
  

Galaxy Clusters and Self Similarity II



  

Lectures

• Next lecture
– Thursday 12.10pm in 3.34

• Lecture material online:
http://www.star.bris.ac.uk/bjm/lectures/topics



  

Course Outline

• Introduction to galaxy clusters and properties at 
different wavelengths

• Self similarity in galaxy clusters – theoretical 
background and comparison with observations

• Observational results on similarity breaking and 
causes



Summary

Galaxy clusters consists of
– Dark matter (~80%), hot gas (~15%), galaxies (~5%)

Galaxy cluster studies important for
– Measuring cluster masses for cosmology
– Investigating physical processes in clusters

Observations at different λ and simulations used

X-ray observations particularly powerful
– Detect clusters to high-z
– Measure ICM properties
– Infer total cluster mass



  

Summary of X-ray Properties

• X-ray observations of galaxy clusters allow us to 
measure these key properties:
– X-ray luminosity (from images or spectra)
– kT of the ICM (from spectra)
– Metal abundances in ICM (from spectra)
– Density of ICM (from surface brightness profile)

• Combining radial profiles of kT and ρ of ICM we can 
infer total mass assuming hydrostatic equilibrium



  

Today

Self-similarity in galaxy clusters – theoretical 
background and comparison with observations:
• Self-similarity with mass and redshift
• Overdensity radii
• Derive scaling relations & uses



  

Self-Similarity

When we describe galaxy clusters as “self-similar” we 
mean that clusters are simply scaled up and down 
versions of each other

• Can think of clusters being self-similar w.r.t mass or 
redshift



  

Strong Self-Similarity

One of these galaxy clusters is 10 
times more massive than the other
• (The images have been scaled to 

the same size)
Q: Which is the most massive?

A697 z=0.28

A2125 z=0.25



  

Strong Self-Similarity

Q: Which is the most massive?
A: A697, but we can't tell that from 

these images
• Strong self-similarity means 

clusters of different masses are 
identical, scaled versions of each 
other

A697 z=0.28

A2125 z=0.25



  

Weak Self-Similarity

Galaxy clusters are observed at z>1
• At distant redshifts, we are observing a younger 

Universe 
– Density was higher

Weak self similarity 
means that as long as 
we account for the 
changing density of the 
Universe, a cluster at 
high-z is identical to a 
cluster of the same 
mass at low-z

ρc

Critical density of 
Universe against z

• Self-similar evolution



  

Self-Similarity

Self-similarity means all galaxy clusters essentially 
identical
• Massive clusters are scaled up versions of less 

massive clusters
• Distant clusters are identical to local clusters if we 

include factor for increasing density of Universe with 
redshift



  

Key Assumptions

The self similar model is based on the simplifying 
assumptions that:

• Clusters form via a single gravitational collapse at zobs 

• The only source of energy input into ICM is 
gravitational

N.B. Neither of these are true!

With these assumptions we can predict simple power 
law relationships between the different properties of 
galaxy clusters
• Scaling relations



  

Scaling Relations

Scaling relations are power law relations between 
galaxy cluster properties (typically X-ray) such as Lx, 
kT, Mgas, Mtot etc.

• e.g. The luminosity-temperature (LT) relation 
describes the relationship between the X-ray 
luminosity and temperature of the ICM 

lo
g(

L
x)

log(kT)

• Measure properties for 
samples of galaxy clusters 
and compare with self-
similar model

• Do not agree perfectly
– (More later)



  

The Edge of a Cluster

When we talk about cluster properties we need to 
specify what radius we measure them within 

The mass of this sphere is easily 
defined as it has a clear surface/edge

Where is the edge of this 
galaxy cluster?



  

The Edge of a Cluster

When we talk about cluster properties we need to 
specify what radius we measure them within 

The mass of this sphere is easily 
defined as it has a clear surface/edge

Where is the edge of this 
galaxy cluster?

