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ABSTRACT

Clusters of galaxies have been used extensively to determine cosmological pa-

rameters. A major difficulty in using Sunyaev–Zel′dovich (SZ) and X-ray obser-

vations of clusters for cosmology is in the determination of the physical properties

of the intra-cluster gas (ICG) out to the virial radius. Using X–ray observations

it is difficult to measure the temperature distribution and therefore determine

the density distribution in individual clusters of galaxies out to the virial radius.

Observations with the new generation of SZ instruments are a promising alterna-

tive approach. We use clusters of galaxies drawn from high-resolution adaptive

mesh refinement (AMR) cosmological simulations to study how well we should

be able to constrain the large-scale distribution of the ICG in individual massive

relaxed clusters using AMiBA, after its upgrade to 13 elements with 1.2-m di-

ameter dishes (AMiBA13). We show that non-isothermal β models provide a

good description of the ICG in our simulated relaxed clusters. We use simulated

X-ray observations to constrain the distribution of the gas density, and simulated
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SZ visibilities (AMiBA13 observations) to constrain the large-scale temperature

distribution of the ICG. We find that AMiBA13 visibilities should constrain

the scale radius of the temperature distribution to about 50% statistical accu-

racy (68% confidence level). We conclude that AMiBA, after its upgrade to

AMiBA13, should be a powerful instrument to constrain the large-scale distri-

bution of the ICG.

Subject headings: galaxies: clusters: general

1. Introduction

According to our standard structure formation scenarios based on the dark matter (DM)

models, clusters of galaxies, the most massive virialized objects in the Universe, form from

the largest positive density fluctuations, thus their formation and evolution are sensitive to

the underlying cosmological model. Taking advantage of this feature, clusters have been used

extensively to determine cosmological parameters (e.g., Henry 2000; Allen et al. 2004; Ettori

2004; Vikhlinin et al. 2008; for recent reviews see Voit 2005 & Borgani 2006). Prospects of

determining cosmological parameters using much larger samples of clusters of galaxies from

next generation surveys were discussed in detail by e.g., Haiman, Mohr & Holder (2001);

Holder, Haiman & Mohr (2001); Molnar, Birkinshaw & Mushotzky (2002) and Molnar et al.

(2004). While theory predicts the mass function of clusters of galaxies and the distribution of

mass, gas density and temperature within individual clusters, observations directly measure

the X-ray luminosity and intra-cluster gas temperature functions, luminosity functions based

on the Sunyaev-Zel′dovich (SZ) effect, and the projected distribution of X-ray emissivity and

electron pressure. To connect theory and observations it is crucial to understand the physics

of clusters out to their virial radii and beyond. The observed large-scale distribution of

the intra-cluster gas (ICG) and its evolution can be directly compared to predictions of our

cosmological structure formation models and so constrain them.

In this paper we carry out a feasibility study to estimate how well we should be able

to constrain the large-scale distribution of the ICG using data to be taken with the Yuan-

Tseh Lee Array for Microwave Background Anisotropy (AMiBA; Ho et al. 2009; Wu et

al. 2009) interferometer operating at 94 GHz with the planned upgrade to 13 antennas

(AMiBA13; Koch et al., in preparation). In this paper we first summarize the presently

available observational constraints on the large-scale distribution of the ICG (§2). In section

§3 we derive a family of models for the ICG from our high-resolution cosmological simulations.

We then present our methods of generating SZ and X-ray images of simulated clusters of

galaxies in §4. Our method to simulate visibilities for mock AMiBA13 observations is
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described in §5. Model fitting and the results are presented in section §6. Finally, in section

§7, we discuss our results for the constraints on the shape parameters of our ICG models

from mock AMiBA13 observations.

Our companion papers describe the details of the design, performance, and the science

results from the first observational season of AMiBA with the first configuration (AMiBA7).

Ho et al. (2009) describe the design concepts and specifications of the AMiBA telescope.

Technical aspects of the instruments are described by Chen et al. (2009) and Koch et al.

(2009a). Details of the first SZ observations and data analysis are presented by Wu et al.

(2009). Nishioka et al. (2009) assess the integrity of AMiBA7 data performing several

statistical tests. Lin et al. (2009) discuss the system performance and verification. Con-

tamination from foreground sources and the primary cosmic microwave background (CMB)

fluctuations is estimated by Liu et al. (2009). Koch et al. (2009b) present a measurement

of the Hubble constant using AMiBA7 and archival X-ray data. Umetsu et al. (2009) de-

termine gas mass fractions using gravitational lensing and AMiBA7 observations of galaxy

clusters. Huang et al. (2009) discuss cluster scaling relations between AMiBA7 and X-ray

data.

2. Constraints on the large-scale Distribution of the Intra-Cluster Gas

Thermal bremsstrahlung is generated by the scattering of two particles (an electron and

an ion) in the ICG, thus the X-ray emission is proportional to the square of the electron

density, since the ion density is proportional to the electron density (e.g., Sarazin 1988).

The SZ effect, the inverse-Compton scattering of cold photons of the CMB by electrons in

the hot ICG, is proportional to the electron density (Sunyaev & Zel’dovich 1980; for recent

reviews see Rephaeli 1995; Birkinshaw 1999; and Carlstrom, Holder & Reese 2002). As a

consequence, X-ray observations are more sensitive to the inner parts of clusters, while SZ

observations are also sensitive to the outer regions. The X-ray flux is dominated by signal

from regions with 0.1 <∼ r/Rvir
<∼ 0.4, where the virial radius, Rvir, is defined here according

to the usage in Bryan & Norman (1998), and the total SZ decrement is dominated by signal

from regions near Rvir (see Figure 10 of Fang & Haiman 2008).

