#### Stellar Masses

- Binary systems
- Kepler's 3<sup>rd</sup> Law
- Visual binaries
- Spectroscopic binaries

## Binary Systems

- consider two stars with masses  $M_1$  and  $M_2$  in circular orbits around their centre of mass (CM)
- radius of each orbit is  $r_1$  and  $r_2$  respectively and the total separation is a
- can use Newton's Laws and circular motion to determine masses



Zeilik Fig 1-14

#### Circular Motion

$$F_1 = \frac{M_1 v_1^2}{r_1} = \frac{4\pi^2 M_1 r_1}{P^2}$$

and

$$F_2 = \frac{M_2 v_2^2}{r_2} = \frac{4\pi^2 M_2 r_2}{P^2}$$

where *P* is the period which is the same for both stars

#### Centre of Mass

• definition of centre of mass means

$$M_1 r_1 = M_2 r_2$$

# Newton's Law of Gravity

$$F_1 = F_2 = \frac{GM_1M_2}{a^2}$$
  
where  
$$a = r_1 + r_2$$

# Newton's form of Kepler's Third Law

• combining these three equations gives

$$\frac{4\pi^2 M_1 r_1}{P^2} = \frac{GM_1 M_2}{a^2}$$
$$P^2 = \frac{4\pi^2 a^2 r_1}{GM_2}$$

Eliminate  $r_1$  using

$$a = r_1 + r_2 = r_1 + \frac{M_1}{M_2}r_1 = \left(\frac{M_1 + M_2}{M_2}\right)r_1$$



#### Real Orbits

- orbits are generally elliptical and described by their semi-major axis *a* and semi-minor axis *b*
- eccentricity is defined by

$$e = \frac{\sqrt{a^2 - b^2}}{a}$$
  
i.e.  $e = 0 \implies$  circular orbit

• Newton's form of Kepler's third law also applies to elliptical orbits



outreach.atnf. csiro.edu

#### **Orbital Inclination**

• in general the orbital plane of a binary system will be inclined by some angle *i* to the plane of the sky:



# Types of Binary System

- Visual binaries
  - Two stars spatially resolved on the sky in orbit around each other
- Spectroscopic binaries
  - Two stars not spatially resolved, but orbital motion revealed through periodic Doppler shifts of their spectral lines

#### Visual Binaries

• Can measure sum of masses from Kepler's law and ratio of masses from ratio of semi-major axes and hence can solve for individual masses



### Masses from Spectroscopic Binaries

• for circular orbits the orbital velocities are

$$v_{1} = \frac{2\pi r_{1}}{P}$$
 and  $v_{2} = \frac{2\pi r_{2}}{P}$ 

- for inclination angle *i* the observed radial velocities are  $v_{r1} = v_1 \sin i$  and  $v_{r2} = v_2 \sin i$
- If we see lines from both stars can determine mass ratio from  $\frac{V_{r_1}}{V_{r_2}} = \frac{V_1}{V_2} = \frac{r_1}{r_2} = \frac{M_2}{M_1}$



© Universe, W H Freeman & Co.

#### Also

$$a = r_1 + r_2 = \frac{P}{2\pi}(v_1 + v_2) = \frac{P}{2\pi}\left(\frac{v_{r1} + v_{r2}}{\sin i}\right)$$

so from Kepler's law

$$M_1 + M_2 = \frac{4\pi^2 a^3}{GP^2} = \frac{P}{2\pi G} \left(\frac{v_{r1} + v_{r2}}{\sin i}\right)^3$$

i.e. only a lower limit to the sum of the masses

## Single-lined Spectroscopic Binaries

• only one spectrum is observed say  $v_{rl}$ 



Zeilik Fig 12-4

• so eliminate  $v_{r2}$ 

$$M_{1} + M_{2} = \frac{P}{2\pi G} \left( \frac{v_{r1} + \frac{M_{1}}{M_{2}} v_{r1}}{\sin i} \right)^{3}$$

$$M_{1} + M_{2} = \frac{Pv_{r1}^{3}}{2\pi G} \left( \frac{\frac{M_{1} + M_{2}}{M_{2}}}{\sin i} \right)^{3}$$

so 
$$\frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{P v_{r1}^3}{2\pi G}$$

i.e. if we can estimate  $M_1$ 

we can constrain  $M_2$ 





© Universe, W H Freeman & Co.



Radial-velocity curve of the visible star in the X-ray binary GS 2000 + 25 Fillipenko et al. (1999) www.pnas.org/content/96/18/9993.full Shows that invisible compact companion star is a 5 solar mass black hole

## Summary

- visual binaries provide accurate masses, but not many known
- spectroscopic binaries only usually constrain the masses with inclination the greatest uncertainty unless the system is eclipsing
- spectroscopic binaries used to find black holes and planets orbiting other stars