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Lectures

Tuesday 9.00 Wednesday 11.10 Thursday 12.10am
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« Lecture material online:
http://www.star.bris.ac.uk/bjm/lectures/topics



Course Outline

 Introduction to galaxy clusters and properties at
different wavelengths

« Self similarity in galaxy clusters — theoretical
background and comparison with observations

* Observational results on similarity breaking and
causes



Reading List & Exam

Read at least one of the following papers:
— Branchesi et al. (2007), A&A, 472, 739-748
— Kotov & Vikhlinin (2005), ApJ, 633, 781-790
— Lumb et al. (2004), A&A, 420, 853-872
— Magliocchetti & Bruggen (2007), MNRAS, 379, 260-274

Exam consists of short and long answer question on
each topic

— answer all short and 2 long questions

— full marks on my long question requires correctly
referencing one paper above e.g.

“Maughan et al. (2007) showed that the scatter in the X-ray
luminosity — mass relation is significantly lower than
previously thought.”



Today

Introduction to galaxy clusters

— Why so interesting?
Properties at different wavelengths

— Optical

— Gravitational Lensing

— Sunyaev Zel'dovich effect

— Numerical simulations

— X-ray



Galaxy Cluster Recipe

« Take approx 10*Mg dark matter

Wl - Marinade in approx 10**M hot
(10’K) ionised gas

» Sprinkle with 100's of galaxies of
various shapes and sizes

Al . (~1013M®)

- ~ * Finished product approx 2Mpc in

= |8 radius

Galaxies = 3%

Dark Matter = 83%



Clusters & Cosmology

Early Universe was smooth with tiny density
perturbations after Big Bang

« Density peaks amplified by gravity

» Galaxy clusters form via series of mergers of smaller
systems — hierarchical formation -

» Largest gravitationally bound objects in Universe

&

Simulation of development of structure in Universe.
Circles show locations of galaxy clusters



Clusters & Cosmology

Growth of large scale structure traced by clusters

« Sensitive to cosmological parameters
* Clusters provide powerful tests of cosmological models

@ & =] -
i L=} 5]

Flat Universe
N=0.7

Flat Universe
NA=0



Clusters & Cosmology

Constraints competitive, independent and different
degeneracies to other methods

 Cosmological tests require cluster masses

2 T T L] T T T | T T T

Clusters
(+BBNS+HST)

1.5

0.5 4

— Two principal reasons to
1 study galaxy clusters:

1 » Measuring masses for
1 cosmology

| o Unique laboratories for
| Interesting physical
processes

Best cosmological constraints
need large samples out to

high redshift



Optical Properties

First studied in optical
* 100s or 1000s of member galaxies
Abell (1958) catalogue |

 Detect clusters based on |
overdensities of galaxies

« Suffers projection effects e

« Study richness and
morphology of clusters

| ~ HST image of A1689



Optical Properties

Zwicky (1933) measured redshifts of galaxies in coma
 What is z of Coma? Why don't galaxies have same z?
* Velocity dispersion

50
Velocity dispersion gives |
Kinetic energy of galaxies I

 Virial theorem gives = |
total cluster mass il

20 | —

« Zwicky found <1% |
mass in galaxies 2 ﬂ lﬂhh |
* First evidence for 0 Ll L

0.005 001 0015 002 0025 003 0035 004

Z
Redshift histogram for the coma cluster

dark matter



Gravitational Lensing

Deep gravitational potential in clusters acts as
gravitational lens

Distorts shapes of background gaIaX|es

Effect strongest In
cores

Arc like distortions &
multiple images

— “Strong
lensing”

HST image of A1689



Gravitational Lensing

Deep gravitational potential in clusters acts as
gravitational lens

Distorts shapes of background gaIaX|es

Effect strongest In
cores

Arc like distortions &
multiple images

— “Strong
lensing”




