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1. Newtonian and non-Newtonian gravity

This course is about General Relativity (GR) and its application to the Universe as a
whole. GR is a theory of gravity, and the first lecture attempts to convince you that GR
is necessary — a theory like GR is needed to resolve the inconsistencies in Newtonian
gravitation, which are horrible and egregious.

This lecture is intended to spell out some of the problems with Newtonian
gravitation, and to introduce the basic ideas that lead to a different and internally
consistent view of gravitation.

1.1. Newtonian gravitation: force

Suppose we look at an apple suspended by its stem from the branch of a tree. The
stem breaks and the apple drops to the ground. Then the question that Newton asked is
“Why does the apple fall?”. Let’s ask the same question and try to find some answers.

to centre of Earth

Newton’s answer can be paraphrased as “The apple falls because the Earth’s
attractive gravitational force pulls it down.” This force is proportional to the mass of
the Earth and the apple, and can be expressed as

F = −
GMEmapple

r3
r ,
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where r is the position vector to the apple from the center of the Earth (of length r = RE),
mapple is the mass of the apple, the other quantities are

G = universal gravitational constant = (6.67259± 0.00085)× 10−11 m3 kg−1 s−2

ME = mass of Earth = (5.9729± 0.0008)× 1024 kg
RE = radius of Earth = (6.3782± 0.0000)× 106 m

Of course, this assumes a spherically-symmetrical Earth, but this will do for now,
since we don’t want to get bogged down with J2. It also ignores modifications to the
apparent force because of the rotation of the Earth, but likewise I’ll ignore that.

The force then causes acceleration, according to

F = mappler̈

so that the acceleration of the apple is

r̈ = −
GME

r3
r .

Two problems with this answer should occur to physicists. First, since the apple
reacts to GME at relative position −r, it needs to know the instantaneous components
of the vector r. But how can it know the location of the centre of the Earth “instantly”,
that is, faster than the speed of light? Furthermore, since the Earth isn’t a perfect
sphere, the apple needs to know “instantly” not just the location of the centre of the
Earth, but the locations of all of its matter.

Second, who measures r? The apple and the Earth do not move with the same
speed, and so they see their separation with different Lorentz contractions. They
therefore will not agree on the same value of r as an observer at rest in the centre
of mass frame. Who is right?

1.2. Newtonian gravitation: potential

Let’s try to avoid these difficulties by being more sophisticated. We introduce a new
function, the potential, Φ(r) and use it to calculate the force, as

F = −mapple∇Φ(r).

Then we no longer have instantaneity problems — we say that the apple reacts to the
local properties of Φ, by moving in the direction of steepest slope and accelerating at a
rate determined by the gradient of Φ.

We now have to add another ingredient into the mix — an equation for Φ. The
usual form is the Poisson equation which relates Φ to the density distribution, ρ(r)

∇2Φ = 4πGρ ,
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for which we can use the Greens function solution for Φ

Φ = −

∫

d3r′
G

|r− r′|
ρ(r′) .

This, of course, depends on the mass distribution being static. If the density depends on
time, we must also take dynamics into account, and we might use an analogy with the
retarded (Liénard-Wiechert) potentials of electromagnetism

Φ(r, t) = −

∫

d3r′
G

|r− r′|
ρ
(

r′, t− |r− r′|/c
)

,

where we have used the retarded time, taking into account the time that information
(about where the masses are) needs to get to point r from r′.

For a point mass we can describe the density using a delta function (note it is not
really a function but a distribution, but as long as we use it in an integral, we are safe),

ρ = mδ(r− ξ(t′))

where ξ(t′) is the path of the particle. Then we get an expression for the potential

Φ(r, t) = −
Gm

∣

∣r− r′
∣

∣+ 1
c ξ̇(t

′).(r− r′)

where t′ = t− |r−r
′|

c is the retarded time.

This is a good guess, but unfortunately wrong in detail (though correct to low
order). One place where we can see it must fail is that in electromagnetism from which
we drew the analogy, for the static electric field there is a dynamic magnetic field: static
charges give an electric field, moving charges give a magnetic field. What is the equivalent
of magnetic field for gravity? Where is the gravitomagnetic force? It must be there, but
there’s nothing describing it in Newtonian theory.

However, even if this analogy with electromagnetism and this use of potentials
fails, it does illustrate a general approach to avoiding the simultaneity problem — we’ve
broken the calculation into two parts: a force law

F = −mapple∇Φ

and the dynamics of the gravitational field, which would come from something like

∇2Φ = 4πGρ

(or its d’Alembertian equivalent), which could be obtained from an action principle if we
wanted.

Page 1.3



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

1.3. Inertial and gravitational mass

The use of potential is moderately satisfactory: we’ve recovered a local theory. However,
it leaves an important hole. Let’s look at the motion of a point mass again.