We measure the SZ signal, which is proportional to the line-of-sight (LOS) integral of

the electron pressure, and the X-ray surface brightness, which is proportional to the LOS

integral of the X-ray emissivity. The projections cause the observables to depend on the LOS

size of the cluster. This size can be estimated based on the angular size from the X-ray or SZ

image and the angular diameter distance to the cluster, DA. The X-ray and SZ brightnesses

of the cluster then provide two equations from which we can estimate two unknowns, DA
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and some characteristic electron density in the cluster. Observing a sample of clusters, we

can derive DA as a function of the redshift, z, and thus constrain cosmological parameters.

This is usually called the SZ–X–ray (SZX) method (e.g., Birkinshaw 1999; see Koch et al.

2009b for an application of this method using AMiBA7 observations).

In practical implementations of the SZX method, we determine the spatial model for

the cluster from the higher signal-to-noise (SN) X-ray observations, which typically go out to

about half of the virial radius. The caveat of this method is that there is no guarantee that

the ICG distribution at large radii follows an extrapolation of the distribution determined

from X-ray data. Also, due to projection effects, measurement errors, etc., the distribution

of the ICG determined from X-ray measurements might be biased. Models used to describe

the X-ray observations of clusters are typically β models for the density distribution, ρg ∝
(1 + r2/rcore

2)−3β/2, where the core radius, rcore, and β are fitting parameters (Cavaliere &

Fusco-Femiano 1976); with either constant temperature (isothermal β models), or a gradually

declining temperature as a function of the distance from the cluster center. The resulting

β parameters are in the range of 0.5 - 0.8 typically. Many relaxed clusters have β ≈ 2/3,

which provides a shallow density profile, ρ ∝ r−2, at large radii (e.g., Sarazin 1988; for recent

results see Maughan et al. 2008 and references therein).

However, numerical simulations, SZ and X-ray observations suggest a much steeper fall

off of the density at large radii. Roncarelli et al. (2006) used a sample of 9 clusters of galaxies

in the mass range of 1.5 × 1014 M� – 3.4 × 1015 M� from smoothed particle hydrodynamic

simulations (SPH) to derive gas density and temperature profiles in the outskirts of clusters.

They used simulations with and without cooling, supernova feedback and thermal heat con-

duction. Roncarelli et al. found that these profiles steepen as a function of radius. They

also found that cooling and supernova feedback do not affect the density and temperature

profiles at large radii significantly. Their results support the theoretical expectation that

the distribution of gas at large radii in clusters of galaxies is determined mainly by gravity.

Hallman et al. (2007) fitted isothermal β models to mock X-ray and SZ observations of simu-

lated clusters drawn from adaptive mesh refinement (AMR) cosmological simulations. They

found that isothermal β model fits to X-ray surface brightness distributions of simulated

clusters are biased to low β values relative to fits to SZ distributions, and that the fitted β

values depend on the projected radius cut-off used. When Hallman et al. used a projected

radius limit equal to Rvir, the β parameters based on SZ structures scattered around β = 1.

Haugbolle, Sommer-Larsen & Pedersen (2007) derived an empirical model for the pressure

distribution in clusters of galaxies based on high-resolution SPH simulations and observa-

tions. They also found a steeper fall off of the pressure at large radii than that predicted by

X-ray observations.
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Afshordi et al. (2007) used WMAP 3 year data to stack images of 193 massive clusters

of galaxies and detected the SZ effect statistically out to about 2 Rvir. Using a larger cluster

sample, Atrio-Barandela et al. (2008) determined the average electron pressure profile in

clusters by stacking 700 known clusters extracted from the 3-year WMAP data. They showed

that the isothermal β model does not provide a good fit on large scales. Both Afshordi et al.

and Atrio-Barandela et al. concluded that an ICG model with a density profile with a fall

off of ρg ∝ r−3 at large radii and a temperature profile derived from hydrostatic equilibrium

is a good description of their data.

The large-scale distribution of the ICG was studied in three individual clusters of galax-

ies (Abell 1835, Abell 1914 and CL J1226.9+3332) by Mroczkowski et al. (2009) using SZA

observations at 30 GHz (and at 90 GHz for CL J1226.9+3332). The SZA is an interfer-

ometer consisting of eight 3.5 meter diameter dishes (Muchovej et al. 2007). They used a

parameterized pressure profile with five parameters based on cosmological numerical simu-

lations of Nagai et al (2007). Mroczkowski et al. fixed the three slope parameters at their

values derived from simulations and X–ray observations, and fitted only for the amplitude

and the pressure scale radius using their SZ data. They used a density distribution derived

from X–ray observations to determine the temperature distribution based on the ideal gas

law (temperature ∝ pressure/density). Mroczkowski et al. (2009) found that the SZ profiles

drop more steeply than predicted by isothermal β models. Their results suggest, similarly

to previous studies, that the SZ profiles in clusters drop more steeply than predicted by a β

model for the gas density with β = 2/3 even if the change in the temperature is taken into

account (Figure 3 of Mroczkowski et al. 2009).