Gravitational Lensing

Outside cluster cores, effect is weaker

« Subtle elliptical distortions to background galaxy
shapes - Weak Iensmg
i ] T |EGEHEY Can't measure distortion for
SN a particular galaxy
hEk © Don't know what shape it
B was originally
BAR Measure statistical
A distortions of many galaxies
) \.:*:*:“::,"':,::::”“' R B . .
K2 llee= © \Vill be random if no

2 Simulation of weak lensing. lensing signal
¥ Colours show mass distribution j

% and white sticks show mean

¥ orientation of background galaxies %

~ il ap, .

|
1
7
|
/
/
s !
7/
-t
1
1
1
&9

v e N N e = v

e e N e, -
P o T o m  — T e My, w L Y
PR L




Introduces uncertainties

scale structure around

Affected by mass in large
clusters
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Simulation of weak lensing.
, Colours show mass distribution

Gravitational Lensing
Both strong and weak lensing can be used to determine
{ and white sticks show mean

cluster masses
« Sensitive to all mass along line of sight
1

) orientation of background galaxies &




Sunyaev-Zel'dovich effect

Microwave background Distorts shape of CMB
photons are inverse spectrum — intensity drops
Compton scattered to higher  at lower frequencies
energies by electrons in ICM
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Numerical Simulations of Clusters

Computer simulations allow testing of cluster models,
iInclude dark matter

* What physical processes must be included in
simulations to match observations of real clusters?

« Simulations also allow study of dynamics of clusters
on timescales too long for direct observation

125 Mpc/h



Summary

Galaxy clusters studied at different wavelengths:
Optical

— Galaxy velocity dispersions, richness, morphology
Gravitational lensing

— Strong and weak lensing can give cluster masses
SZ effect

— Sensitive to ICM properties, independent of z
Simulations

— Formation & which physical processes important

X-ray...



XMM-Newton 1999-

3 X-ray telescopes each with 58 nested Wolter mirrors
« Effective area approx 0.4 m?




XMM-Newton 1999-

3 X-ray telescopes each with 58 nested Wolter mirrors
« Effective area approx 0.4 m?

e 3 CCD cameras

2 diffraction
gratings for
Improved
spectroscopy

« ESA mission




Chandra X-ray Observatory 1999-

Single X-ray telescope with 4 nested Wolter mirrors
« Effective area approx 0.1 m?
* Lower sensitivity than XMM-Newton

 PSF of 0.5
arcsec
compared to
15 arcsec for
XMM

e CCD camera
and diffraction |
grating




X-ray Properties

Galaxy clusters first detected as X-ray sources in 1966
using rocket-based detectors

 Source of emission
initially debated

 Better data showed
bremsstrahlung
emission from hot,
lonized gas

* Free-free emission from
electrons accelerating
around ions

« Highly luminous X-ray
sources




X-ray Properties

Emissivity of a bremsstrahlung-emitting plasma is:

hv

2
Z ne ni kT

1/2
T

€ = energy emitted per unit frequency, time and volume
n., N, = number densities of electrons and ions

Z = charge on ion, T = temperature, v = frequency

The luminosity of the intra-cluster medium (ICM) is

given by integral of € over all frequencies and then over
volume of cluster

Lycc [ n,n,T"?dv (1.1)
* Depends strongly on p, more weakly on T

€. oC

\%



X-ray Properties

* Intensity of X-ray emission « p?

