters by Utype by using utype$ notation in expressions
(Section 10.1) and as column identifiers (Section 6.2).

• Non-alphanumeric column names may now be used for algebraic expressions in the
special case that the expression is just the value of a single column.

• regquery command has changed in implementation, data access, and output format. It
now queries VOResource1.0 registries rather than the very out of date registry protocol
which was used in earlier versions.

Version 2.0-2 (9 January 2009)

• Added new samp output mode which passes the generated table to clients using the
SAMP protocol.

• Updated the topcat output mode to use SAMP as one way of communicating with a
running TOPCAT.

• -version flag now reports starjava subversion revision as well as other items.

Version 2.0-3 (27 March 2009)

• Fits BINTABLE TZERO/TSCAL value reading improvements:

• Columns with integer TZERO values now read as integers rather than floating point
values where possible. This includes unsigned longs ('K'), which were previously
represented as doubles with lost precision. Unsigned longs which are too large
however (>263) are read as nulls.

• Byte-valued columns can now be written out by fits-basic output handler as
signed byte values (TFORM=B,TZERO=-128) rather than signed shorts
(TFORM=I).

• More comprehensive testing.
• Fixed bug in calculating value scaled double ('D') values.
• Fixed bug in typing value for scaled float ('E') arrays.
• Fixed bug which caused registry queries (regquery) to fail for Java 1.6.

• Fix minor bugs in detail of votlint's validation tests (VOTABLE element content model,
INFO and PARAM and FIELD required attributes).

• Report application name and version in User-Agent header of outgoing HTTP requests.
• The fixed length Substring Array Convention for string arrays (TFORMnn=rAw) is now

understood for FITS binary tables.
• Minor SAMP bugs fixed (JSAMP upgraded to 0.3-1).

Version 2.0-4 (17 July 2009)

• Work around J2SE mark/reset bug when loading table direct from URL.
• Produce null rather than nonsense results from sky coordinate conversions with

unphysical latitudes (addskycoords filter).
• Produce null rather than questionable results from sexagesimal conversions with

mins/secs out of range.
• Fix two bugs in votcopy: XML processing instructions garbled on output, and pathnames

in base parameters inappropriately flattened in hrefs attribute values.

Version 2.0-5 (2 Oct 2009)

• VOTable 1.2 supported.
• votlint can now validate VOTable documents following the (provisional, 2009-09-29

PR) VOTable 1.2 standard.
• Namespacing of VOTable documents made more intelligent, and configurable using the

votable.namespacing system property.
• votlint now checks that the correct XML namespaces are in use.
• Be more careful in XML, including VOTable, output; fix VOTable output encoding to be

UTF-8, and ensure no illegal XML characters are written.

SUN/256 623

• HTML table output is now HTML 4.01 by default (includes THEAD and TBODY tags).
• parse* string->numeric conversion functions now cope with leading or trailing

whitespace.
• Work around illegally truncated type declarations in IPAC tables.
• Fix a bug which caused the first table in a multi-table file (FITS or VOTable) to be used

in streaming mode, even if a subsequent one was requested.
• Bug fixed in crossmatching output: entries which should have been null were sometimes

written as non-null (typically large negative numbers) in FITS and in non-TABLEDATA
VOTable output. This affected cells in otherwise non-nullable columns where the entire
row was absent. The previous behaviour is not likely to have been mistaken for genuine
results.

Version 2.1 (6 November 2009)

• coneskymatch can now match using SIA and SSA services as alternatives to Cone Search
ones (see its new servicetype parameter).

• Fixed an obscure bug which could under rare circumstances cause truncation of strings
with leading/trailing whitespace read from text-format files.

• A new startable.storage policy "adaptive" is now the default. This should mean
running out of memory less often. The old behaviour can be restored by giving the new
-memory command line flag.

Note that the STIL API used by this release has changed in some backwardly incompatible
ways, and may change further. If you're using STILTS as a library rather than an application
you might want to wait for a later release when the API has settled down.

Version 2.1-1 (21 December 2009)

• Plotting commands can now output to PDF as well as existing graphics formats.
• New filter fixcolnames.
• Fixed internationalisation bug which could cause coneskymatch to fail in locales that use

"," for a decimal point.
• Significant performance improvements related to the case of VOTable documents

containing many tables.

Version 2.1-2 (24 March 2010)

• JyStilts introduced. This is a jython (i.e. Python, though not CPython) interface to the
STILTS commands. It is believed to be fully working, but somewhat experimental -
feedback is encouraged.

• Considerable performance and scalability improvements to the crossmatching commands
(tmatch1, tmatch2, tmatchn and tskymatch2). For several common regimes, using
default settings, memory use has been decreased by a factor of about 5, and CPU time
reduced by a factor of about 3.

• Add optional tuning parameters to crossmatch commands (parameter tuning for tmatch1,
tmatch2 and tmatchn, and parameter healpixk for tskymatch2). Experimentation with
these can lead to significant performance improvements for given matches.

• Fixed a crossmatch bug; it was giving a possibility of suboptimal "find=best" match
assignments when pair matching in crowded fields. Crossmatch results thus may differ
between earlier versions and this one. Both are reasonable, but the newer behaviour is
more correct. In non-crowded fields, there should be no change.

• Further performance improvement for VOTable documents with very many TABLEs.
• Memory management adjusted further - default (Adaptive) storage policy now uses direct

allocation (=malloc()) for intermediate-sized buffers to avoid running out of java heap
space.

• New option "find=each" for coneskymatch and sqlskymatch commands. This allows
you to get an output table with exactly one row for each row of the input table.

• New flag -memgui to monitor memory usage during runs.

SUN/256 624

• Add new filter rowrange.
• Add new functions to Arrays: array functions for constructing arrays, and new

aggregating functions median and quantile.
• Syntax of the crossmatching commands' progress parameter has changed; it now has an

additional option which will write limited profiling information as well as logging as the
match progresses.

• Add ylabel parameter to plothist command.
• The random and sequential filters have been renamed randomview and seqview

respectively. This provides a better idea of what they do. Since they are only useful for
debugging, it is unlikely that this will break anyone's existing code.

• New filter random introduced which converts tables to random-access if necessary.
• Document previously undocumented legend parameter to plotting commands.
• Matching commands matcher parameters can now accept classnames of MatchEngine

implementation classes as an option.
• Classes are now distributed as a zip of jars (stilts_jars.zip) as an alternative to the

monolithic jar file (stilts.jar). This may be more appropriate for those using STILTS
classes in a framework that contains other third party class libraries.

• Adjusted the way that data types are read from JDBC databases. Date, Time and
Timestamp typed columns will now be converted to Strings which means they can be
written to most output formats (previously they were omitted from output tables).

• STILTS no longer attempts to communicate with TOPCAT using SOAP. TOPCAT's
SOAP interface has been deprecated since v2.1 (2006), so this isn't likely to cause trouble,
and it permits removal of SOAP (Axis) classes from the application jar file, saving
several megabytes and reducing potential version clash problems.

• Fix bug in code for handling very large mapped FITS files. This was causing fatal read
errors in some cases.

Version 2.2 (6 August 2010)
New capabilities for multi-table I/O have been introduced:

• New multi-table output tasks tmulti and tmultin. These currently just copy multiple
input tables to a single multi-table container file (e.g. Multi-Extension FITS or
multi-TABLE VOTable). Future releases may generalise the output of multi-table
processing.

• New multi parameter introduced for tcat and tmulti tasks to pick up all tables in a
multi-table container file.

• New JyStilts functions treads and twrites for multi-table I/O.

There are some additional enhancements:

• Added experimental name-resolution filter addresolve; this currently uses Sesame.
• Added filter repeat, which repeats table rows a given number of times.

And a number of bug fixes:

• Recognise unofficial column type "long" in IPAC format tables.
• Better behaviour (warn + failover) when attempting to read large files on 32-bit OS or

JVM.
• Efficiency warning now issued for large compressed FITS files.
• Upgraded PixTools HEALPix library to 2010/02/09 version. This fixes a bug that could

theoretically cause deficient crossmatch results, though I haven't managed to produce
such errors.

• Fixed bug in TST table output.
• Fixed bug in FITS-plus metadata output (table parameters were getting lost).
• Corrected literature references in Fluxes conversion class documentation (thanks to

Mattia Vaccari).
• Fixed bug in CSV file parsing that could ignore header row in absence of non-numeric

columns.

SUN/256 625

• Shape and ElSize metadata items now correctly reported by meta filter.
• Fixed JyStilts bug when supplying an empty string for a parameter value.

Finally, from this release STILTS requires version 1.5 (a.k.a. 5.0) of the Java J2SE Runtime
Environment; it will no longer run on version 1.4, which is now very old. I don't expect this to
cause compatibility issues for anyone, but I'm interested to hear if that's not the case.

Version 2.2-1 (23 December 2010)

• Storage management improvements; removed restriction on large (>2Gb) non-FITS
datasets in some circumstances.

• Efficiency improvement in sequential mapped access to large FITS files.
• Fix so FITS tables >2Gb can provide random access in 32-bit mode (though slower than

64-bit).
• FITS files now store table names in EXTNAME (and possibly EXTVAR) header cards.
• Window placement for the few GUI tasks should now behave a bit more like platform

norms, rather than sitting in the top left hand corner.
• HTML table output now writes cell contents which look like URLs in HTML <A> tags.
• Basic authorization (http://user:pass@host/path) on table URLs handled.
• Fixed file pointer int overflow bug in FITS MultiMappedFiles.

Version 2.3 (9 May 2011)

TAP
The new commands tapquery and tapresume have been introduced. These provide
support for the Table Access Protocol (TAP), and allow freeform queries in an SQL-like
language to be made to remote databases.

Minor enhancements

• Random Groups HDUs are now tolerated, though not interpreted, within FITS files.
• Added soapout parameter to regquery command.
• Added count, variance and stdev functions to Arrays.
• Upgrade to JSAMP v1.2.
• Improve text rendering in funcs window display.
• Attempt case-sensitive matching before case-insensitive for column names.
• Fix replaceval filter to work with Infinities.

Bug fixes and workarounds

• JDBC table input handler now effectively downcasts BigInteger/BigDecimal types to
Long/Double. The PostgreSQL JDBC driver seems to use the Big* types routinely
for numeric values (which I don't think it used to do).

• Add workaround for J2SE bug #4795134, which could cause errors when reading
compressed FITS files.

• Fix FITS character handling bug which could cause corrupted FITS files on output in
presence of non-ASCII characters.

• Fix (some) JDBC connection leaks.
• Add missing parameters dashNS and linewidthNS to plot2d task.

Version 2.3-1 (30 June 2011)

• Added new command taplint. This is a validator for TAP (Table Access Protocol)
services. It is only likely to be useful to people developing or operating TAP services.

• ASCII table parsers now understand python-friendly nan and inf representations.
• Added new constants to expression language Infinity and NaN.
• Fixed a significant bug in sky crossmatching. If all points in a table were on one side of

the RA=0 line, but the error radius extended across that line, matches on the other side

SUN/256 626

could be missed. Matches could also be missed if different tables used different
conventional ranges for RA (e.g. -180..180 in one case and 0..360 in another). This fix
may in some, but not most, cases result in slower matching than previously.

• Fixed coneskymatch cone search verbosity parameter so that VERB=3 is not erroneously
ignored.

Version 2.4 (27 October 2011)

Crossmatching:

• Two new asymmetric match options best1 and best2 have been added for the find

parameter in the pair matching commands tmatch2 and tskymatch2. They
correspond to finding the best match in table B for each row in table A, and in
crowded fields often provide more intuitive semantics than the previous symmetric
best option (in non-crowded fields there is generally no difference). This replicates
the matching performed by some other tools, including Aladin.

• New matchers have been added to permit matching of general elliptical, rather than
just circular, regions in both planar and sky coordinates; see 2d_ellipse, and
skyellipse.

• Another new matcher is available for dealing with per-object errors in Cartesian
coordinates (previously per-object errors could only be handled in sky coords); see N
d_err.

• Semantics of the skyerr matcher have changed slightly.

Expression language functions:

• Algebraic functions involving angles are now mostly available using degrees as well
as radians. The Coords class has been replaced by CoordsDegrees and
CoordsRadians classes providing sky coordinate functions, and a new class
TrigDegrees provides normal degree-based trigonometric functions alongside the
radian-based versions in Maths. Some of the old function names have changed to
make clear that they use radians and not degrees. This change should be much more
convenient in most cases; sorry it's taken so long to get round to.