Vikhlinin et al. (2005) measured the temperature profile in 13 low redshift relaxed

clusters using Chandra data. In three clusters the temperature profiles were measured out

to about 0.7Rvir. At r >∼ 1.1 − 1.2Rvir they found that the fall off of the temperature with

radius is self similar in relaxed clusters when scaled by Rvir. Recently Ettori & Balestra (2009)

and Bautz et al. (2009) studied the outer regions of galaxy clusters using X-ray observations.

Ettori & Balestra (2009) used Chandra observations of 11 clusters, one pointing each, with

SN ratio greater than 2 out to r > 0.7Rvir. The low count rate in the outer regions of

galaxy clusters did not allow them to determine the temperature distribution out to Rvir.

They derived the slope of the gas density and temperature distribution at the virial radius

assuming hydrostatic equilibrium. The found that the X-ray surface brightness distribution

is steepening with larger radii, implying an equivalent β ≈ 1 (within errors) at Rvir. Bautz

et al. (2009) used Suzaku observations of relaxed cluster Abell 1795. They mapped the X-

ray surface brightness and temperature distribution out to about 0.9 Rvir in two directions

(North and South) using a total of 5 pointings. They found β = 0.64 within r < 1 Mpc. At

larger radii they found a steeper fall off of the density in the South (β > 0.64), but a rising



– 6 –

density profile towards North with a maximum at 1.9 Mpc (1Rvir). The increase of the X-ray

surface brightness in the North direction might be due to contribution from a filament in

the LOS.

3. Models for the ICG from AMR Simulations

We derive self-similar spherically symmetric models for the distribution of the ICG

in relaxed clusters of galaxies using a sample of clusters drawn from cosmological AMR

simulations performed with the cosmological code ENZO (O’Shea et al. 2004) assuming a

spatially flat cold DM model with cosmological parameters (Ωm, ΩΛ, Ωb, h, σ8) = (0.3, 0.7,

0.047, 0.7, 0.92), where Ωm, Ωb, ΩΛ are the current matter and baryon densities and the

cosmological constant in units of the critical density, σ8 is the power spectrum normalization

on 8 h−1 Mpc scales, and the Hubble constant H0 = 100 h km s−1 Mpc−1. This cosmological

model is close to the WMAP 5 year results except for σ8, which is much larger (Dunkley

et al. 2009). The AMR simulations were adiabatic (in the sense that no heating, cooling, or

feedback were included). The box size of the original, low resolution, cosmological simulation

was 300 h−1 Mpc. The clusters of galaxies in our sample were re-simulated with high

resolution using the same technique as described in Younger & Bryan (2007).

The resolutions (minimum AMR cell size) of the high-resolution simulations at R = 0, 1

and 4Rvir were about 25 kpc, 80 kpc and 250 kpc. The total virial masses of the 10 massive

clusters in our cluster sample fell between 1 and 2× 1015 M�. Relaxed clusters were selected

based on their density distribution: after the removal of filaments, we chose clusters with a

smooth spherically averaged density profile with little angular variation and no sign of recent

major merger events (for more details about our simulated cluster sample and analysis see

Molnar et al. 2009). In this study, for practical purposes, we also require that the density

and the temperature as a function of radius increase towards the center of the cluster. Out

of a total of 10 clusters, two clusters satisfy our criteria for relaxed clusters (AMRCL1

and AMRCL2). We show spherically averaged gas density and temperature profiles for our

massive relaxed clusters in Figure 1 (dashed lines with error bars). The error bars represent

rms of the density and temperature variations due to spherical averaging. While the density

distributions are similar in all relaxed clusters, showing only small deviations from radial

averaging, the temperature profiles show more variation. This is due to the sensitivity of the

temperature to shocks from merging and internal flows. The virial shock around the nominal

virial radius can be seen clearly as the radius at which the temperature profiles drop. The

solid curves in Figure 1 show the density and temperature profiles for the best-fit models for

AMRCL1 and AMRCL2 (see below). The physical parameters of our relaxed clusters are
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summarized in Table 1.

We use spherically symmetric non-isothermal β models truncated at the virial radius,

Rvir, to describe the density distribution of the ICG in massive relaxed clusters. We use

the same functional form for the temperature distribution as Loken et al. (2002). The gas

density and temperature models for massive clusters can be summarized as

ρ(r) ∝ (1 + r2/r2
core)

−3β/2 r ≤ Rvir , (1)

and

T (r) ∝ (1 + r/rT)−δ r ≤ Rvir , (2)

where the spatial extent is determined by the core radius, rcore, and the temperature scale

radius, rT; the fall off of the density and temperature profiles are determined by the param-

eters β and δ. These functions provide good fits to the density and temperature profiles

of our relaxed clusters out to the virial radius: the fits are within the 1σ error bars due

to spherical averaging, or deviate only slightly more than 1σ in a few radial points for the

temperature profile (see solid lines in Figure 1). The fitted parameters, rcore, β and rT for all

clusters are summarized in Table 1. Carrying out fits to the 3-dimensional (3D) temperature

distribution of simulated relaxed clusters we noticed that the exponent of the temperature

model, δ, does not change much from cluster to cluster (in agreement with an analysis using

more clusters by Loken et al. 2002). Also, the best-fit models without fixing δ do not provide

a significantly better fit than models with fixed δ = 1.6, thus we fixed δ = 1.6 in our fitting

and in the rest of our analysis. We conclude that β ≈ 1 and δ = 1.6 provide good fits to

our relaxed clusters. Therefore, we find that the density distribution at large radii can be

approximated with a power law, r−α, with α = 3, which is very close to α = 3.4 found by

Roncarelli et al. (2006). Our results suggest that the pressure (∝ ρ T ), at large radii can

be approximated with a power law with α = 3β + δ = 4.6, which is close to α = 5, found

by Nagai et al. (2007) and used by Mroczkowski et al. (2009). We find the density and

temperature functions (Equations 1 and 2) are adequate for relaxed clusters and provide a

family of ICG models that can be fitted to observational data.