In the force equation, the masses that we use are the gravitational masses, mg.
The gravitational mass is that property of a body which responds to the gravitational
potential to give the force:

F = −mg∇Φ .

The acceleration, derived from Newton’s second law, is proportional to the inertial mass,
mi, which describes a different property of a body, how it reacts to a force to acquire its
acceleration:

r̈ =
F

mi
.

Combining these two equations, we can write the acceleration of a body as

r̈ = −
mg

mi
∇Φ .

Now, it is found experimentally that all bodies have the same ratio mg/mi.
This comes out of (for example) the Eötvös experiment, especially in its more modern
incarnations (and despite a flurry of activity a few years ago about a pattern in the
residuals in that experiment that were supposed to show evidence for a fifth force —
the Fischback conjecture, Fischback, E. et al., 1986. Phys. Rev. Lett., 56, 3-6). The
measurements of Roll, Krotkov and Dicke in the early 1960s (see Misner, Thorne &
Wheeler, pages 14-17) showed that the variation

δ

(

mg

mi

)

< 10−12

over all bodies. That is, the gravitational acceleration is independent of the mass of the
body being accelerated.

I want to emphasize how remarkable this is. For no other force is the amplitude of
the acceleration caused independent of the “charge” (e.g., electric charge, or colour). A
higher electric charge on a particle would cause it to accelerate faster in an electric field.
A larger colour would cause stronger interactions in the strong force. But for gravitation,
doubling the mass of a body has no effect on its acceleration.

Since acceleration in a gravitational field is independent of mass, and independent
of what a body is made of, we can absorb any ratio mg/mi into the definition of G, write
mg = mi = m, and

r̈ = −∇Φ

and say that gravitation causes an acceleration of a body which is a function of all other
bodies’ locations and histories.

Page 1.4



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

The most important consequence is that we can transform to a frame of reference
(a freely falling frame) such that all bodies which are sufficiently close together in that
frame feel NO external gravitational force. In particular, we can use no local dynamical
experiment to measure Φ (or any other indicator of gravity) in a freely falling frame.
Said another way, an observer would find it impossible to tell whether he/she is in a
freely falling frame in a gravitational field, or in a force-free part of space.

i.e., “a maggot in a falling apple is unaware of the external gravitational field”
– and the same will apply to weightlessness in an orbiting spacecraft (which is “freely
falling” about the Earth).

This is, effectively, the weak principle of equivalence — the dynamics of
moving bodies are independent of whether the frame of reference is accelerating or the
bodies are being affected by an external gravitational field (at a single point). Newtonian
gravitation gives no clue as to why inertial and gravitational mass are so accurately
proportional — which means that we can take the overall constant of proportionality
into the gravitational constant, G, and call them equal.

1.4 Natural states of motion

This idea can be extended to the strong principle of equivalence, which says that
at every point it is possible to choose a local reference frame such that all laws of nature
have the same form as in an unaccelerated frame in the absence of gravitation.

That is, in the correct frame of reference (a freely-falling frame), gravitation
vanishes. This leads to the central concept of GR:

the natural state of motion is free fall

no force needs to be applied to create this state of motion

forces must be applied to stop free fall

This gives us our post-Newtonian interpretation of the falling apple.

original question: what causes the apple to fall?

original answer: the gravitational force of the Earth

improved answer: the local gravitational field at the apple

better question: what stopped the apple from falling freely all the time?

answer: the obvious, and non-gravitational, forces in the stem of the apple

Where Newtonian physics points to the gravitational force as the cause of the
acceleration which causes the apple to move downwards, our new and more sophisticated
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viewpoint says that the apple would naturally be moving downwards, and points to the
existence of the stem as the reason (the outside force, based on the electromagetic force)
why the apple wasn’t originally in its natural state of free-fall.

This is the viewpoint that we will adopt — the General Relativistic viewpoint.
Every body continues in a state of free-fall unless there is a non-gravitational force
acting on it to distort its path away from free-fall. Making this concept mathematical,
and deciding how the shape of the free-fall path will be perceived by observers who may
not themselves be in the equivalent state of free-fall, is what makes some of the general
relativistic calculations difficult.

1.5. General relativity and equivalence

The strong principle of equivalence tells us that we can get rid of gravitational effects at
a single point by transforming coordinates to a freely-falling frame. But this cannot be
done except at a single point.

For example, a falling apple sees different sizes and directions of gravitational
acceleration at different points around its skin

Centre of Earth

FF F0 +-

and we generally call the difference between these forces the “tidal stress” on the object.

General relativity provides

(1) a method of transferring coordinates from an observer’s frame to a freely-falling
frame
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(2) relationships between this transformation (a local coordinate change) and the
global matter distribution

and relates the coordinate change needed to the tidal stresses that indicate the shapes
of the paths of freely-falling bodies.