• Add new join function is added to the Arrays class to combine all the elements of an
array into a string.

taplint:
There are several bugfixes and changes related to the TAP validator tool taplint, mostly
thanks to bug reports etc from the TAP community:

• Improve test logic for record limiting queries.
• Errors no longer reported (e.g. E-Qxx-CNAM) for unexpected TAP_SCHEMA table

column ordering (when running query stage but no metadata acquisition stages).
• Add new stage MDQ, which checks query result columns for all tables against

declared metadata.
• Add check of versioned and unversioned LANG variants.
• Now uses corrected upload ID (ivo://ivoa.net/std/TAPRegExt#upload-*) as per

most recent TAPRegExt draft.

Bug fixes and minor enhancements:

• Add parameter parse to tapquery command, allowing pre-send syntax checking of
submitted ADQL.

• Add experimental system properties star.basicauth.user and
star.basicauth.password.

• Improve resilience of coneskymatch in the presence of unreliable or inconsistent
DAL services.

• A PARAMref element with no referent in a VOTable no longer causes an uncaught

SUN/256 627

NullPointerException.

Version 2.5 (28 March 2013)

New coverage-related functionality:

• Add new command pixsample which can sample pixel data from HEALPix table
files (useful for things like Schlegel dust extinction). Also addpixsample filter,
which does the same job.

• Add new command pixfoot which can generate MOC (Multi-Order Coverage)
maps.

• Add MOC-based coverage filter to coneskymatch when using some Cone Search
services (mostly VizieR). This uses the Multi-Order Coverage map service operated
by CDS. It can make VizieR multi-cone queries much faster by not doing cone
searches that are outside the coverage region of the catalogue in question.

• Add new class Coverage to the expression language containing MOC-related
functions (currently, just inMoc).

Other new capabilities:

• Add IPAC table output format.
• Add new class KCorrections to the expression language, containing a method for

calculating K-corrections following the method of Chilingarian and Zolotukhin.
• You can now reference tables in multi-extension FITS files by name (EXTNAME or

EXTNAME-EXTVER) as an alternative to by HDU index.

VOTable enhancements:

• VOTable input, output and validation are now supported for version 1.3 of the
VOTable standard.

• The version of the VOTable format used for VOTable output can now be selected,
by using the system property votable.version. Output version is VOTable 1.2 by
default.

• votlint has been changed so that it handles different VOTable versions more
capably. Versions 1.1+ are now validated against a schema (which is how those
versions are defined) rather than against a DTD hacked to do the same job as the
schema. VOTable 1.3 validation is now provided.

• The votcopy command has a new version parameter to control output version, and
a new nomagic parameter to control whether VALUES/null attributes are removed
where appropriate.

• Infinite floating point values are now correctly encoded in VOTable output
("+Inf"/"-Inf", not "Infinity"/"-Infinity" as in previous versions).

• votlint is now stricter about floating point TD element contents.
• VOTable output no longer writes the schemaLocation attribute by default.

Other enhancements:

• Add new function hypot (=sqrt(x*x+y*y)) to the Maths class in expression language.
• Add new split functions for string splitting to the Strings class in expression

language.
• Add -utype flags for addcol, replacecol, colmeta and setparam filters, and utype

option for meta filter.
• Some changes to the toString function: it now works on non-numeric values, gives

the right answer for Long integers and character values, and returns a blank value
rather than the string "null" or "NaN" for blank inputs.

• Sexagesimal to numeric angle conversion functions now permit the seconds part of
the sexagesimal string to be missing.

SUN/256 628

• Changes to the IPAC format definition are accommodated: the "long"/"l" type,
which is apparently now official, no longer generates a warning, and headers may
now use minus signs instead of whitespace.

• Add OBS stage (ObsTAP validation) to taplint.
• Add more checks to CAP stage of taplint. Declared languages (including features)

and output formats are now checked.
• Tidy up error reporting a bit (fewer duplicate nested messages reported).
• PNG graphics output no longer has transparent background.
• Issue a warning for high values of coneskymatch parallel parameter.
• Upgrade JSAMP library to version 1.3-3.
• Upgrade Grégory Mantelet's ADQL library to version 1.1.

Bug fixes:

• Fix serious and long-standing bug (bad TZERO header, causes subsequent reads to
fail) for FITS output of boolean array columns.

• Fix small but genuine sky matching bug. The effect was that near the poles matches
near the specified threshold could be missed. The bug was in the PixTools library,
fixed at the 2012-07-28 release.

• Fix bug in tmatchn group mode which could result in output rows with columns
from only a single table, i.e. not representing an inter-table match, even when
join*=default.

• Fix bug which failed when attempting to read FITS files with complex array
columns (TFORMn=rC/rM).

• Fix failure when caching very large sequential tables.
• Fix bug in replacecol and replaceval filters which could cause truncation of

strings in FITS and possibly VOTable output when the new value was longer than
the previously declared maximum length.

• Fix tcat, tcatn so that in most cases output column metadata is compatible with all
input tables, not just the first one in terms of nullability, array shape etc.

• Adjust SQL writer to avoid a type error for MySQL.
• Fix bug in HMS sexagesimal formatting: minus sign was omitted from negative

angles. Now the output is forced positive.
• Cope with 1-column CSV files.
• Use the correct form "rows"/"bytes" rather than "row"/"byte" for TAP capability

unit values.
• Fix error bar rendering bug which could result in diagonal lines being offset near the

edge of plots.

Version 2.5-1 (1 July 2013)

New functionality

• Add read-only support for CDF (NASA Common Data Format) files.
• Add Median Absolute Deviation calculation (MedAbsDev and ScMedAbsDev) options

to stats filter.
• Improved handling of HTTP basic authorization. 401s now generate a useful

message about the star.basicauth.* system properties if they have not been set up.

Bug fixes and minor enhancements

• Fix CSV regression bug introduced at v2.5 - CSV files now work again with
MSDOS-style line breaks.

• Fixed FITS output bug which could result in badly-formed string-valued header
cards (no closing quote).

• Source code is now managed by git and not subversion. The format of the "Starjava
revision" string reported by the -version flag has changed accordingly.

SUN/256 629

• Output mode meta now copes better with array-valued table parameters.
• Implemented fixes to reduce the chance of users inadvertently overloading external

Cone/SIA/SSA services with multicone-like queries. First, fix it so that abandoned
queries are properly terminated, rather than continuing to hit the server until
completion or JVM shutdown. Second, implement a sensible default maximum value
for the parallel parameter of skyconematch (though this may be adjusted with a
system property).

• Quoting behaviour has changed when generating SQL to write to RDBMS tables.
This ought to reduce problems related to mixed-case identifiers. However, it is
possible that it could lead to unforseen new anomalies.

• More toString overloads - now works for byte and boolean values too.

Version 2.5-2 (7 March 2014)

• Add some more colour maps.
• Fix some broken and misdocumented non-table-output JyStilts commands (tcube,

pixfoot).
• Fix bug which prevented access to long integer array elements from expression language.
• The Exact matcher now considers scalar numeric values equal if they have the same

numeric value; they are no longer required to have the same type.
• Fixed a registry client bug which means that the regquery command can now

successfully talk to the NVO/VAO/STSci registry. That has been broken since mid-2010.
• Add new command tloop for generating single-column tables from a numeric loop

variable.
• taplint now checks for the right ObsCore ID, though still recognises the wrong one (got

from TAPRegExt), and warns if found.
• Fix TST input handler so TST files with fewer than 3 columns can be read.
• Add Nd_cuboid matcher option to match commands.

Version 2.5-3 (4 July 2014)

New and improved functionality:

• Add new command cdsskymatch. In most cases (for querying tables that can be
found in VizieR) this can and should be used instead of coneskymatch - it's much
faster.

• Commands coneskymatch, sqlskymatch and pixfoot will now guess RA/Dec
columns if relevant parameters are left blank.

• Added new graphics output format png-transp to generate PNG files with
transparent backgrounds.

• Upgraded Gregory Mantelet's ADQL library to version 1.2. Better ADQL parsing.

Improvements and adjustments to taplint:

• Rework taplint API to facilitate static acquisition of report codes during
programmatic use. A few error codes have changed.

• Add new "duff query" test to taplint.
• Avoid taplint MDQ stage data type mismatch error report for BOOLEAN/boolean

declared/returned data.
• taplint now takes steps to ensure that TAP_SCHEMA column list query is not

truncated.
• taplint now flags absence of ObsCore table with I[nfo] not F[ailure] status.
• Change the implementation of taplint stages which perform validation against

XSD schemas. Schemas from external namespaces may now be imported and used.
The CPV stage, which was previously broken and disabled by default, is now fixed
and enabled by default. Known/expected schemas are stored locally, and a warning
is reported if external ones are used. Schema validation seems remarkably

SUN/256 630

complicated, so it's possible there are still errors in this implementation - if you
suspect so, please report it.

• Add missing geometric reserved words to ADQL reserved word list. This fixes some
problems with column names like "DISTANCE" in taplint tests.

• Fixed some bugs related to TAP table uploads. In particular these could cause
incorrect table upload error reports in taplint.

Version 3.0 (3 October 2014)

New plotting commands:
A set of new plotting commands are provided which give comprehensive access to all the
new-style visualisation capabilities available in TOPCAT v4. These commands are
documented in Section 8. These commands, and the underlying visualisation facilities, are
considerably more capable than the, now deprecated, old-style plot commands plot2d,
plot3d and plothist.

Programmatic invocation:
Programmatic invocation of STILTS tasks from third-party java code is now officially
sanctioned and documented in the new Section 12. To support this changes have been
made to the parameter system (Parameter class now supports generics) and there are
some visible changes to the user documentation as well (parameters now report their data
type, and tasks report their classname). Normal (e.g. command-line) usage should not
undergo any changes, but a fair bit of UI code has changed, so unexpected problems are
possible.

Other items:

• Add new output mode gui, which displays the table data in a scrollable window on
the screen.

• Add new -allowunused flag to the stilts command. If this is set, then unused
parameter settings on the command line just result in a warning, not failure of the
command.

• Attempting to write FITS tables with >999 columns now fails with a more helpful
error message.

• Improved Unicode handling in VOTables. Fixed a serious bug in votcopy that
generated unreadable output to BINARY or BINARY2 serialization if any
non-empty column had datatype="unicodeChar". Also improved behaviour when
copying between tables with unicodeChar columns; these are usually preserved now,
rather than being squashed to datatype char. Some lurking Unicode-related issues
remain.

• The TAP client now tolerates whitespace around UWS status codes.
• taplint: downgrade unknown post-table QUERY_STATUS value message from

Error to Warning.

Version 3.0-1 (13 November 2014)

New functionality:

• Add (experimental) read-only support for Gaia/DPAC GBIN format.
• Add new task tapskymatch.
• Functions in class Coverage adjusted: new function nearMoc, and MOC can be

identified by VizieR table IDs as well as by filename/URL.
• For repeat filter, add -row|-table flags to control sequence of output rows.
• For setparam and repeat filters, allow use of an algebraic expression for values, not

just a literal value.
• Add special values $ncol and $nrow to the expression language to refer to the

column and row counts in a table. The special variable index is also deprecated in

SUN/256 631

favour of $index or $0.

Bugfixes and minor improvements:

• Add some more colour maps for aux/density shading.
• Fix stilts invocation script to pick up classes from stilts.jar in script directory

in preference to other places (e.g. topcat-full.jar).
• Fix taplint to permit application/xml not just text/xml content-type where

appropriate (UWS stage).
• Fix taplint so it doesn't warn (W-TMV-UNSC) about unknown VOSITables

schema.
• Fix taplint so that unicodeChar matches CHAR/VARCHAR in the same way as

char for column type declaration purposes.
• Fix taplint so that capabilities document can have TAPRegExt dataModel ivo-id

elements with xs:anyURI rather than vr:IdentifierURI (only a warning is issued in
the latter case), in anticipation of TAPRegExt-1.0 Erratum #1.

• Adjust taplint to handle adql:TIMESTAMP columns more carefully on upload and
retrieval.

• Update JSAMP to v1.3.5.

Version 3.0-2 (6 February 2015)

Plotting enhancements:

• Linear fitting of points is now available using the linearfit layer type for plot2plane.
Points may be weighted.

• You can add titles to plots using the new title parameter.
• New plot layer type sizexy allows plotting (optionally autoscaled) markers with

horizontal and vertical extents independently determined by input data.
• More flexibility when assigning colour maps, in aux and density shading modes, and

spectrogram layer. New parameters *func allow assignment of different data->ramp
mapping functions (sqrt and square as well as linear and logarithmic), and new
parameters *quant allow quantisation of the colour map to discrete levels.

• Replace maxsizeN parameter with autoscaleN for size plot layer type. You can now
optionally turn off autoscaling and specify marker size in pixels instead.