4. SZ and X-ray Images of Simulated Clusters

We derive the 2-dimensional SZ and X-ray surface brightness distributions in the XY,

XZ and YZ projections for our relaxed clusters. We ignore relativistic effects, which is a
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good approximation in our case since the intra-cluster gas temperatures in our relaxed AMR

clusters is less than 10 keV. We derive the SZ signal in the XY projection by integrating

along the LOS (`) over the extent of the cluster (from `1 to `2) using

∆TCL(x, y) = ∆TCL0 N−1
CLSZ

∫ `2

`1

ne(x, y, `) Te(x, y, `) d`, (3)

where x and y are spatial coordinates in the plane of the sky, i.e. perpendicular to ` (which

we choose to coincide with z); ne = fgρg/µemP is the electron density, where µe is the mean

molecular weight per electron and mP is the proton mass; ρg is the gas density; fg is the mass

fraction of baryons in the cluster that are contained in the ICG (we adopt fg = 0.9), and

we use the standard assumption that the electron temperature equals the gas temperature,

Te = T . The frequency dependence is contained in ∆TCL0 = p(xν) TCMB kBσT /(mec
2),

where the dimensionless frequency x ν = hP ν/(kBTCMB), where TCMB is the monopole term

of the CMB, hP and kB are the constants of Planck and Boltzmann, and the function

p(xν) = xν coth(xν/2) − 4 (e.g., Birkinshaw 1999). The SZ normalization is

NCLSZ =

∫ `2

`1

ne(0, 0, `) Te(0, 0, `) d`. (4)

In practice, we pixelize x, y and `, and approximate the integral with a sum over the LOS

from `1 = −10 Mpc to `2 = 10 Mpc. Similar expressions were used for the XZ and YZ

projections.

We include the CMB contamination in our SZ image simulations, thus we have

∆T (x, y) = ∆TCL(x, y) + ∆TCMB(x, y), (5)

where the CMB contamination, ∆TCMB, is generated as in Umetsu et al. (2004).

The Compton–y images, y =
∫

dτ (kBTe)/(mec
2), where τ is the optical depth, the SZ

images (cluster plus CMB at the AMiBA frequency band, 94 GHz), X-ray surface bright-

ness, and simulated X-ray images including background noise, of our two relaxed clusters

(AMRCL1 and 2) in the XY, XZ and YZ projections, assuming that they are located at a

redshift of 0.2, are shown in Figures 2 and 3. The virial radii of our massive relaxed clusters

are about 2 Mpc, which span about 10′ on the sky at this redshift. The dark blue regions

(≈ -1.2mK) on the SZ images mark the cluster centers, the yellow and red regions represent

positive and negative CMB fluctuations with an amplitude of about ±130 µK and an rms

of about 90 µK. In the Compton-y images we can follow the diffuse gas out to about 3Rvir,
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where the external shocks of massive clusters are found (see Molnar et al. 2009), but in the

SZ images the diffuse gas around clusters seems to extend out to about Rvir only, due to

contamination from CMB fluctuations, which dominate the large-scale structure. However,

the SZ images of relaxed clusters, in most projections, show similar characteristics within

the virial radius: a circularly-symmetric center and somewhat elongated, but still relaxed,

outer regions. The core regions in the X-ray and SZ images (for example regions with yellow

color in rows 1 and 3), in a few projections (XY projection of AMRCL1 and XY and YZ

projections of AMRCL2), show asymmetry due to contamination by filaments in the LOS.

We derive the X-ray surface brightness in the XY projection by integrating along the

LOS (`) over the extent of the cluster (from `1 to `2) as

SCL(x, y) = SCL0 NCLX

∫ `2

`1

n2
e(x, y, `) T 1/2

e (x, y, `) d`, (6)

where SCL is the central X-ray surface brightness and the normalization, NX , is

N −1
CLX =

∫ `2

`1

n2
e(0, 0, `) T 1/2

e (0, 0, `) d`, (7)

where we use the scaling SX ∝
√

Te for thermal bremsstrahlung (similar expressions were

used for the XZ and YZ projections). Similarly to the SZ surface brightness, we pixelize x, y

and `, and approximate the integral with a sum over the LOS from `1 = −10 Mpc to `2 = 10

Mpc.