In what follows, remember that we are trying to relate observer positions, times,
and physical quantities to those same parameters in a frame where gravitation plays no
role — i.e., where the physics is simple.

The corollary is that the paths followed by freely falling bodies are straight lines.

This is true even for (e.g.) spaceships orbiting the Earth — they move in straight
lines. The reason that we see their motion as curved is that we are not freely-falling
observers, but are standing on the surface of the Earth (being pushed out of our natural
state of free-fall by electromagnetic forces). If we were free-falling and in a region local
to the spacecraft, it would move in a straight line. Relating the coordinates of a body
freely-falling here (in Bristol) looking at a spacecraft freely-falling hundreds of miles away
would require a non-local transformation.

The non-local effects are related to the tidal stresses caused by lumpy matter.
And to work with these effects in a proper way, we will have to learn how to deal with
geometry in a new way, a way that expands on the four-vector notation that you learned
when dealing with special relativity.

In later lectures we must

• develop a consistent vector notation;

• explain the ideas of curvature and how they relate to tidal effects; and

• do some geometry with related algebra.

We will do that after using the next lecture to examine the sizes of GR effects.
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2. Equivalence and the gravitational redshift

2.1. Geodesics
I have said that freely-falling particles follow straight-line motion: the take the path of
shortest distance between two points (the start and end points of their path). These
shortest paths are called geodesics, and have a central role in GR because everything,
including light, travels on a geodesic unless deflected by a non-gravitational force. Thus
in looking at a distant object in the Universe, we see light that came to us along a
geodesic.

Of course, from our point of view the geodesics need not be straight. So, for
example, we may see the same object in two different directions — as in gravitational
lensing which causes multiple images. Both paths are geodesics, both are straight, but
they are not the same. And both paths are shortest, as defined by small deformations
of the path.

QUASAR
GRAVITATING

MASSOBSERVER

An analogy (from Misner, Thorne & Wheeler) that’s useful here is to think about
ants moving on the surface of an apple, trying to get from one place to another. For
efficiency, each ant will take the shortest possible route — and hence those routes will
be great circles if the apples are spherical. These are the geodesics, the “straight lines”
on the surface of a sphere.
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A

B

great circle

SPHERICAL APPLE 

If the apple is non-spherical, perhaps having a dimple near the stem, it’s clear
that the shortest routes are no longer great circles, but will distort (i.e., bend) near the
stem. The geodesics are still “straight”, but appear distorted when seen from outside
the apple.

APPLE WITH STEM

A

B

DEFLECTED PATH

STEM

Indeed, two ants that start by walking geodesic paths on either side of the stem,
will find their paths converged by the effect of the stem, and hence that their geodesics
intersect sooner than they would expect by virtue of the spherical shape of the apple
alone. They might attribute this to an attractive force from the stem of the apple —
but that’s not what’s doing it, it’s just that the curvature of the surface deforms their
geodesic paths towards one another.

On a grander scale, even if the ants start by moving on parallel paths, these paths
will eventually cross because of the large-scale curvature of the apple.

• small-scale deformation: analogy with Sun’s gravitational field

• large-scale deformation: analogy with cosmological curvature
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In GR,

¦ mass causes curvature

¦ particles follow the shortest paths between points (if unaffected by other forces)

¦ and we have to change the definition of “distance” so that “shortest paths” makes
sense.

2.2. Gravitational redshift

Let’s look at a simple use of the equivalence principle to get an estimate of the sizes of
GR effects — by making an exact calculation of the gravitational redshift.

h

Observer 1

Observer 2 O

O

2

1

equivalent upward acceleration, g

gravitational acceleration, g

The two observers, O1 and O2, separated by h, can’t distinguish between the
effects of gravitation acting on them and a corresponding upward acceleration. If
the gravitational acceleration is g, then we can think of a box encompassing O1 and
O2 accelerating upwards at g being the equivalent of a downward gravitational force
producing an acceleration g.

So, now suppose O1 emits a photon of wavelength λ at time t0, and that O2
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receives that photon at time t0 + h
c .

In time interval h
c , O2 has increased its velocity (taking the view that the box is

accelerating upwards) by

∆v = g
h

c

and so the Doppler shift of the wavelength of the emitted photon as seen by O2, relative
to the emitted wavelength, is

∆λ

λ
=

∆v

c
=
gh

c2
.

But this must be the same as if O1 and O2 are at rest in a gravitational field with
acceleration g, and hence in such a case and for an experiment on the surface of the
Earth

∆λ

λ
≡ z =

gh

c2
=
GME

c2R2
E

h .

This prediction has been tested (in the Pound-Rebka-Snider experiment, which
involved the emission of X-rays and their detection using the Mossbauer effect), with
total success. So there really is a gravitational redshift.