• Add auxcrowd parameter to plot2 tasks to influence tick crowding on aux axis colour
ramp. Also adjust default to use fewer ticks.

• Add some "dart" options (fixed-base open or filled triangles) for plotting vectors (see
arrowN parameter in layers like xyvector).

• Add some "triangle" options (variable-base open or filled triangles) for plotting
ellipses (see ellipseN parameter in layers like xyellipse).

• Histogram normalisation option adjusted so that total area under bars, rather than
total height of bars, is fixed.

• The PlotDisplay class that forms the result of plot2 commands can now have
PointSelectionListeners registered on it. This lets you determine what point a
user has clicked on if you're using the plotting classes from third party java code.

FITS I/O:

• Reworked part of the FITS table input implementation, in particular adjusting the
way memory mapping is done to reduce resource requirements on some platforms. If
you notice any difference, it should be reduced virtual and perhaps resident memory
usage, and some (~10%?) performance improvements, when reading large
FITS/colfits files. If you were previously having problems with large memory
allocations leading to disk thrashing and system lockup when scanning files larger
than RAM (this didn't happen on all OSes), these will hopefully have gone away.
However, please report anything that appears to be working worse than before, or

SUN/256 632

continued memory usage issues.
• Colfits files can now be accessed from streams, not just uncompressed disk files

(though that's not necessarily a good idea).

Bugfixes and workarounds:

• Fixed a query bug (missing REQUEST=queryData parameter) in the multi-SSA mode
(servicetype=ssa) of coneskymatch. This long-standing bug would have stopped
this command working at all with well-behaved SSA services.

• Fixed error in fits-var output (PCOUNT header card did not include block alignment
gap).

• Graphics coordinates are now calculated in floating point rather than as integers.
This fixes problems that could cause scaled vectors, ellipses etc to be drawn with
shapes or orientations badly wrong due to rounding errors. It also improves plotting
of analytic functions, especially to vector contexts (PDF/EPS).

• Fix some problems to do with zooming to very large/small plot axis ranges.
• Hide error bars (etc) that would extend to negative values on logarithmic axes;

previously they were being drawn in anomalous places.
• Fix NullPointerException bug when null value was supplied to multi-word

parameter (e.g. tcube).
• Fix Aux axis positioning for 3D plots so that the numeric labels don't get snipped off

at top and bottom.
• Add a hack that allows LDAC FITS tables to be treated sensibly in

auto-format-detection mode.
• Make VOTable handling more robust against unknown (illegal) datatypes.
• Add missing parameters auxmax, auxmin to plotting task documentation.

Version 3.0-3 (14 April 2015)

• New System Command option for input table syntax; you can now use "<syscmd" or
"syscmd|" to supply input byte streams from Un*x pipelines.

• Add new Kernel Density Estimate plot layer types kde, knn and densogram for
plot2plane.

• More histogram normalisation options provided. Instead of just true/false, the
normalisation parameter of the histogram layer now has the options none, height, area
and maximum. This allows both the area normalisation introduced in v3.0-2, and the height
normalisation used in earlier versions which it replaced.

• More histogram bar style options provided; the histogram barform parameter now
provides the options semi_filled (the new default) and semi_steps. These give outlined
partially transparent bars, which make it much easier to see what's going on in
multi-dataset histograms. Note semi_steps does not currently export very nicely to
PDF/EPS. Similar options are also available in the new KDE plots.

• Column data read in as unsigned bytes will now be written out as unsigned bytes where
the output format permits; previously they were forced to 16-bit signed integers. This
affects FITS, VOTable and CDF I/O handlers.

• Add count_rows() method to JyStilts table objects, which for non-random tables may be
much more efficient than len().

• Be less strict about recognising colfits files (tolerate implicit TDIMn headers).
• taplint is now aware of, and performs some checks related to, schema-level table

metadata declared by TAP services.
• Work round FITS read bug that could cause problems for VOTables using inline FITS

serialization, and possibly elsewhere.
• Fix bug that caused trouble when auto-ranging a plot with a single sky position.

Version 3.0-4 (17 August 2015)

SUN/256 633

Bugfixes (some significant):

• Fix a serious bug in processing of FITS bit vector (TFORMn='rX') columns. Values
read from these columns are presented as a boolean[] array. In all previous versions
of STIL the bits have appeared in that array in the wrong sequence (LSB..MSB per
byte rather than the other way round). Apologies to anyone who may have got
incorrect science results from this error in the past, and thanks to Paul Price for
helping to diagnose it.

• Fix a less serious bug with TFORMn='rX' processing; attempting to read a
single-element bit vector column (TFORMn=1X or X) previously resulted in an error
making the file unreadable. Values read from such columns are now presented as
Boolean scalars.

• Fix a VOTable reading bug relating to bit vector data (datatype="bit") appearing
in BINARY/BINARY2 serializations. This one was more obvious, it would usually
generate an error when attempting to read the file.

• Fix serious bug in time conversion for CDF TIME_TT2000 data types.
• Fix a bug in votcopy that converted columns from datatype unsignedByte to short

when transforming. Since v3.0-3 this is no longer necessary. In the case of
converting to a binary serialization, since v3.0-3 this was causing it to generate
unreadable VOTable output.

• Fix a bug in votcopy that failed to handle columns with datatype bit. In the case of
converting to a binary serialization, these were in all previous versions generating
unreadable VOTable output. Now they convert them to columns with datatype
boolean (not perfect, but better).

• Fix skyvector bug: dlat and dlon values were being used the wrong way round.
• Upgrade JEL to v2.0.2. Fixes problem with evaluating void-typed expressions, and

possibly some other obscure bugs.
• Some taplint bug fixes.

Behaviour changes:

• Changes to the way that TAP service table/column name reports are interpreted (to
conform to original intention of TAP standard). Taplint now checks that
table/column names from TAP_SCHEMA and /tables endpoint are
regular-or-delimited-identifiers, but no longer submits example queries using
supplied column names wrapped in additional quotes.

• Modify the heuristics that determine whether the first row of a CSV file is a header.

Enhancements (mostly minor):

• Added some functions to the Arrays class that return array-valued results from
array-valued parameters: add, subtract, multiply, divide, reciprocal, condition.

• Improve error reporting in the face of non-VOTable TAP error responses. In many
cases this makes it much easier to see what's going wrong with a TAP query.

• As a diagnostic tool, when making TAP queries, a log message giving a roughly
equivalent curl(1) command is now issued at the CONFIG level (visible using flags
-verbose -verbose).

• New taplint parameter maxtable limits the number of tables tested in the stage that
queries data from each individual table (MDQ). May be useful for very large services.

• New tapquery parameter upvotformat to determine what VOTable serialization
variant is used to transmit uploaded tables to the TAP server. Previously uploads
were always BINARY which ought to work, but the parameter now defaults to
TABLEDATA, since some services (e.g. CADC) currently fail with binary uploads.

• Minor improvement to version reporting (reports java specification version, no
longer issues warning for absent revision string).

• Update JCDF library to v1.1 (minor changes to do with leap seconds).

SUN/256 634

Version 3.0-5 (22 October 2015)

• Fix error reporting bug when a non-VOTable response is received from a TAP service.
• Upgrade to JCDF v1.2 - fixes a bug when reading large (multi-2Gb) CDF files.
• Added source code for an example basic GUI plot application,

uk.ac.starlink.ttools.example.BasicPlotGui.
• The expression language has a new way of referring to a column; if you use the form

"Object$ <column-id>" you get the value as an Object not a primitive. This is a
special-interest measure for user-defined functions that need to see null numeric values.

• Adjust GBIN input handler: avoid descending into Class-typed members of gbin list
objects, and add logging for object->column translations.

Version 3.0-6 (27 November 2015)

Crossmatching bug fix
Fix a long-standing crossmatch bug relating to range restriction during pre-processing.
This could have caused missed associations (but not false positives) near the edge of
coverage regions when using per-row errors, if the scale of the errors differed (especially
differed significantly) between the matched tables. It affected matcher values of
<n>-d_err, skyerr, 2d_ellipse and skyellipse only. Thanks to Grant Kennedy (IoA)
for reporting this bug.

Density plots
Some more options for making weighted density plots have been added. Since v3.0 the
Density shading mode has let you see the density of plotted points, but this lacked some
features. Three new ways to do density plots are added; these all give you the option of
weighting by an additional coordinate (like the Aux mode), choosing the combination
method (mean, median, sum, max, ...), and displaying the quantitative value-colour
mapping on the shared colour ramp (previously aux axis) beside the plot. The new density
plots are:

• Weighted shading mode, using shaped marker kernels on the screen pixel grid,
available for all plot types

• SkyDensity layer, using HEALPix bins on the celestial sphere, for the Sky plot
• Density layer (later obsoleted by Grid layer), using square N*N screen pixel bins,

for the Plane plot

The details are somewhat experimental and may undergo some adjustments in future
releases (feedback welcome).

Colour maps
There are various changes affecting selection and display of colour maps used for density
and aux axis shading:

• The default colour map for Aux mode, and other layers using the shared colour map,
is no longer Rainbow! It's Inferno. Rainbow colour maps are much hated by
visualisation experts. Of course you can still choose Rainbow if you like.

• Add some new colour maps: Viridis, Inferno, Magma and Plasma from Matplotlib
1.5, the SRON rainbow variant developed by Paul Tol, some diverging maps
(HotCold, RdBu, PiYG, BrBG) and a qualitative constant chroma/luminance map
HueCL.

• The options for Density and Aux shading are now mostly the same as each other
except where there's good reason to differ. Previously they were different in
haphazard ways.

• An attempt is made to give the default form of each colour map a sensible name,
without leading minus signs.

• Fix it so that the whole range of each map is distinguishable from white. This is a
good idea when you're plotting symbols on a white background, which is common in

SUN/256 635

stilts. Perhaps there are cases it's not such a good idea; if you think so, complain and
I may change it back.

• Try to fix it so that all the colour maps go in the same direction (light->dark) where
applicable.

• Throw out a couple of particularly useless colour maps.
• Colour map ramp display is now different for non-absolute maps; their effect is

shown on a selection of base colours, not just for one base colour.

Minor items

• Try harder to identify epoch columns (suitable for time plot), in particular look for
VOTable xtype of JD or MJD, and units of year.

• Add some functions to the Tilings class to do with solid angles (healpixSqdeg,
healpixSteradians, steradiansToSqdeg, sqdegToSteradians, SQDEG).

• Fix plot bug; titles were painted in white for pixel output formats.
• Rationalise plot report logging. Some more diagnostic information about plots is

now logged at the INFO level (visible if topcat is run with the -verbose flag).

Version 3.0-7 (10 June 2016)

Expression Language
The JEL library underlying the expression language parser has been upgraded to v2.1.1
(thanks to Konstantin Metlov), now supporting variable-length argument lists among
other things. This allows the following improvements:

• New functions that support any number of arguments are provided: array, intArray,
stringArray in class Arrays; concat, join in class Strings; and sum, mean,
variance, stdev, min, max, median, countTrue in new class Lists.

• Some old lists of similarly-named functions with fixed numbers of arguments have
been replaced by single functions that take an arbitrary number of arguments (e.g.
array(x1), array(x1,x2), ... array(x1,x2,x3,x4,x5,x6,x7,x8) replaced by
array(values...)).

• The 2-argument min/max functions in class Arithmetic have been renamed
minNaN/maxNaN to avoid confusion, but in most cases existing expressions involving
min/max will work as before.

• Some functions that used to require string arguments will now auto-convert numeric
types (e.g. concat(toString(RA),";",toString(DEC)) can now be written
concat(RA,";",DEC)).

• You can now implement user-defined functions with variable numbers of arguments.
• Writing large (>=2**31) literal integers used to fail with an inscrutable error

message. Now the message tells you to append the "L" character.

Time plots
The plot2time command has been enhanced so that it can make multi-zone plots -
multiple plots stacked vertically that share the same horizontal (time) axis but have
independent vertical axes. The time plot itself and this multi-zone feature are currently
experimental; in future versions they may be improved or changed, and the multi-zone
feature may be extended to other plot types. Some other changes and fixes have gone
along with this:

• A few API changes have been made to support multi-zone plots, including
generalising the NavigationListener interface and rearranging some PlotDisplay

and AbstractPlot2Task constructor/factory method arguments. For single-zone
plots the changes are not very substantial. This only affects you if you are using the
STILTS classes as a java plotting library. If that applies to you and you have trouble
upgrading, I'm happy to provide assistance.

• plot2time now supports shading modes (shadingN and associated parameters).