We simulate X-ray images of our relaxed AMR clusters assuming a field of view of

16′ × 16′, with a pixel size of 2′′ × 2′′. We sample the Poisson distribution with expectation

values equal to the surface brightness distribution as

SX(x, y) = SCL(x, y) + BX , (8)

where we calculate SCL(x, y) using Equation 6 assuming SCL0 = 6 cnts/pixel and a uniform

background of BX = 0.2 cnts/pixel (typical parameters for X-ray observations of clusters of

galaxies). We show the X-ray surface brightness distribution in relaxed clusters and their

simulated X-ray images including background noise in Figures 2 and 3 (third and fourth

rows, logarithmic scale).
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5. AMiBA13 Visibility Simulations

Interferometers measure visibilities, the Fourier transforms of the intensity distribution

multiplied by the primary beam of the telescope. In the small-angle approximation, the

visibilities can be written as

Vν(u, v) =

∫ ∞

−∞

∫ ∞

−∞
Bν(x, y) Iν(x, y) e−i2π(ux+vy) dx dy, (9)

where Vν(u, v) is the visibility function in the uv plane, which is the Fourier conjugate of the

positions, x and y on the sky; Bν(x, y) and Iν(x, y) are the primary telescope beam pattern

and source intensity at x and y at the observational frequency ν. We convert temperature

differences to intensity units using

∆I

ICMB
=

x 4
ν exν

(exν − 1)2

∆T

TCMB
, (10)

where ICMB is the intensity of the monopole term in the CMB. The visibilities, VCL and

VCMB at frequency ν are calculated from ∆TCMB and ∆TCL using Equations 9 and 10, and

we ignore the monopole term since interferometers are sensitive only to intensity differences.

We simulated visibilities for mock two-patch AMiBA13 observations of our relaxed

clusters assuming a compact configuration for the 13 antennas (Figure 4; for a detailed de-

scription see Koch et al., in preparation). The advantage of this configuration is that the

many short baselines provide high sensitivity to the large-scale distribution of the radio sig-

nal. The instrument noise and the contribution from the CMB were simulated in visibility

space and added to the visibilities of the simulated clusters (see Umetsu et al. 2004). We

assumed an observing time of 120 hours on-source. The errors in the azimuthally aver-

aged visibilities for the simulated clusters, for the CMB and for the instrument noise are

all comparable at this exposure time. Using longer exposure would reduce the errors for

the instrument noise, but would not lower the errors either for our ICG models or for the

CMB. Therefore we would not be able to reduce the error bars significantly by using longer

observations. Usually a subtraction scheme is used in cluster SZ observation with half of the

time on-source, and half of the time off source to reduce systematics, ground pick up and sky

background (e.g., Wu et al. 2009). Therefore 120 hrs of on-source integration involve 240 hr

of total observing time. This can be conveniently accommodated into a 1-month observing

schedule.

We use only projections of relaxed clusters which are not contaminated by filaments in
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the LOS (XZ and YZ projection of AMRCL1 and XZ projection of AMRCL2). We derive

simulated visibilities for two-patch observations as

V (ui, vi) = Vsource(ui, vi) − Vbkng(ui, vi), (11)

where the on-source visibilities, Vsource, are

Vsource(ui, vi) = VCL(ui, vi) + VCMB(ui, vi) + Vnoise(ui, vi), (12)

and the off-source (background) visibilities, Vbknd, are

Vbknd(ui, vi) = V ′
CMB(ui, vi) + V ′

noise(ui, vi), (13)

where VSZ is the visibility of the SZ signal, VCMB, Vnoise, and V ′
CMB, V ′

noise are two sets of

visibilities of the CMB fluctuations and noise (different for on- and off-source observations).

We assumed that the CMB fluctuation fields for the two patches (about one degree apart) are

uncorrelated, which is a conservative assumption: this way we somewhat overestimate the

noise due to the CMB. Since our models are spherically symmetric, we have no constraints on

them from the imaginary part of the model visibilities (the imaginary part is identically zero),

therefore we work only with the real part of the visibilities. Note that in real applications

the imaginary parts can be used to check the amplitude of the CMB fluctuations in the field,

assess non-sphericity of the cluster and the pointing accuracy. As an illustration, in Figure 5

we show the radial profile of the real part, Re(V ), of the azimuthally averaged simulated

visibilities of one realization of a two-patch observation for AMRCL1 in Projection XY for

the 90 and 98 GHz AMiBA channels (Channels A and B, Ho et al. 2009) as a function of

Ruv. Since the length scale for the visibility data is in units of the observing wavelength,

the visibilities are represented by two sets of curves. The red diamonds and green squares

with error bars represent visibilities for Channel A and B. The error bars represent the

rms of the azimuthally averaged real part of the visibilities at the AMiBA13 baselines.

As a comparison, black plus signs and crosses with error bars show azimuthally averaged

visibilities of AMiBA observations in the first configuration, AMiBA7 (assuming the same

exposure time, 120 hours as before). Visibilities of other projections for AMRCL1 and

projections of AMRCL2 with no contamination from filaments are very similar due to the

structural similarity among the cluster SZ images in these projections (see Figures 2 and 3).
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6. Model Fitting

We use non-isothermal β models truncated at the virial radius for the ICG. We determine

the best-fit parameters using likelihood functions. The SZ surface brightness distributions

based on our models (Equations 1 and 2) have six free parameters: five shape parameters,

p = (rcore, β, rT, δ, Rvir), and one amplitude, ∆T0. Unfortunately, due to limited spatial

resolution, field of view and receiver noise, we do not expect to be able to determine all six

parameters using AMiBA13. Thus, similarly to Mroczkowski et al. (2009), we reduce the

number of free parameters in our models. We proceed the following way: we determine the

density shape parameters, rcore and β, from the simulated X-ray images and use simulated

AMiBA13 visibilities and results based on our numerical simulations of clusters to constrain

the shape parameters, rT and δ, of the temperature distribution.