Of course, in the relatively feeble gravity of the Earth, the effect is small. But
in some astrophysical situations it can be substantial. Consider, for example, the
gravitational redshift of emission lines from the surface of a neutron star, which might
have radius Rns ≈ 10 km and mass Mns ≈ 1.4 M¯. Then

z =

∫ ∞

0

dh
GMns

c2(Rns + h)2

adding up all the elemental gravitational redshifts, which integrates to

z =
GMns

c2Rns
= −

Φns

c2
≈ 0.2

where Φns is the Newtonian gravitational potential at the surface of the star. This means
that a line which would appear at 500 nm in the laboratory is shifted to 600 nm in the
spectrum of a neutron star.
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2.3. Sizes of Effects in GR

Let us use dimensional analysis to check this result and to estimate the conditions under
which GR effects will appear.

2.3.1. Point mass

For a point mass, the physical quantities which are important will be

M : the mass of the object, with dimension [M ]; and

R: the distance of the object, with dimension [L].

In addition, we are dealing with gravitational effects, so the problem must involve

G: the “inflexibility of spacetime”, with dimension [M−1L3T−2], and

c: the “scaling between distance and time”, with dimension [LT−1].

From these variables we can create only one dimensionless quantity,

δ1 =
GM

c2R

which will be the fractional size of any GR effects relative to the ordinary Newtonian
effects. Putting in the numbers, we get

δ1 = 7.4× 10−28 (M/kg) (R/m)−1

= 2.1× 10−6 (M/M¯) (R/R¯)−1

so that to get a large effect, with δ1 ≈ 1, we would need a very massive and dense object:
for even the Sun, the GR effects are pretty small.

2.3.2. Diffuse mass

For a diffuse mass, the physical quantities which are important will be

ρ: the density of the object, with dimension [ML−3]; and

R: the distance or scale of the object, with dimension [L].

Once again the problem must involve

G: the “inflexibility of spacetime”, with dimension [M−1L3T−2], and

c: the “scaling between distance and time”, with dimension [LT−1].

and a single dimensionless quantity

δ2 =
GρR2

c2
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can be formed. Thus the general relativistic effects are of the order of

δ2 = 7.4× 10−28 (ρ/kg m−3) (R/m)2

= 0.003 (ρ/ρcrit)h
−2
50 (R/Gpc)2

where

ρcrit =
3H2

0

8πG
= 4.7× 10−27 h2

50 kg m−3

is the “critical density of the Universe”, a quantity which will appear later, and is a
characteristic density for matter in the Universe. H0 = 50h50 km s−1 Mpc−1 is the
Hubble constant (and h50 = 0.5− 1.0 is a dimensionless scaled Hubble constant), which
tells us how rapidly the Universe is currently expanding.

What we see is that GR effects in the Universe as a whole become large (δ2 ≈ 1)
only on the largest scales, R >∼ 10 Gpc (where 1 pc = 3.086× 1016 m). What we also see
is that we can form no dimensionless number if we leave R out of the reckoning — this
tells us that a simple Universe cannot be both static and uniform (i.e., have no length
scale R). In describing the Universe, there must be a scale size or time, or new physics
(which we will ignore as a possibility, here!).

2.4. Goodbye, c

In GR, as in special relativity, we are always encountering factors of c, c2, c3, and so on.
So it’s conventional to change from units where

c = 2.99792458× 108 ms−1 (exactly)

to units where c = 1. This corresponds to measuring distances in space and distances in
time both in the same units, metres.

In all that follows, I’ll take c = 1, and scale back from the corresponding special-
relativitic units to everyday SI units as appropriate. This I will write the SI velocity vSI

and acceleration, aSI as

(vSI/ms−1) = v × (2.99792458× 108)

(aSI/ms−2) = (a/m−1)× (2.99792458× 108)2

and use the quantities v (dimensionless) and a (units of m−1) in all calculations.

Later on, we will also take G = 1, and sometimes in extreme cases, you will see
units with h̄ = 1, too. But we won’t need to take this last step in the present discussion,
since we won’t be doing too much with quantum cosmology.
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3. Special relativity as geometry

3.1. Frames, events, coordinates
Special relativity (SR) is a geometrical theory, like general relativity, but with an almost
trivial geometry which is why it is usually described algebraically in early courses on
relativity. We now need to upgrade your understanding, and make the parallel between

Special relativity −→ General relativity
principle of relativity −→ principle of equivalence
velocity unmeasurable −→ acceleration same as gravity

In special relativity we focus on “inertial frames” and “inertial observers”, who
are in special states of motion — with no relative acceleration, and hence no general
relativistic worries. This means that the observers and frames have constant relative
velocity.