SUN/256 636

• The spectrogram layer now uses the (per-plot, or more precisely now per-zone) Aux
colour map rather than a layer-specific colour map. This means that the colour ramp
is displayed alongside the plot, but also that some parameters have been renamed
(e.g. auxmapZ replaces spectromapN, where Z is an optional zone suffix and N is an
optional layer suffix).

• The function layer type now works in the time plot, rather than throwing an error.
However, it doesn't work very well, since the time coordinate is in unix seconds
rather than something more user-friendly.

• Fixed a serious bug in ISO-8601 axis labelling. In some cases axis labels were being
drawn at positions badly different from the correct position.

Miscellaneous enhancements and changes

• This and subsequent releases target Java SE 6, so will no longer run under the (now
very ancient) Java 5 runtime.

• Provide more careful documentation of licensing arrangements. The distributed
LICENSE.txt file notes that the starjava code is LGPL, and documents licenses for
each third-party dependency.

• Add Fill layer type for Plane and Time plots.
• tapquery and tapresume now use blocking HTTP requests rather than repeated polls

to wait for asynchronous TAP job completion from services that declare themselves
UWS 1.1 compliant.

• Add new parameters executionduration and destruction to tapquery command.
These let you request resource limit adjustments when submitting an asynchronous
TAP job.

• Improve sky plot border painting.
• Clean up noisy Cubehelix colour map.
• New function countTrue in class Arrays.
• New stage EXA for taplint checks TAP /examples endpoint. Note the details of the

examples format are still under discussion, (this version targets
WD-DALI-1.1-20160415 & WD-TAP-1.1-20160428, somewhat informed by
TAPNotes-2013-12-13), so the details may change in future.

• taplint now validates ObsCore 1.1 where declared alongside ObsCore 1.0.
Currently uses PR-ObsCore-v1.1-20160330.

• The taplint API has changed slightly: the class that used to be Reporter is now
called TextOutputReporter. If you are using taplint programmatically you may need
to make small changes. This results from some refactoring that makes it easier to
customise taplint output.

• Replaced opaque config option with transparency for plane and sky density plots.
• Changed implementation of GIF exporter for plots, from Acme to ImageIO.

Shouldn't be any noticable difference. Acme encoding dependency removed.

Bug fixes

• Fix bug in cumulative histogram calculation.
• Fix read failure for FITS files with non-blank TDIM for zero-length columns.
• Fix bugs that led to timezone-dependent results when reading ISO-8601 or decimal

year time columns.
• Fix numeric field truncation bug in LaTeX table output.
• Fix some parameter handling errors in coneskymatch.
• Fix NullPointerException bug for disjoint regions in some cases in tmatchn.

Version 3.0-8 (13 September 2016)

• New task tskymap lets you generate all-sky density maps (e.g. HEALPix) from an input
table.

SUN/256 637

• New plot layer type healpix can plot all-sky maps from HEALPix map tables (e.g. as
generated by tskymap).

• Add some HEALPix-related functions to the Tilings class: conversions from pixel index
to sky position and conversions between ring and nested schemes.

• Subrange-typed plot command parameters like plot2plane's auxclip now have a default
value of null. This uses a default clip, which avoids very light colours. Explicitly
supplying a subrange value (e.g. "0,1") can now use the whole range; previously the very
light colours were inaccessible.

• The GBIN input handler can now pick up more metadata from the classpath. For suitable
tables, metadata included in datamodel classes if present can be interrogated to provide
table and column descriptions and UCDs. There are still some deficiencies of this
functionality (no column order, utypes and units missing, large file "temp.xml" written to
current directory) dependent on issues in the upstream Gaia libraries and ICD.

• Add parameters tablesurl, examplesurl etc to task taplint, so you can specify custom
locations for different TAP endpoints rather than have them fixed at their default
locations hanging off the base service URL. Ditto for the tasks tapquery and
tapskymatch, though in these cases the extra parameters are (since currently rather
special interest) largely undocumented.

• Fix taplint behaviour in absence of a /tables endpoint (404 now gives a Warning not an
Error).

• taplint ObsTAP validation updated to PR-ObsCore-v1.1-20160709.
• Fix bug that caused read failures for large (>0.5Gb) FITS files outside of the current

directory on 32-bit JVMs. This was a regression bug since v3.0-2.
• Fix long-standing bug that failed to release file descriptors when opening FITS tables

(could cause an error if very many FITS files were opened).

Version 3.0-9 (23 September 2016)

• Fix aux ranging bug in some plot types (SkyDensity, Healpix, Density, Weighted) that
used an aux data range too small to show colour variations when auxfunc=log and
negative data values were present.

• Improved performance (better memory use, faster) of some plot types (SkyDensity,
Healpix, Density, Weighted).

• Fix JyStilts bug that could cause the same data to be used for different tables specified in
a single plot.

Version 3.1 (8 March 2017)

Plotting improvements

• Improved documentation of plot layer types and shading modes in the user document
- each option now has an example graphic and the text of the command that
generates it.

• New layer type grid, to plot a 2-d weighted histogram. This replaces the density

layer, which has been withdrawn (grid can do all the same things and more, except
specify bin size in screen pixels).

• New plot layer type quantile, which can (e.g.) plot median lines through noisy data.
• New plot layer type gaussian, for Gaussian fits to histograms.
• Histogram-like layer types are now available from the plot2time command as well as

from plot2plane, so you can now plot histograms with a temporal horizontal axis.
• New normalisation (scaling) option unit for histogram, KDE, and KNN plots.
• New normalisation (scaling) options per_day etc for histogram, KDE and KNN

layers when used from the plot2time command.
• Colour names recognised by the plot2* command *color parameters now include

the (140) CSS-like colours alongside the dozen standard plotting colours.
• Plot commands insets parameter now lets you specify margins round plots using

any combination of <top>,<left>,<bottom>,<right>, rather than requiring all

SUN/256 638

values or none.
• Add new parameter auxwidth to plot2 commands, to control colour ramp lateral

dimension in pixels.
• Modify plan caching arrangements for STILTS plots. This results in much better

interactive performance (navigation etc) for some plot layer types plotted to the
screen. There are also some minor API changes to a few of the plot2 utility classes,
which now provide more flexibility for caching.

• Various tweaks to the details of how plots are positioned on the screen or in output
graphics files.

Miscellaneous enhancements

• Fixed the match score (distance measure) for combined matchers. Previously, the
score was a linear sum of the unscaled distances for the constituent matchers, which
meant a Best match was pretty meaningless. Now, it adds scaled distances in
quadrature, so Best matching should give you a somewhat sensible result.

• The skyerr and nd_err matchers now report output separations as scaled
(dimensionless) values rather than in physical units; this means the results are more
comparable, so Best matches will make more sense.

• taplint can now optionally write its output in JSON format (see format parameter).
• Update taplint OBS stage for PR-ObsCore-v1.1-20160923.
• The Maths function hypot now takes an arbitrary number of arguments (instead of

exactly two).
• Add blockmaxrec parameter to tapskymatch, and improve warning text in case of

result truncations.
• Improve tapquery/tapresume behaviour when monitoring async jobs; if the service

goes down, the application will wait for it to come back rather than bailing out.
• Options for MOC output format (mocfmt parameter in pixfoot command) have

changed; option ascii is replaced by json. The old ASCII format was slightly
broken JSON in any case.

• MOC library upgraded to v4.6 (from v3.3). Improved MOC output.
• Update JCDF library to v1.2-2 (2017-01-01 leap second).

Bug fixes

• Fix KDE/KNN plotting bug that could get scaling badly wrong for normalised
cumulative plots.

• Fix some regression bugs relating to plot2 command insets parameter, present
since v3.0-6.

• Remove spurious padding from EPS graphics output.
• Fix small bug in plot2plane/plot2time label painting; horizontal axis label was

sometimes off the bottom of the plot by a few pixels.
• Fix subpixel offset of colour ramp frame in PDF/PostScript graphics output.

Version 3.1-1 (29 September 2017)

New functionality

• New plot layer types xycorr and skycorr for error ellipses rotated as specified by
Gaia-style correlation values.

• New plot layer type skygrid can draw multiple sky system coordinate axis grids on
sky plot.

• Colour map parameters (auxmap, densemapN etc) for the plotting commands will now
accept custom colour maps that interpolate between a list of named colours, e.g.
"HotPink-yellow-SkyBlue".

• New position angle calculation functions posAngRadians and posAngDegrees added
to expression language.

SUN/256 639

Table I/O changes

• It is now possible to write and re-read tables with >999 columns to FITS or colfits
format. The new limit is 2^31 columns. This uses a non-standard convention;
software that is not aware of the convention (e.g. CFITSIO or earlier STILTS
versions) will only be able to use the first 998 columns of tables written in this way.

• For VOTable columns that reference COOSYS elements, the relevant information is
now accessible as column auxiliary metadata (CoosysSystem, CoosysEpoch,
CoosysEquinox) e.g. using the meta filter.

• Any columns referencing COOSYS elements read from VOTable-based formats
(VOTable or FITS-plus) will now be written out to VOTable-based formats with
equivalent COOSYS references included. Currently not table parameters though.

• The default version for output VOTables is now VOTable 1.3. New output formats
votable-binary2-inline and votable-binary2-href are now offered alongside
the five previously available VOTable variants.

• Slight changes to the FITS-plus output handler VOTable formatting in the primary
HDU; now uses default output VOTable version rather than VOTable 1.1.

• FITS keywords using the ESO HIERARCH convention can now be read as table
parameters rather than ignored when reading FITS tables.

Minor behaviour changes

• The charset parameter of votcopy now defaults to UTF-8 rather than the system
default.

• Replace parameter autoscale with unit in skyvector and skyellipse plot layers.
• Change autoscaling defaults for plot layer types xyvector, xyzvector, skyvector,

xyellipse, skyellipse; autoscaling is now turned off by default. Apologies for this
change to behaviour, but it's better for consistency with new layer types xycorr and
skycorr, and presents less danger of misinterpreted plots.

• Taplint: downgrade type mismatch error E_QTYP to warning W_QTYP in view of
TAP-1.0 Erratum #3.

• The COOSYS element is now passed without a deprecation warning in VOTable 1.3
documents by the taplint and votlint validators, in view of VOTable-1.3 Erratum
#1. The warning is still issued for VOTable 1.2 documents, but the text is toned
down.

• Taplint no longer issues a warning about DataModel references that do not match the
vr:IdentifierURI type; this follows TAPRegExt Erratum #1.

• Modify taplint Examples document @vocab attribute testing in the light of DALI
1.1.

Bug fixes

• Update PixTools (HEALPix) library to 2017-09-06 version
(https://github.com/kuropat/eag-HEALPix, 447a7be073876dba32). This fixes a bug
in healpixRingIndex that could give the wrong value for small values of longitude
near zero in the equatorial region. It seems possible that this might have led to very
infrequent missed associations when crossmatching in these regions, but tests appear
to indicate that no such errors would actually have resulted.

• Long fields (>10240 characters) in output CSV files are no longer truncated.
• Fix misfeature in skyvector and skyellipse plot layers; these now preserve orientation

on the sky even when viewsys differs from datasys. Previously the
dlat/dlon/posang parameters were always interpreted in the view, rather than the
data, sky coordinate system.

• Fix bug in plot title placement.
• Fix filename generation error for plotting command animation output (wrong

number of digits if frame count was an exact power of 10).

SUN/256 640

Version 3.1-2 (7 November 2017)

New expression language functions

• New functions desigTo* for extracting positions from IAU-style object designations
(like 2MASS J04355524+1630331) - use with care.

• New functions polarDistanceDegrees and polarDistanceRadians; these calculate
the distance in 3d space between two positions specified in spherical polar
coordinates.

• New functions phase to help with phase folding given a known period. A new
modulus function mod, whose output is always positive (unlike the % operator) is also
added.

Bug fixes and workarounds

• Upgrade JEL to v2.1.2: now you can use functions in the expression language that
have the same name as table columns.

• Add fix to discard on read any VOTable/FITS-plus table parameters with names
"uk.ac.starlink.topcat.plot2.TopcatLayer*". These useless items were added
in potentially large numbers when saving plotted tables from TOPCAT v4.5
(TOPCAT bug). A null tpipe operation at this version will therefore purge these
items.

• Fix plot bug that sometimes caused error bars to come out very small when
exporting to a graphics file. This was a regression bug (present in v3.1-1 but not
v3.1).

• Fix another tiny error bar plotting bug too.
• Small taplint update; required UCD for obs_publisher_did/publisher_id changed

to match REC-ObsCore-1.1 (even though it's an illegal UCD1+).