As a first step, we determine rcore and β from simulated X-ray observations. The X-ray

surface brightness distribution based on our models can be calculated as

SCLM(x, y, p) = S0 NX IX(x, y, p), (14)

where S0 is the X-ray central surface brightness, the normalization is N −1
X = IX(0, 0, p), and

IX(x, y, p) = 2

∫ `c

0

(1 + r2/rcore
2)−3β (1 + r/rT )−δ/2d`, (15)

where r2 = x2 + y2 + `2, and the cut off in the LOS is `2
c = R2

vir − x2 − y2. Note, that since

r/rcore and r/rT are both dimensionless, SCLM(x, y, p) depends on Rvir only through the cut

off, `c. X-ray observations detect individual photons, which have a Poisson distribution. We

experimented with the likelihood ratio for Poisson distribution, χ2
r, and Mighell’s χ2

γ statistic

(see Mighell 1999 for a detailed analysis) in fitting this structure. We found that the fitted

parameters obtained by these two methods are virtually identical. Therefore we decided to

use the likelihood ratio test:

−2 lnLX = χ2
r =

∑

i

Mi − Ni + Ni ln(Ni/Mi), (16)

where Ni and Mi are the observed and expected numbers of photons.

Since the shape parameters are not too sensitive to the large-scale distribution of the

temperature (heavily weighted towards the center of the cluster), we determine rcore and β

using isothermal β model fits to our simulated X-ray surface brightness maps. In this case,

since β ≈ 1 (see Table 1), the X-ray emissivity, which is proportional to (1 + r2/rcore
2)−3,
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drops about 6 orders of magnitude from the cluster center to the virial radius. Therefore

a reasonable change in Rvir (say 20%) causes only an insignificant change in the X-ray

signal (Equation 15) due to a change in the upper limit, `c (except around Rvir where the

X-ray signal is negligible; see Figures 2 and 3). For our purposes, therefore, we fix the

value of Rvir assuming that an estimate for its value with a 20% accuracy is available from

other measurements. We determined rcore, β by minimizing the X-ray likelihood function,

Equation 16, with the shape parameter, p = (rcore, β,∞, 0, Rvir). In Figures 6 and 7 we show

the confidence limits (CLs) of the X-ray likelihood functions of fitting isothermal β models

to the XZ and YZ projection of AMRCL1 (blue dashed, and green dot-dashed lines), and

the XZ projection of AMRCL2 (red dashed lines). We also show the the CLs for fitting to

the 3D density distribution of AMRCL1 and AMRCL2 (black contours).

We conclude from these figures that the fits are biased toward lower rcore and β values.

We obtain better estimates of the core radii if we fix β = 1. Note that non-isothermal β

model fits return an even lower β, so taking into account the temperature distribution will

cause even stronger bias towards lower rcore and β values. In the following analysis we assume

rcore is as determined from our X-ray fits and use rcore and β = 1.

We calculate the visibilities for our models, VM , at frequency ν, using Equations 9 and

10, as

∆TCLM(x, y) = ∆T0 NSZ ISZ (x, y, p), (17)

where ∆T0 is the central SZ amplitude, the normalization is N −1
SZ = ISZ(0, 0, p), and

ISZ(x, y, p) = 2

∫ `c

0

(1 + r2/rcore
2)−3β/2 (1 + r/rT )−δd`. (18)

Note, that since r/rcore and r/rT are both dimensionless, ∆TCLM (x, y) depends on Rvir only

through `c.

We determine the best fit parameters for our models by maximizing the SZ likelihood

function defined as

−2 lnLSZ =
∑

i,j

[Re{VO(R i
uv; νj)} −Re{VM (R i

uv; νj)}]2

σ2
ij

, (19)

where Re{VO} and Re{VM} are the azimuthally averaged real part of the observed and

model visibilities at the ith uv radius, R i
uv, at frequency νj, where j = 1, 2 for the two
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AMiBA frequency channels, and σij is the Gaussian noise assumed to be the same for all

antenna pairs and frequencies.

We assume that rcore is known from X-ray data analysis, β = 1, δ = 1.6, from numerical

simulations, and that Rvir is available from other measurements. Again, similarly to the

X-ray signal, a reasonable change in Rvir (all the other parameters fixed) causes only an

insignificant change in the SZ signal (Equation 18) because, in our models, β ≈ 1 and

δ ≈ 1.6, therefore the pressure is about four orders of magnitude smaller at the virial

radius than at the center of the cluster. Therefore the shape parameter in our case, p =

(rcore, 1, rT, 1.6, Rvir), with one unknown: rT. We determine the best fit for rT by maximizing

the SZ likelihood function, Equation 19. In Figures 8 and 9 we show the CLs of the likelihood

function as a function of rT. In Figure 8, the blue dashed and green dot-dashed lines show

likelihood functions for fits in the XZ and YZ projections of AMRCL1. The red dashed line

in Figure 9 represents the likelihood function for fits in the XZ projection of AMRCL2.