In any single inertial frame, the distance between points P1 at (x1, y1, z1) and P2

at (x2, y2, z2) is

s12 =
(

(x1 − x2)
2

+ (y1 − y2)
2

+ (z1 − z2)
2
)1/2

and is constant with time. For infinitesimal separations, ∆x12 = x1 − x2, for example,
the separation can be written as

∆s212 = ∆x2
12 + ∆y2

12 + ∆z2
12

and is also constant. All points in the single inertial frame have synchronized clocks.
And so we can think of coordinates in an inertial frame as being defined by a set of rigid
rods, with clocks at each rod-rod intersection, with all the clocks showing the same time.

In such frames we talk about events. For example, event A which occurs at time
t and location (x, y, z), can be described as

x(A) = (t, x, y, z)

in coordinate terms — that is, we describe the event’s location and time by a quadruplet
of numbers, which constitute a four-component vector, which we call a four-vector.
Remember that each component of x(A) is measured in the same units (metres, for
example), since we have rescaled c→ 1.

Different coordinates could be used for the same event — for example by deciding
to measure (x, y, z) in miles rather than metres, but this doesn’t change the event. That
is

event = physically real quantity
coordinates = convenient description of where event is
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For convenience, the four components (t, x, y, z) are often referred to by the four-
component notation

(x0, x1, x2, x3)

where x0 ≡ t, x1 ≡ x, x2 ≡ y, x3 ≡ z: the components xα, with α = 0, 1, 2, 3 are merely
alternative names for the t, x, y, z coordinates.

It is convenient shorthand to refer to all the (x0, x1, x2, x3) as the xα. And I will
always use Greek indices to label components with run from 0 to 3 (i.e., over all spatial
components and the time component). If I want to describe time only, I will use x0, and
if I want to describe one of the space components, I will use a Latin index, as xk, for
example.

3.2. Spacetime Diagrams

We can plot the position of any event E at coordinates x(E) ≡ (tE , xE , yE , zE) on a
four-dimensional diagram, as shown.

x

x0

x2

1

x3

v

v = 0

Here I also show the world line of a particle that is at rest (and hence at constant
(x1, x2, x3) for all time) and of a particle that is moving at some speed v. However, it’s
difficult to sketch four dimensions on a two-dimensional page, so we usually suppress
the (y, z) coordinates, and plot the location of E at (tE , xE , 0, 0) only. Then the diagram
takes the simpler form below.
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x x=

t = x0

1

t = x + const

light ray

t = - x + const

light ray

particles with velocity v
world lines of several

θv

Also shown on this diagram are the world lines of light rays (or photons) which
move along the positive and negative x axis, and so which have equations

t = ±x+ constant

with a positive sign if the particle is moving up the x axis. Clearly we can generalize
this: a particle moving at velocity v in this diagram will have equation

t =
x

v
+ constant

and hence appear on a line of slope 1
v . This velocity v is that measured by the observer

who “owns” this frame (and so is at rest in it).

Now, let’s suppose that there is a second observer, who is at rest in a frame
moving at velocity v in the x-direction. How are the coordinates measured by this
observer related to the coordinates measured by the observer who is at rest? Let the
moving observer be Ō, and the stationary observer be O. Let an event at x = (t, x, y, z)
for O appear at x̄ = (t̄, x̄, ȳ, z̄) for Ō.

By definition, the t axis is the locus of events at constant (x, y, z) = (0, 0, 0) and
the t̄ axis is the locus of events at constant (x̄, ȳ, z̄) = (0, 0, 0). Therefore the t̄ axis is
just the world line of the moving particle, as drawn above, and the angle between this
axis and the t axis, θv is given by

tan θv = v
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(since the slope of the world line is 1
v ). Now the harder question is where to draw the x̄

axis. Before I simply drew the x axis perpendicular to the t axis — but it would have
been better to come up with a real reason for this. In fact, it is possible to construct
the location of the x̄ axis by geometrical argument, but I won’t do that here, but simply
invoke the Lorentz Transform (LT), which tells us that the coordinates are related by

t̄ = γ(t− vx)

x̄ = γ(x− vt)

ȳ = y

z̄ = z

if the axes are initially aligned (at t = t̄ = 0 at x = x̄ = 0) and observer Ō is moving at
velocity v along the x axis of observer O. The quantity

γ =
(

1− v2
)− 1

2

is usually called the Lorentz factor.

Notice how prettily symmetrical the equations are in this representation (with
c = 1) — the time and x relationships look the same. We can make it look even better
by making use of our 4-vector notation, and writing the LT as

xᾱ = Λᾱ
α x

α

with the usual (Einstein summation convention) implied sum over the α index. The LT
appears here simply as a 4 × 4 matrix of transformation coefficients, Λ. We will return
to this notation later, when we introduce vectors and tensors.

Using the LT we can see that the equation of the t̄ axis is x̄ = 0, or

x− vt = 0

which is a line at angle θv given by

tan θv = v

to the t axis, as before. Similarly, the x̄ axis has t̄ = 0, or

t− vx = 0

which is (clearly, by symmetry) a line at angle θv to the x axis.