Version 3.1-3 (24 April 2018)

New Functionality

• New DataLink validator task datalinklint.
• Add class Gaia to the expression language. This contains functions for estimating

distances from parallaxes and propagating astrometric parameters and errors to
different epochs. The functions are not specific to data from the Gaia astrometry
satellite, but are presented in a form convenient for use with the Gaia DR2 source
catalogue.

• New array manipulation functions slice and pick added to class Arrays.
• New utility function square added to class Maths.
• The addcol and colmeta filters now accept -shape and -elsize flags for defining

array and string shape/extent column metadata.
• DataLink-style service descriptor RESOURCEs in input VOTables (and FITS-plus

tables) now appear as table parameters.

Plotting Enhancements

• Various improvements to the Contour plotter. You can now contour quantities
weighted by a given coordinate, rather than just point density. The smoothing from
weighted point samples to the grid being contoured can be performed using sum,
mean and other combination methods, it now uses a Gaussian kernel rather than a
square top hat, and performance is considerably improved especially at large
smoothing widths. The contour levels used are now reported, so can be seen by
specifying the -verbose flag. The contours are now plotted correctly right up to the
edge of the visible plot, and various bugs have been fixed.

SUN/256 641

• The histogram plotter now has a combine parameter (sum, mean, median, min, max,
stdev, etc) for weighted histograms. This means that you can plot e.g. the mean
value of a given quantity per interval on the X axis rather than just the summed
quantity. A corresponding (though somewhat less well-defined) option is also
provided for the kde and densogram plotters.

• The combine parameter that configures how values are binned in various
histogram-like plots (skydensity, healpix) grid, and since this version also contour,
histogram, kde) now has two new options, sum-per-unit and count-per-unit.
These work like the existing sum and count options, but scale the combined values
by the relevant unit (e.g. X axis unit or solid angle). Where these units are physical, a
perunit parameter is also provided for scaling in convenient units: second, day, year
etc for time (plot2time), and square degree, arcminute, arcecond etc for solid angle
(skydensity, healpix). In some cases, the combine default values have changed.

• The same new combine/perunit options are also added to the tskymap command.
• The linearfit layer type is now available for plot2time as well as plot2plane.

Minor behaviour changes

• votlint no longer considers an integer- or array-typed PARAM element with attribute
value="" to be an error.

• votlint no longer Warns about PARAM/@ref->FIELD/@ID references, since this usage
pattern is now found in DataLink Service Descriptors.

• The IPAC table reader now matches data type specifications case-insensitively.
• Improvements in documentation of the expression language functions: in the

Function documentation section classes are now listed in alphabetical order, and
examples are included in some cases. Some readability improvements have also been
made in the function browser displayed by the funcs command.

Bugfixes

• taplint's VOTable validation now includes XML schema/DTD validation as well as
the custom VOTable checks. It was always supposed to do this, but it seems that it
didn't, at least in recent versions.

• Update JCDF to v1.2-3; fixes some CDF reading bugs.
• Prevent coneskymatch from sending cone search queries with sr=NaN.
• Minor fix in taplint OBS stage; ObsCore v1.1 s_region UCD is

pos.outline;obs.field, not phys.outline;obs.field (a relic from
PR-ObsCore-1.1-20161004).

Version 3.1-4 (18 May 2018)
Bugfixes and minor enhancements:

• Add new option delete=now to tapresume, which lets you delete a TAP async job. Also
add a message to tapquery inviting the user to delete interrupted jobs in this way.

• Upgrade Grégory Mantelet's ADQL parsing library to v1.4.
• VOTable output tweaked: single quotes now used for attribute values if attribute contains

double quotes.
• Fix bug in tapquery and tapresume that caused a result read failure for result VOTables

longer than 2Gb.
• Fix range bug; caused plot failure when plotting very large values with no variation (e.g.

gaia_source solution_id).

Version 3.1-5 (2 November 2018)

Plotting:

• New spheregrid plot layer, for plotting a spherical net around the origin, added to

SUN/256 642

plot2cube and plot2sphere.
• New line3d plot layer, for plotting lines joining points in 3d, added to plot2cube and

plot2sphere.
• New sortaxis parameter, for joining out-of-sequence points, added to line plot

layer.
• Replace skygrid plot layer parameter crowd with two parameters, loncrowd and

latcrowd, so you can control grid line spacing for meridians and parallels
independently. Note this is a backwardly-incompatible change, so could break
existing scripts. This change may have introduced slight changes to sky axis grid line
spacing at low crowding levels.

• Contour level calculations improved; in some cases this previously didn't work well
at low point density, resulting in missing contours. The meaning of the zero

parameter has also changed slightly, it now defaults to 1 and is not phase folded.
• Sphere plot now centers axes on zero if the center would otherwise be near zero.
• Address long-standing plot auto-ranging issue; when auto-ranging resulted in the

bottom X limit or right-hand Y limit being exactly equal to zero, the corresponding
zero-valued results were not plotted. Auto-ranging has been slightly adjusted to
avoid that. This results in pixel-level changes to plot appearance in some cases; these
can be avoided by explicitly setting xmax/ymin etc.

Expression Language:

• New functions in class Gaia: polarXYZ, astromXYZ, astromUVW, icrsToGal,
galToIcrs, icrsToEcl, eclToIcrs. These can calculate Cartesian position and
velocity components from (e.g. Gaia) astrometric parameters.

• New Shapes class added for working with polygons in the X,Y plane; has functions
isInside and polyLine.

• Rearrange expression language documentation slightly: there is a new section listing
Special Tokens. This includes "$random", which was previously undocumented and
named "RANDOM".

• New functions urlEncode and urlDecode added to class Strings.
• New convenience function exp10 in class Maths.

Validators:

• Improvements to taplint UWS stage: now validates job documents against UWS
schema, tests uws:job/@version attribute, and does improved and version-sensitive
(UWS v1.0/v1.1) validation of UWS timestamps. Also does more complete deletion
of submitted jobs.

• taplint schema validation now takes account of VOTable 1.3 Erratum #2 -
FIELD/@precision attribute values "F0"/"E0" are now permitted.

• The VOTable validator in votlint and taplint no longer complains about multiple
INFO elements in the same scope sharing the same name attribute.

• Minor improvements to datalinklint error reporting.

Miscellaneous Enhancements:

• New collapsecols filter added, to convert a run of adjacent scalar columns into an
array column (the opposite of explodecols).

Minor enhancements and behaviour changes:

• GBIN read fix to work around changed behaviour in recent GaiaTools (versions
19.4.*, >=20.1.0 and >=21.0.0) that caused GBIN table reading to fail.

• Fix some additional commands (votcopy, votlint, datalinklint) so they follow
HTTP 3xx redirects automatically in more cases when given a URL for input. Most
STILTS commands already do this.

• Introduce a couple of measures to reduce the likelihood of unintentional service

SUN/256 643

overload from coneskymatch and friends: add a progressively increasing delay for
erract=retry* error handling modes, and decrease the soft maximum for the
parallel parameter to 5 (from 10).

• Slight improvements to the JDBC Configuration section of this manual.
• Small change to MOC handling that might possibly avoid some network-related

performance issues.

Bugfixes:

• Fix function plot layer so that NaN values are omitted rather than interpolated.
• The stilts startup script now correctly follows symlinks on some OSes where it

didn't work before (including OSX). It also looks for jar files to use in slightly
different places on OS X.

Version 3.1-6 (9 May 2019)

Plotting enhancements

• Introduced new colour scaling options histogram and histolog for the parameters
auxfunc, densefunc etc in plot2plane and the other plotting commands. This can
make it much easier to see structure in quantities that do not vary smoothly over their
min-max range.

• New plot layer types poly4, mark4, polygon introduced for drawing outline or filled
quadrilaterals and other polygons in all plot types.

• The line plot layer now has an aux parameter that can vary the colour of the line
along its length according to some third quantity.

• plot2sky now by default draws a small scale bar at the bottom left corner of the plot,
indicating the scale in degrees, minutes or seconds. It can be switched off using the
new scalebar parameter.

• New option Car0 for the plot2sky projection parameter; this is like Car (Plate
Carrée) but has longitude=0 at the left/right edge rather than the center of the plot.

• The healpix plot layer can now plot HEALPix levels up to 20 (previously the
maximum was 13). Also, autoranging now works, so if a plot is made of a HEALPix
file covering part of the sky, the sky view is centered on it in the same way as for
marker plots. Memory management is improved for fairly large maps.

HEALPix-FITS support
Various changes introduced to support the semi-standard HEALPix-FITS serialization
convention. Available information about HEALPix encoding (level, index column,
ordering scheme, coord sys) can now be stored in custom table parameters (of the form
STIL_HPX_*), and is used by FITS output handlers to insert the relevant FITS headers.
The existing FITS handlers do this where it's not disruptive, and the new fits-healpix
output handler will additionally move and rename columns if required. This metadata is
round-tripped by FITS and VOTable I/O handlers. It is added automatically by the
tskymap command, and can be manipulated by hand using the new healpixmeta filter.
FITS support is not perfect: the BAD_DATA FITS keyword is ignored, and the 1024-element
array-valued column variant is not understood.

VOTable 1.4 support
Support has been introduced for version 1.4 of the VOTable format and its new TIMESYS

element.

• votlint (and hence taplint) now supports Version 1.4 VOTables: the 1.4 schema
is used for XSD validation, and the TIMESYS element is checked for attribute
content and suitable referencing.

• For VOTable columns that reference TIMESYS elements, the relevant information is
now accessible as column auxiliary metadata (TimesysTimeorigin,

SUN/256 644

TimesysTimescale, TimesysRefposition) e.g. using the meta filter.
• Any columns referencing TIMESYS elements read from VOTable-based formats

(VOTable or FITS-plus) can now be written out to VOTable-based formats with
equivalent TIMESYS references included, so TIMESYS round-tripping for columns
works; however this will only be done if the VOTable output format is set to version
1.4. By default (at least as long as 1.4 is not finalised) the output version is 1.3. To
enable this TIMESYS output, set the system property -Dvotable.version=1.4.
Currently this TIMESYS output works only for table columns (FIELDs) not
parameters (PARAMs).

• The timeoffset attribute of a TIMESYS element referenced by a VOTable column
is used to make sense of column data when interpreting it as an absolute time.
Currently, the only use of this is in time plots.

This VOTable 1.4 support has resulted in some minor related behaviour changes:

• FIELD/@ref attributes are no longer imported as "VOTable ref" column aux
metadata items, since they often interfere with TIMESYS references. Doing this was
probably always a bad idea since the referencing is not kept track of within the
application, so withdrawing this functionality makes sense, but beware that it might
change or break some existing behaviour.

• votlint modifications above may now interrogate external vocabulary resources
during validation, meaning that external network connections may be made during
validation, which didn't happen in previous versions.

Other enhancements

• New functions indexOf in class Arrays to find position of a given value in an array.
• New functions parseDoubles and parseInts in class Conversions for extracting

array values from strings (experimental).
• Fix expression compilation so that $ID column references referring to nonexistent

columns are rejected at compile time rather than causing trouble during evaluation.
• The validator tasks taplint and datalinklint now insert the token

"(IVOA-validate)" into the User-Agent header of all HTTP requests they make, for
convenience of services that want to identify validators. This is a convention
discussed within the IVOA Operations IG.

Bug and misfeature fixes

• Improve colour ramp quantisation (plot parameters auxquant etc); the full color
range is now included.

• Use period not comma as decimal separator for non-sexagesimal plot2sky axis
labels regardless of Locale; also avoid trailing comma sometimes erroneously
present.

• Fix bug/misfeature in CDF table parameter construction: CDF global attributes were
ignored (with a "WARNING: Omitting complicated global attribute" message) if
they contained any null entries. Now such entries are just ignored and the table
parameter is constructed from the global attribute using the non-null entries.

• Fix some bugs relating to plotting values close to the limits of the double precision
range.

• Fix a problem with the link2 plot layers on sky plots with Aitoff/Car projections that
caused short lines that should span the antimeridian to appear as long lines crossing
the whole sky. Such links are now just not drawn.

• Fix misleading error message about seq parameter for underconfigured plot layers in
plot2* commands.

Version 3.2 (18 November 2019)

SUN/256 645

Runtime environment: Java 8
From this release, STILTS requires Java 8 (a.k.a. Java 1.8) or greater to run, rather than
Java 6 as for previous releases. Java 8 has been around since 2014, so it should be
available on all but very ancient platforms. If execution fails with a
java.lang.UnsupportedClassVersionError then you need to upgrade.

New or enhanced functionality:

• New cone command to execute simple spatial DAL queries (Cone Search, SIA,
SSA).