* High X-ray luminosity (Lx) means clusters detectable
to high z

« Large samples of clusters detected in X-ray surveys

Vela pulsar




X-ray Spectra

« X-ray emitting gas (ICM) composed of H, He, and
trace heavier elements

- =

e X-ray spectra of : Ne X Fe xxill -
ICM show f ] \ oo o
continuum from - oVl /s
bremsstrahlung = / e

and line emission
from e.g. Fe, Si

Photons/cm? s keV

0.01

 Metal
abundances :
indicate ICM been _ Model X-ray spectrum (5 keV)
processed ”e " nergy et i N

through stars n.b. Fe XXV means Fe?*



X-ray Spectra

« Models fit to observed X-ray spectra give temperature
(kT) of the ICM

kT Inrange 1to 15 keV

Photons/cm? s keV

0.1

0.01

« Gas heated to

these temperatures
during cluster
formation

1+ KT gives mean KE

1 of gas particles

1 Apply virial theorem
1 to give cluster mass
| « Again, dark matter

0.5

Energy (keV)

~s 1 ISrequired



X-ray kT Profiles

 Measure KT in several annular regions if data is good
Eer]()ngJr] r, arcmin

* Gives kT and its
gradient as a _ |
function of radius ol |

T, keV

Radial kT profile of A2029

O | 1 1 | I | | | | I | 1 } | | l |

0 500 1000 1500
r, kpe




X-ray Surface Brightness Profiles

« Surface brightness profiles show the distribution of
the ICM density

10421 Trri

'l S LSRR LS SR g A
* Fit model to :
observed SB profiles 1wt - - 4 L
to recover ICM 5
density and its 2 10
gradient as function :
of radius g UE
10! = ' N
- Radial surface brightness profile:
o2l a0 TN

10 102 10°
r, kpe




CAUTIONI! Projection Effects

* Observed surface brightness and kT profiles are a
projection along line of sight of the true 3D emission

 When we look at centre of cluster we are looking
through outer parts of cluster too A

— contributes to measurements

.




Hydrostatic Equilibrium

 If the ICM is in hydrostatic equilibrium with total
gravitational potential (pressure balances gravitation):

2
—r~ dP
M =
(r) Gpl(r) dr
* Which, for an ideal gas gives:
—r’k dT d p
M(r)=——" T (r) =R
= Gamorl| PV T G

« S0 measuring T(r) and p(r) of gas allows us to derive
M(r) for total mass including dark matter



Example: Hydrostatic Equilibrium

Starting with egn hydro egm, and using ideal gas law
(PV = nRT = NKkT) show that

—rk

_ dl .. dp
Gum,p(r)

p—+T-E

Mr) dr dr




Example: Hydrostatic Equilibrium

Starting with egn hydro egm, and using ideal gas law
(PV = nRT = NKkT) show that

2
—r'k dT dp
M(r)= ca iy
(r) Gum,p(r) P dr dr
—r* dP M
= PV = NkT=—%% kT
M(r) Gpl(r) dr (2) pm,

Where u Is mean atomic mass per particle & m, Is proton mass



Example: Hydrostatic Equilibrium

Starting with egn hydro egm, and using ideal gas law
(PV = nRT = NKkT) show that

2
M(r)= r k dT T@
Gum,p(r) P dr
2
—r~ dP M
M(r)= PV =NkT=—==kT
(r) Gp(r) dr (@) pm,
Where u Is mean atomic mass per particle & m, Is proton mass
=ka dP _ _k d(pT)= k a’ +po
pm, dr pm,dr um, P ar dr
substitute into (a):
2
M(r)=— |, 4L 4P
Gum,p(r)|" dr dr




Summary of X-ray Properties

« X-ray observations of galaxy clusters allow us to
measure these key properties:

— X-ray luminosity (from images or spectra)

— KT of the ICM (from spectra)

— Metal abundances in ICM (from spectra)

— Density of ICM (from surface brightness profile)

 Combining radial profiles of kT and p of ICM we can
Infer total mass assuming hydrostatic equilibrium




Summary

Galaxy clusters consists of
— Dark matter (~80%), hot gas (~15%), galaxies (~5%)

Galaxy cluster studies important for
— Measuring cluster masses for cosmology
— Investigating physical processes in clusters

Observations at different A and simulations used

X-ray observations particularly powerful
— Detect clusters to high-z
— Measure ICM properties
— Infer total cluster mass
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