Thus the x̄ and t̄ axes lie symmetrically with respect to the x and t axes, and to
the x = t line (which corresponds to the world line of a photon emitted from the origin
at t = 0), as shown below.
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v=1

t

x

t

x
vθ

θv

3.3. Spacetime interval

One of the consequences of the LT (which can be proved independently of the LT) is
that any two events A and B with coordinates x(A), x(B) as seen by observer O or
coordinates x̄(A), x̄(B) as seen by observer Ō have a spacetime interval

∆s2 = ∆x2 + ∆y2 + ∆z2 −∆t2

= ∆x̄2 + ∆ȳ2 + ∆z̄2 −∆t̄2

which is a sort of distance, the same expressed by either observer. This is easily proved
from the LT, and suggests that the LT is a transformation which preserves interval in
just the same way that a rotation of the coordinate system in 3-space preserves ordinary
distance. A consequence of the invariance of spacetime interval (i.e., its identical value
as measured by observers at any velocity) is that ∆s provides a classification of the
relationship between pairs of events.

x

t

future of 

future of 

past of 
past of 

common 

1

1

2

2

2

1
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The SR-invariant ∆s classifies the various chunks of spacetime as

∆s2 > 0 spacelike separated
∆s2 = 0 null separated (can be linked by light ray)
∆s2 < 0 timelike separated (can be linked by particle

moving slower than the speed of light)

The invariance of ∆s then means that all observers will agree about the past and
future of any event E — and also about those events which are elsewhere and causally
unconnected with it.

3.4. Time dilation and length contraction

Let’s use the spacetime interval and the symmetry of the t̄ and x̄ axes to see what is
implied for the observation of moving clocks and moving rods. We won’t need to use the
LT itself.

3.4.1. Time dilation

The spacetime diagram that we need to consider here is

��������
������
������

t t

x

v=1

t=b
t=b

B

Events at times t̄ = 0 and b fixed at the origin of the moving frame Ō are observed
by observer O at t = 0 and t at x = 0 and x. Spacetime interval is an invariant, so we
can write

t̄2 − x̄2 ≡ b2 = t2 − x2

which is the equation of a hyperbola, as shown, in the (t, x) spacetime diagram, which
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crosses the t̄ axis at t̄ = b, and the t axis at t = b. Note that this implies that intervals in a
spacetime diagram don’t behave the same way as distances in 3-D space: the appearance
is that the length of the t̄ axis from the origin to the t̄ = b point is longer than the length
of the t axis from the origin to the t = b point, but this isn’t true. We know that the t̄
axis is the line

t =
x

v

so the intersection of this line with the hyperbola lies at

t = γb

x = bvγ

where γ = (1 − v2)−1/2. That is, a time interval b on a clock at rest in the Ō frame is
seen as a time interval γb in the O frame which sees the clock moving. That is, there is
a time dilation in the sense that

∆tO = γ∆t̄Ō .

3.4.2. Lorentz contraction

The spacetime diagram that we need to consider here is

��������

��������

������

t

x

v=1

x

A x=a

x=a

rod

Now the rod is defined by its ends, which lie at x̄ = 0 and x̄ = a at all times t̄ in
its rest frame Ō which moves at velocity v along the x axis in the frame of observer O.
We can proceed in the same way as before. Spacetime interval is an invariant, so we can
write

t̄2 − x̄2 ≡ −a2 = t2 − x2
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which is the equation of a hyperbola, as shown, in the (t, x) spacetime diagram (and the
same comment about scale of the diagram applies). But we know that the x̄ axis is the
line

t = vx

so the intersection of this line with the hyperbola lies at

t = avγ

x = aγ

which apparently corresponds to a length dilation. But the end of the rod at x̄ = 0
is observed at t = 0 while the front of the rod is being observed at t = avγ. This is
not what we usually mean by length — we want to measure the length of the rod at a
particular time in the O frame.

Therefore we need to know, instead, where the front of the rod was at t = 0, so
that we can get a O-instantaneous measurement of the rod’s length. Since the rod moves
at speed v, we know that the front of the rod lies on a line of slope 1

v , and the world
line of the end of the rod crosses the x axis at point A. The x-coordinate of event A is
therefore

aγ − v(avγ) = a(1− v2)γ =
a

γ

and so there is a length contraction in the sense that

∆xO =
∆x̄Ō
γ

.