Surface brightness & gas 
density asymptote to zero at 
infinite radius (N.B. log plot)R



  

Overdensity Radii

Use overdensity radii to define region in which 
properties are measured 
• A radius within which the mean density is Δ times the 

critical density (ρc) at the cluster's redshift

R

ρ

• Clusters are centrally 
concentrated so larger Δ 
correspond to smaller radii

• Write radii as RΔ 

– e.g. R200 means Δ=200

Overdensity radii allow fair comparison of properties of 
clusters of different sizes, key part of self-similar model



  

Overdensity Radii

Simulations show that Δ=200 corresponds to virial 
radius 
• Radius separating relaxed part of cluster from 

infalling material

• ≈2 Mpc (massive cluster)

• R500 (~0.5R200) is radius 
measured out to in typical 
X-ray observations

R200
R500



  

MT Relation

• If a galaxy cluster is dynamically relaxed (no recent 
mergers) we expect the gas and galaxies to be 
virialised:

• Where K is kinetic energy and U is potential energy
• For monatomic gas with temperature T, the average 

kinetic energy per particle is  

• And total KE of gas, K, is N<Ki> where N is number of 
particles, so

2K=−U

〈K i 〉=
3
2
kT

K∝NkT ∝M gas , kT



  

• For self-similar clusters, Mgas,Δ ∝ MΔ, the total mass 
within RΔ, so

• The potential energy of the system is simply

• So we can rewrite the virial theorem (2K = -U) as

K∝NkT ∝M gas , kT

K∝MkT

U ∝
GM

2

R

MkT ∝
M

2

R

(2.1)



  

We can express RΔ in terms of the density of the cluster

Substitute into (2.1) and rearrange:

Now, by definition, the mean density of the cluster within 
RΔ is Δρc so

R∝M
1 /3−1/3

MkT ∝
M

2

R

M∝kT 
3/2−1/2

=c=
3H2

8G

(2.2)

(2.1)



  

We can describe the redshift-dependence of the Hubble 
parameter as H = E(z)H0

E(z) is an increasing function of z that depends on 
cosmological parameters (e.g. ΩM, Λ)

Then:

Substitute into (2.2) 

N.B. Clusters of same mass are hotter at higher z

=c=
3H2

8G

∝E z 2

M∝kT 3/2−1/2E  z−1 (2.3)



  

Switch Brains Off



  

Example: LT Relation

From (1.1), X-ray luminosity from bremsstrahlung

ne and ne are proportional to cluster density ρ for self 
similar clusters, so write total Lx within RΔ as: 

Derive expression for Lx in terms of kT, Δ and E(z)
Hint: need to use (2.3)

LX∝∫ ne niT 1/2dV

LX∝2kT 1/2R
3



  

Eliminate R in favour of M and ρ:

Recall ρ=Δρc by definition, so:

Finally, substitute for M in terms of kT, Δ and E(z) from 
(2.3)

Clusters of same kT are more luminous at high z

LX∝2kT 1/2R
3

LX∝kT 1/2M

LX∝E z 2kT 1 /2M

LX∝1 /2 E z kT 2 (2.4)



  

Eliminate R in favour of M and ρ:

LX∝2kT 1/2R
3

LX∝kT 1/2M



  

Eliminate R in favour of M and ρ:

Recall ρ=Δρc by definition, so:

LX∝2kT 1/2R
3

LX∝kT 1/2M

LX∝E z 2kT 1 /2M



  

Eliminate R in favour of M and ρ:

Recall ρ=Δρc by definition, so:

Finally, substitute for M in terms of kT, Δ and E(z) from 
(2.3)

Clusters of same kT are more luminous at high z

LX∝2kT 1/2R
3

LX∝kT 1/2M

LX∝E z 2kT 1 /2M

LX∝1 /2 E z kT 2 (2.4)



  

Scaling Relations

Scaling relations are power law relations between 
galaxy cluster properties (typically X-ray)
Consider this observed LT relation, plotted with the self-
similar relation
• Is SS model a good 

description of data?
• Differences tell us 

about physical 
processes not 
included in SS 
model



  

Scaling Relations

Self-similar model predicts scaling relations between 
easily measured properties and cluster mass
• Determining mass of cluster difficult
• Scaling relations allow masses to be estimated from 

easy to measure properties

• Measure masses for 
large samples of 
distant clusters with 
lower quality data
– Cosmological 

studies



  

Summary I

Self-similar model assumes:
– Clusters form in single collapse at zobs 

– Gravity only source of energy

Self-similar model predicts:
– Clusters of different masses are scaled versions

– Clusters at different z identical if scaled for ρc(z)

Define cluster properties within overdensity radii
– Mean density enclosed is Δ times ρc(z)

– Fair comparison of clusters of different M and z



  

Summary II

Derive self-similar scaling relations
– Simple power laws relating cluster properties
– MT, LT, etc

Compare scaling relations with observation
– Differences from SS model reveal physical processes not 

included

Scaling relations have potential to allow estimation of 
cluster masses from easily measured properties

– Cosmological tests
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