7. Discussion

We simulated AMiBA13 observations of massive relaxed clusters of galaxies including

CMB contamination and receiver noise using clusters drawn from cosmological numerical

simulations to assess how well we should be able to constrain the large-scale distribution of

the ICG with AMiBA13. Based on our simulated SZ images (rows 2 in Figures 2 and 3),

we conclude that, at 94 GHz, on the scale of the cluster cores (few arc minutes), the cluster

SZ signal dominates the CMB fluctuations, so that CMB contamination is not important

in surveys for rich clusters. On a scale of ten arc minute, corresponding to the extent of

the ICG in massive clusters, however, CMB contamination is at a comparable level to the

SZ signal. This suggests that the separation of the cluster SZ and the CMB signals is

essential for studying the SZ signature of the large-scale structure. Contamination from

CMB fluctuations is also important in the regions in galaxy clusters close to their virial

radius.

We can assess the improvement due to upgrading the first AMiBA configuration,

AMiBA7 (7 dishes with 60 cm in diameter) to AMiBA13, which consists of 13 dishes

with 120 cm in diameter, by inspecting Figure 5. We have 6 Ruv points for each of the

two AMiBA channels (a total of 12 points) as opposed to the 3 Ruv points per channel (a

total of 6) in the current configuration. 3 Ruv points per channel is not sufficient to put

meaningful constraints on the shape parameters, rcore and β. Although AMiBA with the

first configuration can measure visibilities at uv radius about 200 where the signal is about a

factor of two larger than it is at the smallest Ruv of about 350 for AMiBA13 (note, that due
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to the finite size of the antennas, Ruv cannot be smaller than the diameter of the antennas

expressed in units of the observing wavelength), this reduction of the signal is compensated

by the smaller error bars for AMiBA13 (±0.0025 Jy vs. ±0.013 Jy for the shortest baselines

assuming the same exposure time). The error bars are reduced for AMiBA13 because of

two reasons: i) larger collecting areas of the antennas (diameter of 120 cm vs. 60 cm); ii)

more baselines providing more measurements with the same Ruv. AMiBA13 is a unique

interferometer. In its frequency range, 94 GHz, it has the shortest baselines corresponding

to Ruv = 400, among presently operating interferometers. The shortest baseline of the SZA

interferometer for example at 90 GHz is about 1000. Note, that at this frequency, the cluster

SZ signal is about eight times larger at Ruv = 400 than at Ruv = 1000 (see Figure 5).

Using our AMR simulations, we showed that non-isothermal β models with a temper-

ature distribution described by Equation 2 provide good fits to the large-scale distribution

of the ICG in relaxed massive clusters. We used these models to fit to simulated X-ray and

visibility (AMiBA13) data.

We generated X-ray and SZ images of our relaxed clusters drawn from numerical sim-

ulations assuming the clusters are at a redshift of 0.2. We used the simulated X-ray data

to determine the shape parameters, rcore, β, of the density distribution. We minimized the

X-ray likelihood function (Equation 16), and determined the confidence levels using Monte

Carlo simulations. From the confidence levels for our fits to the X-ray data (Figures 6 and

7), we notice a degeneracy between the two shape parameters of the β model: rcore and

β. Each combination: small rcore, β and large rcore, β, gives a good fit to the simulated

observations. A similar degeneracy has been reported for fitting β models to actual X-ray

observations (e.g., Grego et al. 2001; Reese et al. 2000). We also notice that the values of

rcore and β are systematically lower than what we would expect based on direct fits to the 3D

density distribution. We tried to use different values for the central X-ray amplitude (SCL0)

and background (BX), in our X-ray simulations, but found that only the confidence levels

change, the fitted values remain the same. We concluded that this bias is systematic. From

these figures we can see that if we fix β = 1, we get a much better approximation to the

“real” value of rcore (the value we obtained by fitting a β model directly to the 3D density

distribution in relaxed clusters; see Table 1).

Thus, we determine rcore from fitting to simulated X-ray data assuming that β = 1. We

also fix δ = 1.6 and assume that Rvir is known from other measurements. Then we used sim-

ulated AMiBA13 visibilities to determine the temperature scale radius, rT, by minimizing

the SZ likelihood function (Equation 19), and determined the confidence levels from Monte

Carlo simulations. We show the results in Figures 8 and 9. In the XZ and YZ projections

in AMRCL1, we obtain rT = 1.8+0.7
−0.5 Rvir (68% CL, statistical), in both projections, which is
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about twice the value of the fit directly to the 3D temperature distribution (Table 1). Fitting

our models to simulated AMiBA13 visibilities based on spherically symmetric cluster gas

models show no bias in the fitted parameters, therefore we conclude that the bias we found

fitting to visibilities based on our simulated clusters is probably due to modeling, in particu-

lar, the usage of spherically symmetric models. This bias could also be caused by deviations

from our density and temperature models. Slight deviations from our best fit density and

temperature models do exist close to Rvir (see Figure 1), but AMiBA13 is not sensitive to

the low signal originating from the the vicinity of Rvir. In the XZ projection of AMRCL2 we

get rT = 0.8+0.4
−0.25 Rvir (68% CL, statistical), which is close to the value we obtain by fitting

directly to the 3D temperature distribution (Table 1). We found no bias in rT in this case.

We carried out simulations at different redshifts between 0.1 and 0.4. For a distant

cluster the beam dilution reduces the signal; if the cluster is too close, the outer parts of

the cluster fall outside of the field of view. We have found that the optimal redshift for

determining the large-scale distribution of the ICG with AMiBA13 is z ≈ 0.2.