I want to emphasize that it is the asymmetry in the definition of time and length is
what causes the difference between time dilation and length contraction, since without
the back-extrapolation to the x axis we would get a length dilation.
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4. Cartesian tensors in special relativity

4.1. Vectors
The special-relativistic transformation law for vectors (the Lorentz Transform, LT) can
be written in the compact form I wrote earlier

xᾱ = Λᾱ
α x

α

where the Greek indices, ᾱ and α can be any of the 0, 1, 2, 3 corresponding to t, x, y, z,
so I can write for the vector ~x

~x ≡ (x0, x1, x2, x3)

≡ (t, x, y, z) in F

≡ (x0̄, x1̄, x2̄, x3̄)

≡ (t̄, x̄, ȳ, z̄) in F̄

and Λ(v) is the LT matrix

Λᾱ
α =











γ α = ᾱ = 0 or 1
−γv α = 1, ᾱ = 0 or α = 0, ᾱ = 1
1 α = ᾱ = 2 or 3
0 otherwise

for “normal alignment” of the axes. More generally, for frame F̄ moving at velocity v in
direction n in frame F , we can write the general LT

Λᾱ
α(v,n) =

{ γ α = ᾱ = 0
−γvni α = 0, ᾱ = i or α = i, ᾱ = 0
(γ − 1)ni nj + δij α = i, ᾱ = j

where n is a unit 3-vector with

(

n1
)2

+
(

n2
)2

+
(

n3
)2

= 0

There are some important points to make about the notation.

(1) ~x is a (pseudo)-vector, a physical/mathematical quantity. It can be represented
by some set of coordinates {xα} or another set {xᾱ}, but has a reality over and
above the coordinate representation. Thus we say

~x can be written in the coordinates of F , using (x0, x1, x2, x3), or in the
coordinates of F̄ , using (x0̄, x1̄, x2̄, x3̄), but it is the same ~x in either case
... and hence the bar is shown over the index, and not over the vector ~x.

(2) The index α runs over 0 → 3, as explained before, with 0 indicating the time
component (some books use 1 → 4, but I believe the 0 spells out time’s uniqueness
better).
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(3) We use the Einstein summation convention, that repeated indices be summed
over. Thus

xᾱ = Λᾱ
α x

α

= Λᾱ
0 x

0 + Λᾱ
1 x

1 + Λᾱ
2 x

2 + Λᾱ
3 x

3

= Λᾱ
0 x

0 + Λᾱ
i x

i

which represents a set of four results, for ᾱ = 0, 1, 2, 3, for example

x2̄ = Λ2̄
0 x

0 + Λ2̄
1 x

1 + Λ2̄
2 x

2 + Λ2̄
3 x

3 .

The summed (“dummy”) index, α, can equally be called β, γ, or whatever. That
is, Λᾱ

α x
α is identical to Λᾱ

γ x
γ – the ᾱth component of the transformed ~x.

Note that summations are always over an “up” and a “down” index (what
in the old language were called the contravariant and covariant indices,
respectively ... but I’ll not use that older, and worse, nomenclature).

xα = component of a vector
xα = component of a one-form

Λᾱ
β = component of a matrix transforming a vector to another vector

Note carefully the distinction between kαxα, which is a single quantity (a
scalar), and kαxβ , which is one of 16 numbers (a component of a tensor).

(4) A vector is defined as a quantity that transforms like ~x. That is, the set of four
numbers (a0, a1, a2, a3) represent a vector ~a if the components transform as

aᾱ = Λᾱ
α a

α

when converting from values in the F frame to values in the F̄ frame (under
Lorentz transform and also, perhaps, rotation of the coordinate system).

4.2. Basis Vectors

There are four special vectors in F , which describe the four axes. These are the basis
vectors, ~eα. Written in frame F coordinates,

~e0 = (1, 0, 0, 0)

~e1 = (0, 1, 0, 0)

~e2 = (0, 0, 1, 0)

~e3 = (0, 0, 0, 1)

and similarly the four basis vectors in F̄ are

~e0̄ = (1, 0, 0, 0)

~e1̄ = (0, 1, 0, 0)

~e2̄ = (0, 0, 1, 0)

~e3̄ = (0, 0, 0, 1)
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which I can write in shorthand as

(~eα)
β

= δα
β

(~eᾱ)
β̄

= δᾱ
β̄

where δα
β is the Kronecker delta, which is

δα
β =

{

1 if α = β
0 if α 6= β

We can express any vector ~a in two ways

~a = aα ~eα = aᾱ ~eᾱ

which tells us that ~a is a linear superposition of the basis vectors, with the components
saying how much of each basis vector is contained in ~a. But we know that if ~a is a vector,

aᾱ = Λᾱ
α a

α

and hence
~a = aα ~eα = aᾱ ~eᾱ = Λᾱ

β a
β ~eᾱ

Change the order in the finite sum and relabel the dummy index β:

aα ~eα = aβ Λᾱ
β ~eᾱ

= aα Λᾱ
α ~eᾱ

or
aα
(

Λᾱ
α ~eᾱ − ~eα

)

= 0

But ~a was an arbitrary vector, so the aα can be assumed to be non-zero, and hence I
can write the basis vectors in F as a weighted sum of the basis vectors in F̄ as

~eα = Λᾱ
α ~eᾱ

This is the transformation law for basis vectors, it states how the basis vectors in F and
F̄ are related. Contrast the transformation of components,

aᾱ = Λᾱ
α a

α

which expresses a vector component in F̄ as a weighted sum of vector components in F .
The components and the basis vectors transform “oppositely”.

