Galaxy Clusters and Self Similarity II

Lectures

- Next lecture
 - Thursday 12.10pm in 3.34
- Lecture material online: http://www.star.bris.ac.uk/bjm/lectures/topics

Course Outline

- Introduction to galaxy clusters and properties at different wavelengths
- Self similarity in galaxy clusters theoretical background and comparison with observations
- Observational results on similarity breaking and causes

Galaxy clusters consists of

- Dark matter (~80%), hot gas (~15%), galaxies (~5%)
- Galaxy cluster studies important for
 - Measuring cluster masses for cosmology
 - Investigating physical processes in clusters
- Observations at different λ and simulations used
- X-ray observations particularly powerful
 - Detect clusters to high-z
 - Measure ICM properties
 - Infer total cluster mass

Summary of X-ray Properties

- X-ray observations of galaxy clusters allow us to measure these key properties:
 - X-ray luminosity (from images or spectra)
 - kT of the ICM (from spectra)
 - Metal abundances in ICM (from spectra)
 - Density of ICM (from surface brightness profile)
- Combining radial profiles of kT and p of ICM we can infer total mass assuming hydrostatic equilibrium

Today

- Self-similarity in galaxy clusters theoretical background and comparison with observations:
- Self-similarity with mass and redshift
- Overdensity radii
- Derive scaling relations & uses

Self-Similarity

When we describe galaxy clusters as "self-similar" we mean that clusters are simply scaled up and down versions of each other

Can think of clusters being self-similar w.r.t mass or redshift

Strong Self-Similarity

One of these galaxy clusters is 10 times more massive than the other

- (The images have been scaled to the same size)
- Q: Which is the most massive?

Strong Self-Similarity

- Q: Which is the most massive?
- A: A697, but we can't tell that from these images
- Strong self-similarity means clusters of different masses are identical, scaled versions of each other

Weak Self-Similarity

Galaxy clusters are observed at z>1

- At distant redshifts, we are observing a younger Universe
 - Density was higher

Weak self similarity means that as long as we account for the changing density of the Universe, a cluster at high-z is identical to a cluster of the same mass at low-z

Self-similar evolution

Self-Similarity

Self-similarity means all galaxy clusters essentially identical

- Massive clusters are scaled up versions of less massive clusters
- Distant clusters are identical to local clusters if we include factor for increasing density of Universe with redshift

Key Assumptions

The self similar model is based on the simplifying assumptions that:

- Clusters form via a single gravitational collapse at z_{obs}
- The only source of energy input into ICM is gravitational

N.B. Neither of these are true!

With these assumptions we can predict simple power law relationships between the different properties of galaxy clusters

• Scaling relations

Scaling Relations

Scaling relations are **power law** relations between galaxy cluster properties (typically X-ray) such as Lx, kT, M_{gas} , M_{tot} etc.

- e.g. The luminosity-temperature (**LT**) relation describes the relationship between the X-ray luminosity and temperature of the ICM
- Measure properties for samples of galaxy clusters and compare with selfsimilar model
- Do not agree perfectly

 (More later)

The Edge of a Cluster

When we talk about cluster properties we need to specify what radius we measure them within

The mass of this sphere is easily defined as it has a clear surface/edge

Where is the edge of this galaxy cluster?

The Edge of a Cluster

When we talk about cluster properties we need to specify what radius we measure them within

The mass of this sphere is easily defined as it has a clear surface/edge

Where is the edge of this galaxy cluster?

Surface brightness & gas density asymptote to zero at infinite radius (N.B. log plot)

Overdensity Radii

Use **overdensity radii** to define region in which properties are measured

- A radius within which the mean density is Δ times the critical density (ρ_c) at the cluster's redshift
- Clusters are centrally concentrated so larger Δ correspond to smaller radii
- Write radii as R_{Δ}

 $-e.g. R_{200}$ means Δ =200

Overdensity radii allow fair comparison of properties of clusters of different sizes, key part of self-similar model

Overdensity Radii

Simulations show that Δ =200 corresponds to **virial** radius

- Radius separating relaxed part of cluster from infalling material
- ≈2 Mpc (massive cluster)
- R₅₀₀ (~0.5R₂₀₀) is radius measured out to in typical X-ray observations

MT Relation

 If a galaxy cluster is dynamically relaxed (no recent mergers) we expect the gas and galaxies to be virialised:

$$2\mathbf{K} = -U$$

- Where K is kinetic energy and U is potential energy
- For monatomic gas with temperature T, the average kinetic energy per particle is

$$\langle K_i \rangle = \frac{3}{2} kT$$

• And total KE of gas, K, is N<K_i> where N is number of particles, so $K \propto M T \propto M = kT$

$$K \propto NkT \propto M_{gas,\Delta} kT$$

$$K \propto NkT \propto M_{gas,\Delta} kT$$

- For self-similar clusters, $M_{gas,\Delta} \propto M_\Delta,$ the total mass within $R_\Delta,$ so