We conclude that we should be able to use AMiBA13 to determine the large-scale

distribution of the ICG in massive relaxed clusters of galaxies located at a redshift of 0.2 by

determining the temperature scale radius with an about 50% statistical accuracy. In sum-

mary, our results suggest that AMiBA, once upgraded to 13 dishes with 1.2-m in diameter,

will be a powerful tool for constraining the large-scale distribution of the ICG.

In this paper we considered spherically symmetric galaxy cluster models, and focused

on statistical errors due to the AMiBA13 telescope and receiver system, but found that the

systematic errors due to modeling could be much larger (50% vs. a factor of two). We expect

that improving on our ICG models, i.e., using non-spherically symmetric models, would

reduce the bias in the fitted parameters. Also, we should be able to reduce the necessary

observation time with a more sophisticated observational strategy. A single pointing to the

center of the cluster, although it simplifies the data analysis, has the disadvantage that it

has a reduced sensitivity at the outer parts of the cluster, where the signal is weaker. These

two effects reduce the signal to noise ratio to a low value at the outer part of the cluster. We

expect that mosaic observations including pointings towards the outer regions in clusters,

although more difficult to analyze, would enable us to reach our goal with an exposure time

shorter than 120 hrs. We leave simulations to quantify the effects of mosaic observations

and more sophisticated ICG models for future work.
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Fig. 1.— Spherically averaged gas density, ρ, (in units of the critical density, ρc) and tem-

perature, T (in keV) distributions of the relaxed massive clusters AMRCL1 (left panel) and

AMRCL2 (right panel) as a function of radius in units of the virial radius, Rvir (dashed lines).

The error bars represent rms variations due to spherical averaging. The solid lines show the

best-fit density and temperature models (extended out to 2 Rvir to show the deviations

outside of the virial radius).
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Fig. 2.— XY, XZ, and YZ projections (left, middle and right column) of relaxed cluster

AMRCL1. From top to bottom: Compton-y, ∆T (including the cluster SZ signal and

CMB fluctuations at 94 GHz), X-ray surface brightness and simulated X-ray image including

background noise (logarithmic color scale except SZ map which is linear). The image size

is 60 ′ × 60 ′ for the SZ images (first two rows) and 16 ′ × 16 ′ for the X-ray images (last two

rows).
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Fig. 3.— Same as Figure 2 but for the XY, XZ, and YZ projections of relaxed cluster

AMRCL2.
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Fig. 4.— Planned antenna layout for AMiBA13 in the compact configuration (13 dishes with

1.2 m diameter) used for simulations in this paper. Additional possible antenna positions

are marked with ×-s.
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Fig. 5.— Real part, Re {V } (in Jy), of the azimuthally averaged simulated visibilities as

a function of uv radius (Ruv) of the XZ projection of the AMRCL1 (plus CMB and noise,

one realization) for AMiBA13 Channel A and B (red diamonds and green squares) in a

compact configuration (see Figure 4). The error bars represent instrumental errors of 120

hour observations. The best-fit β model is also shown for the two channels (solid red and

dashed green lines). Black points marked with plus signs and crosses with larger black error

bars illustrate visibilities assuming the previous configuration for AMiBA (7 elements, 0.6

cm dishes) and the same exposure time as above.
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Fig. 6.— Likelihood contours (68%, 95.4% and 99.7% CLs determined from Monte Carlo

simulations) for fitting β models to the relaxed cluster AMRCL1. The solid black lines

represent CLs for β model fits to the 3D density distribution, the dashed blue and dot-

dashed green lines represent CLs for fits to the XZ and YZ projections of the simulated

X-ray image using isothermal β models.
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Fig. 7.— Same as Figure 6 but for the relaxed cluster AMRCL2. The solid black lines

represent fits to the 3D density distribution and the red dashed lines represent CLs for fits

to the XZ projection of the simulated X-ray image using isothermal β models.
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Fig. 8.— Likelihood contours for fitting temperature models to the SZ image of relaxed

cluster AMRCL1 in the XZ and YZ projections as a function of rT in units of Rvir (green dot-

dashed and blue dashed lines). The solid, dashed and dot-dashed horizontal lines represent

68%, 95.4% and 99.7% CLs. The vertical solid line shows the best-fit value of rT obtained

by fitting directly to the temperature profile of AMRC1.
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Fig. 9.— Same as Figure 8 but for the likelihood contours for fitting to the YZ projection of

relaxed cluster AMRCL2 (red dashed line). The vertical solid line shows the best-fit value

of rT obtained by fitting directly to the temperature profile of AMRC2.
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Table 1. Relaxed Clusters from AMR simulations

IDa Mvir
b Rvir

c rcore
d βe rT

f δg

AMRCL1 9.1E+14 2.0 0.107 1.05 0.91 1.6

AMRCL2 1.1E+15 2.1 0.144 1.00 0.73 1.6

aGalaxy Cluster ID.

bVirial mass in Solar Mass.

cVirial radius in Mpc.

dCore radius of the density model in units of Rvir.

eβ parameter describing the fall off of the density

model.

fScale parameter, rT, of the temperature model in

units of Rvir.

gδ parameter describing the fall off of the tempera-

ture model
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