• Most plot layer types, though not the intial data preparation, will now run in parallel
for large datasets. When using one of the plot2* commands interactively
(omode=swing), this should make interacting with slow plots faster on multi-core
machines. (In rare cases this multi-threading might cause problems with memory
usage; it can be effectively turned off if required by using the system property
java.util.concurrent.ForkJoinPool.common.parallelism.)

• New class URLs contains expression language utility functions for constructing
certain service URLs: hips2fitsUrl, bibcodeUrl, doiUrl, arxivUrl, simbadUrl

and nedUrl. Existing functions urlEncode and urlDecode have been moved to URLs

from class Strings.
• New functions parseBigInteger and parseBigDecimal in class Conversions.
• Add new parameter usepos to polygon plot layer, to toggle inclusion of reference

position in polygon vertex list.
• Add parameter interface added to TAP query tasks tapquery, tapskymatch and

taplint. This can control how TAP version is determined.
• Modified behaviour for offset (e.g. unsigned) longs in FITS files. 64-bit integer

columns (TFORMn='K') with non-zero integer offsets (TSCALn=1, TZEROn<>0) are now
represented internally as Strings; previously they were represented as Long integers,
but values out of the possible range appeared as null (with a warning written through
the logging system). Such columns are most commonly seen representing unsigned
long values. If written back out to FITS, the offset long value will be reinstated, but
other output formats cannot encode unsigned longs, so they will stay as strings.

Minor enhancements and behaviour changes:

• VOTable output now writes VOTable version 1.4 by default (was 1.3).
• Modified plot legend display so that small markers are displayed a bit bigger in the

legend than on the plot for readability.
• Add new colour map Cividis.
• Permit FITS and VOTable files with zero-length string columns. Previously all-null

or zero-length string columns were sometimes forced to single-character values.
• Update mapped file unmapping implementation to work for java9+.
• Updated taplint OBS stage according to ObsCore-1.1 Erratum #1 (corrected

UCDs). No code changes required for ObsCore-1.1 Erratum #2.
• More taplint tests added for TAP 1.1-style capabilities document.
• Taplint now recognises ADQL 2.1 language features (as listed in

PR-ADQL-2.1-20180112), avoiding some E_KEYX errors.
• VOResource validation in taplint now uses VOResource v1.1 not v1.0. Erratum #1

(multiple security methods) has been applied.
• Some taplint enhancements: add some new general tests, and some only used when

testing TAP 1.1 services.
• Adopt VOTable-1.3 Erratum #3 in votlint; arraysize="1" now provokes a

Warning.
• Updates to meta filter documentation.
• Minor changes to behaviour when querying TAP 1.1 services (REQUEST parameter

is omitted).
• JSAMP to version 1.3.7.

SUN/256 646

Bugfixes:

• Fix regression issues introduced at v3.1-6 relating to pixsample command; it now
reads HEALPix metadata from headers correctly again.

• Avoid sometimes losing precision when reading ASCII/CSV values in the range
+/-(1e-45..1e-38).

• Fix plot axis ranging bug: padding was not always applied properly for logarithmic
axes.

• JEL bug fix update, to avoid unwanted debugging output for String function null
returns.

Version 3.2-1 (5 June 2020)

File Formats:

• The ECSV (Enhanced Character Separated Values) storage format is now supported
for input and output.

• The Feather storage format is now supported for input and output.

Performance:
A number of implementation changes have been made which may improve performance,
particularly for crossmatching (typical improvements for large sky crossmatches are a
factor of 2, though YMMV). These should have no effect on the results, but if anybody
notices crossmatching behaviour which is changed since previous versions or otherwise
suspicious, please report it.

• The HEALPix implementation has been replaced; all HEALPix manipulation is now
done using the excellent cds-healpix-java library written by François-Xavier Pineau
from CDS, which speeds up sky crossmatching considerably. Many thanks to
François-Xavier and to CDS for providing this library and for assistance with its use;
thanks also to Nikolay Kuropatkin from FermiLab whose PixTools library served
this purpose in STILTS up till now.

• Rows are now binned during crossmatches using a HashSet rather than a TreeSet.
• Evaluations of the arcsin function in Sky matches now use the (Apache via

cds-healpix) FastMath implementation rather than the standard J2SE version.
• Performance is improved when reading long String values from FITS files.

Plot commands:

• The new layer types area, central and arealabel can be used for plotting region
data supplied as area coordinates in the form of STC-S (e.g. from
ObsCore/EPN-TAP s_region), DALI polygon/circle/point, or (ASCII) MOC
columns. These layers are available from the plot2plane, plot2sky and
plot2sphere commands.

• The plot2time command has been improved, and is no longer considered
experimental. A new ttypeN parameter is added, which allows you to explicitly
define (as MJD, JD, ISO-8601 etc) how input values are mapped to time. If no such
mapping is specified or can be guessed from the input metadata, time values are now
interpreted by default as MJD rather than (as previously) Unix seconds.

• Provide more options for the shapeN parameter of the plot mark layer type:
fat_circle, fat_cross etc using thicker lines.

• Add line thickness parameter thick to contour plot.
• Plot storage parameter has new options disk, policy and persistent. These allow

off-heap plot data caching, so that interactive plots for very large data sets may be
made without running of of memory. The persistent option additionally means that
results of expensive data read operations can be cached between invocations.

• The line layer's sortaxisN parameter now accepts the option time rather than X (or

SUN/256 647

Y) when used with plot2time.
• Improved plot axis labelling in LaTeX mode, e.g. in LaTeX write "3x106" not "3e6".
• Add new option anchorN=center to the label plot layer.
• Add parameters minsize and minshape to poly4 plot layer type.
• Improve accuracy when drawing large HEALPix tile boundaries in some cases for

skydensity and healpix sky plot layers.

Other minor enhancements:

• Basic support for SIA version 2 as well as version 1 in cone and coneskymatch

commands (new option servicetype=sia2).
• Add new conversion functions *ToUnixSec to Times class.
• Add new functions midLon and midLat to Sky class.
• Slightly improve sampling accuracy of pixsample output.

Bug and misfeature fixes:

• Fix bug in SkyGrid plot layer that made it ignore the viewsys parameter, always
assuming equatorial so plotting the wrong grid lines for non-equatorial view sky
systems. Note this bug applied only to STILTS, not TOPCAT.

• Fix regression bug since last release that refused to make dataless plots.
• Fix polygon plots in plot2sphere - this combination was failing to plot anything,

now it works.
• FITS ASCII table extensions with TFORM values of In are now treated as 64-bit

integers for n>=10 rather than n>10.
• Modify taplint processing of QUERY_STATUS declarations; overflow may now be

declared before, as well as after, the table.
• Slightly improve plot axis labelling for small numbers; remove unnecessary decimal

point in scientific notation in some cases.

Version 3.2-2 (24 August 2020)

New Functionality:

• SVG (Scalable Vector Graphics) is now one of the supported graphic output formats
for plot export.

Bugfixes and minor enhancements:

• Fix Healpix trouble at large angles, e.g. sky crossmatch failure with match radius >6
degrees.

• Fix ECSV output bug: encoding was incorrect for metadata scalars with certain
non-alphanumeric first characters, leading to invalid YAML.

• Votlint now warns about use of vocabulary terms marked as preliminary or
deprecated as well as unknown ones (although currently no such terms exist in
relevant vocabularies).

• Remove some unhelpful per-column metadata items from ECSV output.
• Improve seeding of the expression language $random special value; it should now be

less dependent on JVM details.
• TAP curl(1) equivalent logging flag error fixed (write --compressed not

--compress).

Version 3.3 (23 October 2020)

Plot server
A plot server has been added that can serve interactive plots in web applications for
server-side tables. Documentation for the server command has been mostly moved into

SUN/256 648

new Server Mode section.

Bug fixes

• Upgrade cds-healpix-java library to v0.28_1; avoid occasional sky crossmatch
failures (termination with error).

• Fix minor plotting bug that could cause white points to be invisible.

Version 3.4 (11 January 2021)
In this version, the table handling library STIL has been upgraded to v4.0, which enables some
enhancements including multithreading and new I/O handler features.

Notable new functionality:

• Auto file format detection now examines filenames to help guess format; this means
that e.g. for CSV files named with the ".csv" extension, it is no longer necessary to
specify ifmt=csv.

• Several operations can now run in parallel, so should execute faster for large datasets
on multi-core machines. Parallelised operations are the output modes stats and count,
the filters stats and sort, and the task tskymap. The stats and sort filters have
-[no]parallel flags that can be used to select between sequential and parallel
execution. Parallel data caching for plots is also available using the
storage=parallel option, but this is currently experimental and not generally
recommended. Future releases will parallelise other operations, including matching.

• I/O handlers can now in some cases take parenthesised options, e.g.
ofmt=votable(version=V12,format=BINARY). For examples see individual handler
documentation, e.g. the VOTable output handler and ECSV input handler.

• Scheme specifiers can now be used to specify input tables, to read tables not based
on external files. Options currently provided include simple sequence, simulated sky
and strange attractor data.

• Improved documentation of I/O formats in this document: full docs are now
provided in Section 5.1 for all formats rather than summaries with pointers to
SUN/253. The Table I/O section has been somewhat reorganised and tidied up.

Minor enhancements:

• When the stats filter calculates quantiles, the -qapprox flag can be supplied to use an
(approximate) algorithm that will not run out of memory.

• Add combine parameter to tcube, so it can produce generalised weighted maps.
• Add new options acos and cos for colour scaling options auxfunc, densefunc etc;

these provide linear-like stretch functions with steeper/flatter ends, which may be
useful for shading by quantities with most variation near to/far from the middle of
the range.

• The progress filter no longer slows down pipelines to any noticeable extent.
• COOSYS and TIMESYS attributes are now preserved during VOTable I/O for table

PARAMs (as well as for FIELDs, which was already the case).
• Tidy up open files in the table concatenation command tcat; with lazy=true it

should no longer fail with "Too many open files".
• The every filter has a new -exact|-approx flag; -approx may be required for

certain operations to run in parallel.
• Slightly improved documentation for cdsskymatch.

Bugfixes:

• Fix bug that could give unhelpful table load error message for very short non-FITS
files.

• Fix broken example in tmatchn documentation.
• Fix taplint to cope with VOSI1.1 detail=min-style response from /tables

SUN/256 649

endpoint; avoid spurious E-TMC-CM21/E-TMC-FM21 errors.
• Cope better with infinite values in aux plot coordinates.
• Fix histogram ranging bug (plot failure under certain circumstances).
• Upgrade JEL to v2.1.2: bugfix plus some efficiency improvements in object

creation.
• Avoid inserting NULL_VALUE custom metadata entries into ECSV output.
• Make taplint changes for later edits to ObsCore-1.1 Erratum #1

(dataproduct_type and dataproduct_subtype UCDs are now meta.code.class).

Version 3.4-1 (10 June 2021)

File formats:

• Apache Parquet format is now supported for input and output (note not available in
all configurations).

• AAS Machine-Readable Table (MRT) format is now supported for input.
• ECSV format input and output handlers are upgraded to version 1.0 of the ECSV

format, meaning they can now read and write array-valued columns.
• Add configuration option header for CSV input handler, to indicate whether header

line is present.
• Add configuration option maxSample for CSV and ASCII input handlers to reduce

2-pass read time.
• Variable-length array-valued columns in FITS tables (P/Q descriptors) can now be

read even in compressed or streamed input.

Other new functionality:

• Add new plot layers to plot2plane for plotting data (such as spectra or time series) in
array-valued columns: lines, marks, yerrors and xyerrors.

• Add new functions to class Arrays for working with array values: arrayFunc,
intArrayFunc, sequence, constant.

• Add new table scheme test.
• The cumulative option in histogram-like plots can now take the values

none/forward/reverse, not just true/false.
• Introduce the aitoff0 option alongside aitoff as a value for the plot2sky

projection parameter. In the same way as car/car0, this gives an Aitoff projection
but with the longitude=0 line at the left/right edge instead of the center.

• Modify tcube so that it accepts expression language expressions rather than just
column name/ID values for the cols and scale parameters.

Taplint changes:

• Add new taplint stage LOC, for ObsLocTAP validation. This release validates against
the draft standard version PR-ObsLocTAP-20210609.

• Taplint stage TMV now validates against (a pre-REC version of) version 1.2 of the
VODataService schema instead of version 1.1.

• Downgrade taplint report for accepting unknown LANG from E_DSUC to W_OLNG.
• Relax taplint timestamp upload round-tripping requirements; folding

adql:TIMESTAMP->timestamp no longer provokes error E-UPL-TMCX.
• Relax some taplint type checking for TAP_SCHEMA columns of TAP 1.0 services

(see TAP 1.0 Erratum #3); report E-TMS-TSCT is downgraded to W-TMS-TSCT.
• Taplint W_EXVC TOPCAT compatibility warnings are downgraded to I_EXVT.