• The potential energy of the system is simply

 $K \propto M_{\Delta} kT$

• So we can rewrite the virial theorem (2K = -U) as

$$M_{\Delta}kT \propto \frac{M_{\Delta}^2}{R_{\Delta}}$$

$$M_{\Delta}kT \propto \frac{M_{\Delta}^2}{R_{\Delta}}$$
(2.1)

We can express R_{Δ} in terms of the density of the cluster

$$R_{\Delta} \propto M_{\Delta}^{1/3} \rho^{-1/3}$$

Substitute into (2.1) and rearrange:

$$M_{\Delta} \propto (kT)^{3/2} \rho^{-1/2}$$
 (2.2)

Now, by definition, the mean density of the cluster within R_{Δ} is $\Delta\rho_{c}$ so

$$\rho = \Delta \rho_c = \Delta \frac{3H^2}{8\pi G}$$

$$\rho = \Delta \rho_c = \Delta \frac{3H^2}{8\pi G}$$

We can describe the redshift-dependence of the Hubble parameter as $H = E(z)H_0$

E(z) is an increasing function of z that depends on cosmological parameters (e.g. Ω_M , Λ)

Then:

$$\rho \propto \Delta E(z)^2$$

Substitute into (2.2)

$$M_{\Delta} \propto (kT)^{3/2} \Delta^{-1/2} E(z)^{-1}$$
 (2.3)

N.B. Clusters of same mass are hotter at higher z

Switch Brains Off

Example: LT Relation

From (1.1), X-ray luminosity from bremsstrahlung $L_X \propto \int n_e n_i T^{1/2} dV$

 $n_{\rm e}$ and $n_{\rm e}$ are proportional to cluster density ρ for self similar clusters, so write total Lx within R_{\Delta} as:

$$L_X \propto \rho^2 (kT)^{1/2} R_\Delta^3$$

Derive expression for Lx in terms of kT, Δ and E(z) Hint: need to use (2.3)

 $L_X \propto \rho^2 (kT)^{1/2} R_\Delta^3$

 $L_X \propto \rho^2 (kT)^{1/2} R_A^3$

Eliminate R in favour of M and ρ : $L_X \propto \rho \left(kT \right)^{1/2} M$

 $L_x \propto \rho^2 (kT)^{1/2} R_A^3$

Eliminate R in favour of M and ρ : $L_{X} \propto \rho \left(kT \right)^{1/2} M$

Recall $\rho = \Delta \rho_c$ by definition, so:

$$L_X \propto \Delta E(z)^2 (kT)^{1/2} M$$

 $L_{x} \propto \rho^{2} (kT)^{1/2} R_{\Lambda}^{3}$

Eliminate R in favour of M and p: $L_{\rm X}\!\propto\!\rho\left(kT\right)^{1/2}\!M$

Recall $\rho = \Delta \rho_c$ by definition, so:

$$L_X \propto \Delta E(z)^2 (kT)^{1/2} M$$

Finally, substitute for M in terms of kT, Δ and E(z) from (2.3)

$$L_X \propto \Delta^{1/2} E(z) (kT)^2 \tag{2.4}$$

Clusters of same kT are more luminous at high z

Scaling Relations

- Scaling relations are power law relations between galaxy cluster properties (typically X-ray)
- Consider this observed LT relation, plotted with the selfsimilar relation
- Is SS model a good description of data?
- Differences tell us about physical processes not included in SS model

kT (keV)

Scaling Relations

Self-similar model predicts scaling relations between easily measured properties and cluster mass

- Determining mass of cluster difficult
- Scaling relations allow masses to be estimated from easy to measure properties
- Measure masses for large samples of distant clusters with lower quality data
 - Cosmological studies

Summary I

Self-similar model assumes:

- Clusters form in single collapse at z_{obs}
- Gravity only source of energy
- Self-similar model predicts:
 - Clusters of different masses are scaled versions
 - Clusters at different z identical if scaled for $\rho_c(z)$
- Define cluster properties within overdensity radii
 - Mean density enclosed is Δ times $\rho_{\rm c}(z)$
 - Fair comparison of clusters of different M and z

Summary II

Derive self-similar scaling relations

- Simple power laws relating cluster properties
- MT, LT, etc
- Compare scaling relations with observation
 - Differences from SS model reveal physical processes not included
- Scaling relations have potential to allow estimation of cluster masses from easily measured properties
 - Cosmological tests