Tutorial #3: Exploring Gaia data with TOPCAT & STILTS

Mark Taylor (University of Bristol)

ESCAPE/CDS VO School Online

23 February 2022

\$Id: tcintro.tex,v 1.3 2022/02/17 14:38:31 mbt Exp \$

Outline

TOPCAT

- What is it?
- What can it do?

Gaia mission overview

Questions?

Hands-on investigations using Gaia EDR3

- Cluster identification in velocity space

 - > 3-d velocities (NGC346 open cluster)
 - ▶ TOPCAT then STILTS
- Cross-match Gaia and HST observations
 - ▶ CDS X-Match service
 - ▶ Internal TOPCAT matching
- Gaia Herzsprung-Russell Diagram

TOPCAT = Tool for OPerations on Catalogues And Tables

"Does what you want with tables"

Suitable for:

- Interactive exploration
- Quick look at unfamilar data
- In-depth analysis

Overall aim:

 Makes table manipulation easy, so users can concentrate on doing science

Characteristics

Aims:

- User-friendly
 - ▶ Easy to install and run (pure Java one download file, no library issues)

 - ▶ Simple things fairly obvious
 - Complicated things at least well-documented
 - ... this does get harder as more functionality is added
- High Performance
 - ▶ Most things are fast
 - ▶ Handles quite large tables: millions of rows, hundreds of columns easily (can be much more)

 - ▶ Recent/upcoming versions: better use of multi-core machines
- Do the things that astronomers need
 - Development is led by community input (mailing list, personal emails, tutorials, feature requests, bug reports...)
 - ▶ Feedback always welcome!

Capabilities

It can do:

- Read/write tables in various formats (FITS, VOTable, CSV, ...)
- View data
- View metadata
- Calculations and simple statistics (expression language)
- Visualisation (many options, interactive)
- Make/combine/display row selections in various ways (linked views)
- Crossmatching (many options)
- Access external data services (VO and others)
- Talk to other astro tools (SAMP)
- Trigger some event when a row is selected

It can't do:

- Images, spectra (it's only for tables)
- Scripting (but see STILTS)
- Very large tables (but see STILTS)
- All possible file formats
- Do astronomy for you

Table Data and Metadata

Row Selections

TOPCAT(2): Table Browser

2 X

8 6523

9 6333

10 6254

File Subsets Help

5 M5 6 M6

7 M7

9 M9

10 M10

Cube Plot

Window Layers Subsets Plot Export Help

Different ways to make single or multiple row selections:

- Select points graphically from a plot (freehand or polygon)
- Select rows from the table view
- Use an algebraic expression
- Combine existing subsets
- Receive from an external application (SAMP)

Linked views mean a selection made one way is visible in other ways

- Perform crossmatch only on items in red giant branch
- Where on the sky is this colour cut?
- Spot outliers
- Identify objects on ds9 image display

Row Highlighting

Row selection is coordinated between linked views:

- Click on row in table browser or plot
- Same row is highlighted in other plots & table browser

Can configure external tools to highlight same object/position (SAMP)

Calculations

Expression language used for creating columns, defining selections, making plots etc:

- Straightforward arithmetic syntax (C-like)
- Use column names as variables
- Standard arithmetic operators (+, -, /, *)
- Standard mathematical functions (abs, max, round, sin, cos, pow, ...)
- Conditional expressions (q?a:b)
- Sky coordinates (degrees, sexagesimal, sky distances)
- Astrometry (epoch propagation with/without errors, ...)
- Cosmological distances (redshift, luminosity dist, lookback time, ...)
- Fluxes (Johnson AB Magnitudes, Jansky)
- Time conversions (ISO8601, MJD, Julian, Besselian)
- ... and more (and it's extensible)

Examples:

- mag_u mag_g e.g. as quantity to plot
- janskyToAb(flux) e.g. to define new column
- skyDistanceDegrees(ra, dec, 14.1, -72.9) < 1.2 e.g. to define row selection

Visualisation

Very good for interactive exploration of large (or small) datasets:

- Many plot types!
 - ≥ 2d/3d scatter plots, histograms, HEALPix, density maps, error bars/ellipses, vectors, lines, quantiles, text labels, contours, KDEs, analytic functions, spectrograms, ...
- Many options!
 - Colour, colour maps, shading mode, weighting, marker shape/size line style, sky projection, sky system, coordinate grid, axis labelling, smoothing, binning, ...
- Highly responsive
 - ▶ Interactive changes to options update plot immediately
- Special attention to large data sets
 - ▶ Plot arbitrarily large datasets in fixed memory
 - ▶ Represent very dense plots in comprehensible ways
 - ▶ Many options for high-dimensional visualisation
- Publication-quality output?
 - Export to PDF, EPS, PNG, SVG, ...
 - Optional LATEX annotation
 - ▷ Script output (STILTS) for reproducibility
 - ▶ ... but not quite as good as Matplotlib/IDL/R

Visualisation: Plot Types

Visualisation: Dense plots

Different options for shading scatter-plot data.

Crossmatching

Internal

- Both/all files loaded into TOPCAT
- Works well up to ~ 1 million rows each
- Pretty fast (≤couple of minutes)
- Very flexible (sky, Cartesian, exact, 3D, ellipses, errors, combinations...)

External

- One or both tables too big to download
- Several options, with different pros and cons:
 - CDS X-Match (any VizieR table, sky match, fast, easy)
 - Multiple cone search (many tables available, sky match, slow)
 - TAP (few tables available, flexible, tricky)

Virtual Observatory

What is the Virtual Observatory (VO)?