Minor enhancements and workarounds:

• The fits-var output handler now avoids use of the THEAP keyword (no pre-heap gap
is written). Heap padding is legal FITS, but bugs in other FITS software mean that

SUN/256 650

some third party components (including fverify in FTOOLS e.g. v3.14-3.50) have
problems with such files.

• Fix server to work with scheme-specified tables having a non-default tablefactory
parameter.

• JDBC output no longer attempts to create VARCHAR(0) columns.
• Output of cache filter now retains no reference to input table, so it can be used to

manage deeply nested tables in (Jy)STILTS pipelines.
• JyStilts now has access to the same table schemes as STILTS.
• Collapse whitespace in some table metadata description items in output form meta

filter and output mode. This prevents unwanted linebreaks as well as tidying
whitespace-formatted values.

• Space-delimited ECSV files now write empty fields quoted.
• Unknown or unsupported column datatype values in ECSV files are now treated like

string rather than causing table read failure.
• Empty strings in FITS 1-character columns are now returned as blank values rather

than ASCII NUL ('\0').
• Undersized, including zero-length, strings written to FITS columns are now by

default terminated with an ASCII NUL rather than in some cases padded with
spaces.

Bugfixes:

• Fix regression bug in previous release (v3.4) that broke use of jdbc: URLs.
• Fix regression bug in previous release (v3.4) affecting text, ascii and ipac output

formats, that could cause cached table output (e.g. from filters cache or random) to
contain many repeated copies of the same row.

• Upgrade cds-healpix-java library to v0.29.3; this avoids occasional sky crossmatch
failures (termination with error) introduced at STILTS v3.2-1.

• Fix bug in addcol filter that could evaluate the row index ($index/$0) incorrectly
during parallel processing.

• Fix plot2sky bug that got clon/clat positioning wrong for some projections such as
CAR0.

• Fix issue with cumulative histograms; bars beyond the last sample are now displayed
with total value not zero.

• Fix bugs that meant writing long (>2Gb) fits-var files could output
incorrect/corrupted FITS.

• Fix long-standing file caching bug; mostly seemed to affect large (>2Gb) streams.
• Fix documentation bug in cone; output parameters out, ofmt, ocmd and omode are

now listed.
• Fix optional argument processing bug in JyStilts (optional named arguments like

start in tloop were being ignored).
• Fix tcube bug that caused problems with some input filter (icmd) processing.
• Fix long-standing logic error in ASCII/CSV input handler that could misidentify

column types and cause read failures.
• Fix failure when trying to plot with auxfunc=histogram and explicitly set

auxmin/auxmax bounds outside of data range.
• FITS TZERO headers are now written correctly with numeric values rather than

string values.

Version 3.4-2 (15 October 2021)

Taplint and Votlint changes:

• New stage UUC added to taplint. This checks units (against the VOUnits standard)
and UCDs (against the UCD1+ standard and legacy UCD1 list).

• New stage EPN added to taplint. This checks EPN-TAP (*.epn_core) tables against

SUN/256 651

some version of EPN-TAP 2.0 (currently PR-EPNTAP-2.0-20211012). Since
EPN-TAP is still in draft at time of writing, this stage is not currently run by default.

• Modify taplint stages parameter usage; you can now add and remove stages
individually using +XXX/-XXX syntax.

• Taplint now does a better job of categorising VOTable parse errors, so multiple
repeats of similar messages can be avoided. Ad-hoc VOTable error codes have
changed from "VOxx" to "Yxxx".

• Votlint, hence also taplint, now checks values in FIELD/PARAMs marked with
xtype attributes for conformance to rules from DALI 1.1 sec 3.3.

• Taplint MDQ stage now reports mismatches between declared and result Units, UCDs,
Xtypes, and Utypes as well as datatypes.

• Taplint and datalinklint now identify themselves as validators using the User-Agent

token "(IVOA-test)" rather than "(IVOA-validate)" as before; this follows the
published content of the SoftID-1.0 IVOA Note.

• Taplint now examines the service Server header and tries to check it for VO
component identification as recommended by SoftID.

• Votlint now has a maxrepeat parameter like taplint (previously the repeat count
was hard-wired to 4).

• Votlint now does a better job of identifying similar errors, so output suppressing
repeated messages can be more compact. Suppression of repeated messages is
reported.

• Votlint now optionally checks the content of unit and ucd attributes, checking
against the VOUnits and UCD1+/UCD1 standards respectively.

• Distinguish votlint reports for recognised and unrecognised (e.g. VODML)
elements in foreign XML namespaces.

• Add timestamp line at start of taplint output.

Other new functionality:

• A new parameter thick has been added to several plot layer types to enable lines
thicker than a single pixel when drawing error bars, arrows, outlines, pair links etc:
xyvector, xyerror, sizexy, xyellipse, xycorr, link2, poly4, polygon, area,
yerrors, xyerrors, skyvector, skyellipse, skycorr, xyzvector, xyzerror,
yerror.

• New functions in class VO to check syntax of UCD and VOUnit strings.
• New areatype value UNIQ for plotting single HEALPix tiles e.g. from MOC files in

area (and similar) layer type.
• New checksum table output mode.
• Add Julian Day manipulation functions jdToMjd and mjdToJd to class Times.

Minor enhancements and behaviour changes:

• The fast parameter has been withdrawn from polygon-plotting plot types area,
polygon, poly4; the shape-filling algorithm has been improved, and it's no longer
necessary to choose between speed and accuracy.

• Replace the julianToUnixSec function in class Times, which didn't do what it said it
did, with jdToUnixSec.

• The mjdToIso and mjdToDate functions in class Times now prepend the string
"(BCE)" to dates before the Common Era.

• Guess meaning for some non-standard COORDSYS values in HEALPix-FITS files,
e.g. allow "GALACTIC" instead of "G".

• Revert to sequential processing in some cases for HEALPix plot layer to reduce
resource usage.

• Columns that are all blank in ASCII-like tables (CSV, ASCII, TST) are now
interpreted as type String not boolean.

• Files compressed using multi-stream bzip2 compression (e.g. pbzip2 output) are

SUN/256 652

now supported alongside single-stream bzip2.

Bugfixes:

• Fix serious threading bug that could return nonsense values from fixed-length string
fields during parallel processing, for instance statistics calculation, of large cached or
randomised tables.

• Upgrade of cds-healpix-java library to v0.30.2; this fixes some HEALPix cell
plotting bugs.

• Fix aux ranging bug that meant auxmax without auxmin was not honoured in plot
commands. This was a regression bug introduced at v3.1-5.

Version 3.4-3 (31 January 2022)

New functionality:

• The PDS4 (NASA's Planetary Data System v4) file format is now supported for
input tables.

• New task tgridmap writes flexible N-dimensional density maps/histograms as tables.
• The cols parameter in tskymap is generalised to allow more flexible calculation of

gridded quantities, specifically calculations using different aggregation methods for
different quantities at the same time.

• New plot2plane layers statline and statmark, to plot quantities like the mean of
array-valued input columns.

• New class Randoms contains pseudo-random number generation functions. Special
token $random is now deprecated.

• New quantities ArrayNGood, ArraySum, ArrayMean, ArrayStDev added to stats

filter, allowing per-element statistics calculations for fixed-length numeric array
data.

• New taplint parameter tables to restrict which tables are tested.
• Provide quantile options for the combiner parameters of some commands.

Minor enhancements and behaviour changes:

• Add new colour map Painbow.
• Improve identification of TIME_TT2000 columns as time values in certain CDF

files.
• Improved autoranging for gaussian plots.
• Minor improvements to aggregated column output metadata.
• JyStilts is now intended to be run using Jython 2.7.2, which means it works under

Java 17, unlike Jython 2.5.3 which was the previous target version. The JyStilts
classes haven't changed, but the distributed jystilts.jar file now comes with
Jython 2.7.2.

• In the starjava distribution, the jystilts script now uses an internal copy of Jython
2.7.2, it no longer requires an external Jython installation.

• Taplint UUC stage now reports UCD word list versions.
• Adjustments to taplint EPN-TAP validation: track draft standard changes, fix bugs,

add UCD check for measurement_type column content. This version currently
corresponds to PR-EPNTAP-2.0-20211022.

• Make a couple of adjustments to SVG graphics output: output is now to a bare svg

element (no XML or DOCTYPE declaration), and a viewBox attribute is included
which may improve scaling behaviour in some contexts.

• The monolithic stilts.jar file and stilts_jars.zip archive now contain the
stilts.version file at the top level, rather than just buried in
uk/ac/starlink/ttools/.

• The seqcol column in output from the tcat and tcatn commands is now of type
(32-bit) integer not (16-bit) short.

SUN/256 653

• Permit leading 's' in ASCII-MOC area specifications, following MOC 2.0.

Bug fixes:

• Fix bugs in parsing MOC-ASCII strings in area plot; trailing depth specifier was
interpreted as cell index and some cells near end of MOC were omitted/misshapen.

• Fix failure when attempting to read unsigned 32-bit integer values from parquet files.
• Bugfix update of JCDF to v1.2-4.

Version 3.4-4 (6 April 2022)

Performance

• Substantial I/O performance improvements, mainly for FITS and VOTable formats
e.g.: writing to FITS 2x, reading FITS from a stream 2x, reading VOTable with
inline BINARY/BINARY2 4x, writing VOTable with inline BINARY/BINARY2
2x, writing VOTable with TABLEDATA 1.5x.

• New parameter runner in matching commands tmatch2 etc which can be set to
parallel for multi-threaded execution. This should speed up large matches on
multi-core machines. This is believed to work correctly, but since it is less well
tested than the legacy sequential mode, at this release sequential processing is still
the default.

• Other matching performance improvements.
• FITS I/O is now all done internally, there is no longer a dependency on the

nom.tam.fits package.

New functionality

• New command xsdvalidate added for validating against XML schemas.
• New class Bits with bit manipulation functions bitCount, hasBit, toBinary,

fromBinary.
• Add configuration options compact and encoding to VOTable output handler. By

default thin (<=4 column) TABLEDATA VOTables are now written in "compact"
mode, using reduced whitespace.

• FITS BINTABLE headers used as table parameters now support FITS 4.0
long-string syntax (CONTINUE records).

• FITS header values of the form "(a,b,c,...)" are now interpreted where possible as
numeric arrays; this works for long-string values (CONTINUE records) as well.

Bug Fixes and workarounds

• Upgrade JEL to v2.1.3-pre1. This fixes a bug that caused evaluation failure when
comparing a String against null.

• Taplint now reports absent TAP service with an error code rather than failing with an
exception.

• Upgrade Unity library to 1.1 pre-release and improve VOUnits validation reporting
(new status "GUESSED_UNIT").

• Fix taplint bug: EPN validation failed for spatial_frame_type=none.
• ECSV format now preserves table name.
• FITS BINTABLE reader now copes with (illegal?) embedded spaces in TDIMn

headers.
• Adjust MRT null handling; "-" in a single-character field no longer interpreted as

null.

Version 3.4-5 (10 June 2022)

New Functionality

SUN/256 654

• New plot2plane layer arrayquantile, that can plot e.g. medians of multiple per-row
spectra with arbitrary wavelength coordinates.

• X/Y array-valued plot layer types lines, marks, yerrors, xyerrors, statline and
statmark will now accept a missing xs or ys array coordinate, and assume a suitable
linear sequence.

• The <colid-list> syntax used by keepcols, delcols etc now allows column ranges
to be specified with the syntax <first-colid>-<last-colid>.

• The assert filter now takes optional <msg-expr> argument.
• Add offset options xoff and yoff for label plot layer type.
• Minor taplint EPN stage updates corresponding to latest EPN-TAP draft; now

matches PR-EPNTAP-20220420.

Performance

• Sky crossmatching performance improvements.
• Reduce number of file mapping calls by FITS readers.

Bug Fixes

• Fix FITS parsing issue that could result in StackOverflowError for long array-valued
headers.

• Fix bugs in statline/statmark layers that incorrectly treated blank array values and
negative array values on logarithmic axes.

• Fix bug in multi-threaded read of string columns from colfits files.
• Fix NullPointerException failure in taplint UUC stage or votlint for unknown units

recognised only in non-VOUnit syntaxes (e.g. "Crab").
• Fix legend positioning bug for label layer type.
• Aitoff sky projections are now more correctly documented as Hammer-Aitoff

(though not renamed in the UI).