- "All astro archives in your computer"
- A set of protocols that allows software clients to talk to external data services in a uniform way
- In most cases you (the software user) don't need to understand the details, but it's under the hood making data access work

External data access from TOPCAT:

- Cone Search: positional query of remote catalogue
- Table Access Protocol (TAP): SQL-like queries against remote databases
- Simple Image Access/Simple Spectral Access: positional query of image/spectrum archives
- CDS services: Simbad, VizieR cone/all-sky, X-Match, Hips2fits
- Registry: service discovery
- SAMP: communication with other desktop/web applications

STIL Tool Set (STIL = Starlink Tables Infrastructure Library)

- Has pretty much the same capabilities as TOPCAT
- but works from the command line (also JyStilts from Jython)

Typical usage:

- start off with TOPCAT
- maybe move on to STILTS for more specialised requirements
- TOPCAT Stills STILTS control helps constructing plot commands

Further Information

TOPCAT Help

Find: SAMP

≪ | > | △ | ♣ |

20 Tool Interoperability

11 SAMP Panel

8 SAMP control

10 SAMP Window 9 Messages Transmitted

7 Activation Window

6 System properties

3 Control Window

3 Toolbar Buttons

1 Other Windows 1 Subsets Window

1 Session

2 TOPCAT Windows

7 Messages Received.

- There are things I haven't mentioned!
- Full tutorial and reference documentation:
 - → HTML/PDF manual on web page http://www.starlink.ac.uk/topcat/ (or google it)
 - ▶ Help for Window button ? on every window
 - Help browser includes search tool
 - More options in Help Menu (including **Help for Window in Browser** item ?)
 - ▷ Or print out the 600-page manual
- Support:
 - Slack (this school)

 - ▶ mailing list: topcat-user@jiscmail.ac.uk
 - ▶ All feedback and questions welcome!

Gaia Mission

ESA astrometry satellite:

- Satellite at L2
- 5 year mission ($+\sim$ 5 year extension), launched 19 Dec 2013

Aims

- Measure \sim 2 billion point sources, complete to G \approx 20

 - each source observed multiple times
- Astrometry: positions, parallaxes, proper motions $(10^1 10^3 \mu as accuracy)$
- Photometry: G, RP, BP bands (mmag accuracy)
- Spectrometry: radial velocities (1–15 km/s accuracy)
- Spectro-Photometry in range 330–1050 nm

Data Releases:

- DR1: 14 Sept 2016 (2-parameter astrometry, G magnitude for >1 billion sources; 5-parameter astrometry for 2 million; ...)
- **DR2**: 25 April 2018 (5-parameter astrometry, G, RP and BP magnitudes for >1 billion sources; R_V for 7 million; ...)
- **EDR3**: 3 December 2020 ("Early DR3": DR2 + improved astrometry & photometry; ...)
- DR3: 13 June 2022 (EDR3 + BP/RP/RVS spectra; object classification; non-single stars; Andromeda epoch photometry; ... details)
 - \rightarrow thousands of papers already

Gaia EDR3 Numbers

Hands-On Exercises: Topics

- 1. Cluster Identification #1: Messier 4 in proper motion space
 - Cone search, sky plot, subsets, histogram
- 2. Cluster Identification #2: Hyades in 3-D velocity space
 - TAP, expression language, 3D plot, linked views
- 3. Match Gaia and HST Observations for NGC346
 - VizieR download, CDS X-Match, multi-layer plots, pair match
- 4. Cluster Identification using STILTS
 - STILTS usage, pipelines, plotting
- 5. Local Herzsprung-Russell Diagram
 - Shading modes, polygon selection

Hands-On Exercises: Instructions

Exercises:

- Script is on school web site (or at https://github.com/mbtaylor/tctuto/releases/download/gaia-edr3/tctuto.pdf)
- For each exercise:
 - ▶ I will quickly introduce it
 - ➤ You work through the script; instructions are quite detailed, especially for the earlier exercises
 - > You will have about 20 minutes for each one
 - At the end, I'll talk through it

There's quite a lot there, people work at different speeds

- If you don't finish, don't worry!
- If you finish early, explore the software and data to see what else you can do
- The main thing is to get a flavour of what can be done and how to do it

You may ask questions at any time:

Slack? Raise hand? Zoom chat?

Cluster identification #1: Messier 4 in proper motion space

- Locate Gaia EDR3 Cone Search service
- Query for sources in region of Messier 4
- Plot positions on sky
- Plot proper motions
- Create subset of comoving objects
- Create subset of background objects
- Plot proper motion vectors
- Histogram parallaxes of comoving and background objects
- Infer distance to Messier 4

Cluster identification #2: Hyades in 3-D velocity space

- Locate Gaia TAP service
- Explore Gaia TAP service
- Run toy TAP query
- Run TAP query giving 6-d phase space information for nearby sources (cut'n'paste)
- Create new columns with 3-d Cartesian velocity components
- Plot sources in 3-d velocity space
- Create subset of comoving sources (Hyades)
- Examine Hyades vs. background sources on the sky
- Plot colour-magnitude diagram of Hyades vs. background sources

Note: There will be much more on ADQL/TAP in Tutorial #5 tomorrow morning

Match Gaia and HST observations for NGC 346

- Download J/ApJS/166/549 catalogue from VizieR
- Crossmatch with Gaia EDR3 using CDS X-Match service
- Plot the crossmatch results
- Graphically find offset between HST and Gaia positions
- Use this to make sense of cross-match results
- Re-do crossmatch using TOPCAT internal match window

Use STILTS for Messier 4 cluster identification

- Run a simple STILTS command (calc)
- Download M4 data from a cone search service (cone)
- Get used to table pipeline processing (tpipe)
- Obtain mean parallax for comoving objects \rightarrow distance to M4
- Try some STILTS plotting (plot2sky)