Version 3.4-6 (8 July 2022)

Enhancements

• New command arrayjoin added.
• Modify functions add, subtract, multiply, divide in class Arrays; these now all

take either two array arguments or an array and a scalar in either order.
• New function dotProduct in class Arrays.
• Provide value* functions for column references to strangely-named columns.
• Minor taplint EPN stage update; now corresponds to REC-EPNTAP-2.0.

Bug Fix

• Fix FITS output so it doesn't fail when attempting to write metadata with non-ASCII
Unicode characters.

Version 3.4-7 (5 October 2022)

Performance:

• Crossmatching performance improvements: sky matching does better pre-selection
of potential matches based on sky region, post-processing row sorting etc
accelerated, various other steps parallelised. Large matches might typically be about
twice as fast as before.

• By default, matching commands like tmatch2 now run in parallel.
• The usage of the runner parameter, used to control parallel execution of matching

commands like tmatch2, has changed slightly: options parallel<n> and

SUN/256 655

parallel-all are added, while option parallel, the new default, is now limited to a
fixed number of processors (currently 6).

• Add new parameter runner to tskymap and tgridmap; this allows to control parallel
execution, since sequential may be faster than the default parallel option for large
files on spinning disks.

• Add new option "time" to the progress parameter of matching commands like
tmatch2.

New functionality:

• Add new plot layer type handles to mark a reference position for X/Y array data.
• New function sequence(n,start,step) in class Arrays.
• New functions tfcatStatus and tfcatMessage in class VO for validating instances

of the Time-Frequency Radio Catalogue format.
• Provide new option TFCAT for areatype parameter in area-like plots, giving partial

support for TFCat shape descriptions.
• Filter fixcolnames now deduplicates column names as well as fixing up their

syntax.
• Fix relevant filters to issue a WARNING if new column names clash with existing

ones.
• Add new section listing Colour Maps to this document.
• Add some new colour maps from CMasher: cosmic, ember, gothic, rainforest,

voltage, bubblegum, gem, chroma, neon, tropical (sequential); guppy, iceburn,
redshift, pride (diverging); infinity (cyclic).

Bug fixes and workarounds:

• Fix VOTable reader and votlint so that BINARY/2 VOTables with no columns
don't read forever.

• Fix PDS4 reader to accept columns of type ASCII_Numeric_Base16 without the read
operation failing.

• Fix bug in skygrid layer that failed to inherit configuration items from base grid.

Version 3.4-8 (20 April 2023)

Axis drawing improvements and changes:

• Secondary X and Y axes can now be plotted in plot2plane; see new parameters
x2func, y2func, x2label, y2label, and example plot.

• Secondary T and Y axes can now be plotted in plot2time; see new parameters
t2func, y2func, t2label, y2label, and example plot.

• Matching Ticks are now plotted by default on all four sides of plots drawn by
plot2plane and plot2time, rather than just on primary (left/bottom) axes. This can
be configured with the new shadow parameter.

• Reduce frequency of minor ticks.
• Major tick marks on axes now extend only inside the plot bounds not outside.
• Grid lines plotted by plot2plane, plot2time and plot2sky are now all partially

transparent and plotted over the plot content (previously they were opaque and the
sky grid was drawn over, while the plane and time lines were drawn under, the plot
content). Grid line transparency is controlled by the new gridtrans parameter.

• Add new options ExternalSys/InternalSys for plot2sky labelpos parameter, to
display lon/lat axis names alongside axis values.

Other new functionality:

• New task tgroup and filter group to calculate aggregate functions on groups of rows
(like ADQL/SQL GROUP BY).

SUN/256 656

• New function inSkyEllipse.
• New filter constcol for identifying and removing constant-valued table columns.
• Add keepall parameter to the arrayjoin command, to configure whether rows with

no arrays appear in the output.
• Add aparams parameter to arrayjoin command, to turn table parameters of loaded

tables into scalar-valued columns.
• Add sortaxis parameter to lines layer, to cope with unsorted array data.
• Add configuration options readMeta and hierarchicalNames to the GBIN input

handler.
• VOTable service descriptor I/O now preserves contentType and exampleURL

PARAMs, introduced in DataLink 1.1
• Improve datalinklint validation of semantics terms, now checks online

vocabularies not just hard-coded ones.
• The datalinklint validator is upgraded to PR-DataLink-1.1-20230413. It now has a

version parameter.
• Update taplint in accordance with DALI 1.1 Erratum #1; example continuation

elements without an empty resource attribute no longer provoke an Error.

Workarounds and minor behaviour improvements:

• Modify column width determination in text-like output formats (text, ascii, ipac)
to avoid occasional unwanted truncation of formatted values. Tables are now read in
two passes, the first to establish column widths and the second to write the data. By
default all rows are sampled, but the sampledRows option can be configured so that
only some rows are sampled, which is more like the old behaviour.

• Update Ucidy library to v1.3; UCD validation is now done based on v1.5 of the
UCD1+ list of terms.

• If only one single point is plotted on the (default) sin projection in plot2sky without
explicit clon/clat/radius specification, the default view is now zoomed out to the
whole sky rather than zoomed in to a few milliarcsec.

• Improve ECSV reader performance, especially for Gaia DR3 bulk download files
(which use semi-standard "null" token).

• Write empty string not semi-standard "nan" token for NaN in ECSV writer.
• The JDBC input scheme should now read columns that are array-valued in the

database as array values that can be used in STILTS; previously they were read as
opaque Array objects.

• Make FITS and VOTable output handlers robust against input tables that declare
incorrect row counts.

• The PDS4 reader now reads Ascii_Numeric_Base16/8/2 fields as numeric not string
(updated pds4-jparser library code).

• Slight change to RESOURCE structure of Primary HDU metadata in multi-table
FITS-plus output. This fixes a problem in which saved Service Descriptors could end
up associated with the wrong tables.

• HTTP redirects with response code 308 (Permanent Redirect) are now handled in the
same way as 307 (Temporary Redirect).

• Withdraw antialias parameter from lines layer, since it didn't really work.
• Improve handling of illegal sky coordinates (latitude out of range) in sky matching;

in v3.4-7 only, bad positions caused match failure, now they are just ignored.
• Improve transparency rendering in skygrid layer.

Bug fixes:

• Fix a nasty bug that could plot skyvector, skyellipse and skycorr shapes
incorrectly. The numeric value of the shape size coordinates (ellipse radii, vector
extents) was interpreted in degrees before being rescaled as appropriate, so that
values of a few tens or larger resulted in signficant distortions. Now fixed.

SUN/256 657

• Fix stability issue when using find=best (which should be used with caution) in
tmatch2 and tskymatch2. Results may be different in crowded regions, and may also
have differed between v3.4-6 and v3.4-7, but are not obviously more or less correct.

• Fix Cartesian matcher overflow issue; for very large ratio between coordinate extent
and match radius this could cause pathologically slow, though not incorrect,
crossmatching.

• Fixed bug which failed to plot some markers of multi-marker shapes like mark2
when multithreaded (i.e. for large tables). Regression bug since introduction of
multithreaded plotting in STILTS v3.2.

• Fix line drawing bug that meant dotted and dashed lines were often not displayed
correctly. This was a regression bug introduced in STILTS 3.1-6.

• Fix auto-range and export bugs that ignored final bar for forward cumulative
histograms.

• Fix occasional NullPointerException in taplint EPN stage.
• Avoid some plot failures related to oversized legends and undersized plot windows.
• Adjust colour ramp (aux axis) painting to avoid faint white stripes seen when vector

graphics (e.g. PDF) output was rendered in some external viewers.
• Fail with an error rather than silently reading a broken table when encountering

GaiaTools/zStd-jni bug during GBIN input.
• Empty/invalid fields encountered by the PDS4 reader no longer cause the table read

to fail.

Version 3.4-9 (1 November 2023)

New functionality:

• New plot command plot2corner.
• The authentication handling has changed, and authenticated access can now be made

to services that comply with the (draft) "SSO_next" proposal for advertising
authentication in the VO. The star.basicauth.user/star.basicauth.password
system properties can no longer be used to set authentication information globally
for the application, but the auth.username/auth.password system properties can be
used in a similar way (though this should be done with caution).

• Introduced alternative syntax ("*" separator) for matcher combinations to restrict
match separations to the scaled unit sphere.

Minor enhancements and behaviour changes:

• Taplint EXA stage now checks RDFa property attributes against the
http://www.ivoa.net/rdf/examples vocabulary.

• Votlint is aware of VOTable 1.5 and can check against some features from
WD-VOTable-1.5-20230913 (currently just vocabularised system and refposition

attributes of COOSYS).
• Downgrade taplint warning about non-standard language features from Warning to

Info (W-CAP-CULF -> I-CAP-CULF).

Bugfixes:

• Fix some IVOID case-sensitivity issues that could result in spurious taplint error
reports.

• Fix bug which could ignore some points in multi-threaded multi-dataset plots. This
bug was introduced in v3.2, and was supposed to be fixed at v3.4-8 but wasn't.

• Fix fencepost error in reverse cumulative histogram plotting.
• Fix missing secondary X axis bug in stacked Time plots.
• Fix bug in histogram plotting that could cause crashes for small ranges far from the

origin.
• Fix aux axis/legend positioning issue in sky plot (regression bug introduced at

SUN/256 658

v3.4-8).
• Fix rendering bug for omode=gui with huge (>130 million row) tables.
• Fix datalinklint bug that reported a W-SDND warning for all tables having multiple

service descriptors.

Version 3.4-10 (29 February 2024)

New functionality:

• Add support for HAPI time series services: input handler and scheme.
• Parameter geomN in plot2cube can now take value "vector" to use xyz 3-element

array values as coordinate specifiers.
• The spectrogram plot layer now tries to plot spectra on a spectral axis, as controlled

by the new scalespecN option.
• New plot2time parameter cellgap configures gap between stacked plots.
• New array functions loop with arguments (start,end) or (start,end,step).
• The first argument of the inMoc and nearMoc Coverage functions can now be an

ASCII MOC string as well as a MOC file location or VizieR table identifier.
• Add -xtype flag to filters addcol, colmeta, replacecol and setparam.

Minor enhancements and behaviour changes:

• Add a Strings and Quoting section to this document.
• The CoosysRefposition metadata item (VOTable 1.5) is now listed if present by the

meta filter. This information is also propagated to VOTable output if the output
VOTable version is set to 1.5 (currently not the default).

• Allow use of trailing backslash to specify multiline filters in '@'-indirection files for
cmd-type parameters.

• ISO-8601 conversion functions in Times now accept a trailing "Z" even for date-only
specifications, and now accept YYYY-DDD format for dates as well as YYYY-MM-DD.

• Add new colour map Sunset.
• datalinklint now checks and uses INFO/@name="standardID" version declarations

in the links document being validated. DataLink handling and datalinklint are
now believed to be up to date w.r.t. REC-DataLink-1.1.

• Some fixes/improvements to the stilts startup script. It now works better in the
MacOS DMG image, it's more robust against pathnames with embedded spaces, and
it will use topcat-extra.jar if present in preference to topcat-full.jar.

• Parameters datasysN in plot2sky and geomN in plot2cube are now included in the
documentation. The previously undocumented option to supply plot2cube

coordinates in spherical polar form is now documented.
• Improve error reporting for corrupted/truncated FITS files.
• Use authentication and HTTP-level compression for external (href-referenced)

VOTable STREAM data.
• Update VOTable 1.5 schema from WD to REC-VOTable-1.5 (affects votlint).
• Upgrade Unity to v1.1-b1, which corresponds to REC-VOUnits-1.1. Only minor

functional differences expected since previous version (1.1-b1).
• Upgrade VOLLT adqlLib to official 2.0-beta release.
• Upgrade snakeyaml library (used for ECSV headers) from 1.25 to 2.2. No change in

behaviour (or security) expected, but prevents vulnerability warnings in some
circumstances.

Bugfixes:

• Fix sky match failure in case of very large error radius (>22 deg).
• Fix votlint to permit empty TD elements in all cases for VOTable versions >=1.3.

Previously empty cells for integer and array fields provoked an error report (which is
correct for VOTable 1.0-1.2, but not for 1.3+).

SUN/256 659

• Fix tcat/tcatn bug that sometimes resulted in no rows included from an input table.
• Cope better with out of range pixel indices in healpix plots.
• Fix issue with fat_triangle_up and fat_triangle_down marker shape names.
• Fix FITS multi-table read bug that sometimes generated a non-fatal error message

when reading basic FITS files using tmulti.
• Some spectrogram bug fixes.
• Fix plot2time so that zone-specific text style configuration works correctly for

legends and colour ramp annotations.

SUN/256 660