The meaning of this can be seen by considering the components of a vector ~a
expressed in a frame ¯̄F which moves at velocity −v relative to frame F̄ which moves at
velocity v in frame F . These components are

a
¯̄α = Λ

¯̄α
ᾱ(−v) Λᾱ

α(v) aα
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but ¯̄F is identical with F , so

aα = Λα
ᾱ(−v) Λᾱ

β(v) aβ

which must be true for any ~a, so that

Λα
ᾱ(−v) Λᾱ

β(v) = δα
β

and so Λ(−v) is the inverse matrix to Λ(v): the inverse LT is simply the LT with reversed
sign of the velocity.

4.3. Scalar products

So far we’ve talked only about the transformation of quantities like ~x under the LT, and
the addition of scaled quantities like ~x, for example in the summation

~a = aα ~eα

which says that the sum of a scaled set of vectors is itself a vector. Nothing very surprising
there.

The next step simply reproduces something that we did earlier, and extends the
idea. Earlier, I talked about the invariance of the interval,

∆s2 = −
(

∆x0
)2

+
(

∆x1
)2

+
(

∆x2
)2

+
(

∆x3
)2

under Lorentz transforms, where ~∆x is a vector distance. This is just the simplest type
of scalar product, ~∆x. ~∆x, and the LT was defined so that ∆s2 is a scalar and itself
invariant under LT. But all vectors transform like ~∆x: this is the definition of a vector.
And therefore for all vectors ~a,

−
(

a0
)2

+
(

a1
)2

+
(

a2
)2

+
(

a3
)2

= invariant

and the vector ~a is described as spacelike, null, or timelike according to whether this
invariant is positive, zero, or negative.

We can extend this idea, and define the scalar product of two vectors ~a and ~b by

~a.~b = −a0b0 + a1b1 + a2b2 + a3b3

and it is possible to prove that ~a.~b is invariant by considering

(

~a+~b
)

.
(

~a+~b
)

= invariant

= (~a.~a) +
(

~b.~b
)

+ 2
(

~a.~b
)

= invariant + invariant + 2
(

~a.~b
)

Page 4.4



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

and hence ~a.~b is invariant.

We can also do this for the basis vectors of F , the ~eα, when

~e0.~e0 = −1

~e1.~e1 = ~e2.~e2 = ~e3.~e3 = 1

~eα.~eβ = 0 if α 6= β

That is, the ~eα define a set of mutually orthogonal axes of unit magnitude. This is also
true for the ~eᾱ, so on a spacetime diagram, despite what the diagram looks like, the
angles as marked below are correct!

v=1

t

x

t

x
vθ

θv

90

90

o

o

The distorted geometry in this figure is entirely because the definition of distance (and
hence the amplitude of a vector, ~a), is

−
(

a0
)2

+
(

a1
)2

+
(

a2
)2

+
(

a3
)2

rather than
(

a0
)2

+
(

a1
)2

+
(

a2
)2

+
(

a3
)2

It is convenient to summarize the results for ~eα.~eβ as

~eα.~eβ ≡ ηαβ =

{

−1 α = β = 0
+1 α = β 6= 0
0 α 6= β

where the quantity g whose components are ηαβ gives us information about the
geometrical structure of special relativity.
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We can put g to use immediately, in the calculation of the scalar product. In
frame F , I can write any vector in the form

~a = aα~eα

and hence

~a.~b = (aα~eα) .
(

bβ~eβ

)

= aαbβ (~eα.~eβ) = aαbβηαβ

which tells us that the set of quantities ηαβ , defined by ~eα.~eβ , is what is needed to
combine the F-frame components of vectors into the frame-invariant scalar product.

ηαβ = components of metric tensor g in SR
metric tensor = quantity that combines two vectors to produce a scalar

A scalar is a frame-invariant number.

4.4. Tensors

g, with components ηαβ , is your first non-trivial tensor, a quantity that takes two vectors
into a scalar. This is an example of a general rule.

a tensor of type

(

0
N

)

is a linear function of N vectors into real numbers (i.e.,

scalars)

This is a component-independent statement: it means that we get the same real number
by doing this operation whatever frame the component of the N vectors or the tensor
are specified in.

The simplest tensor, of type

(

0
0

)

is clearly a scalar, since when fed no vectors it

returns a real number.

In order for a tensor to return a pure number, when fed particular components of
a vector in frame F , that tensor must also have components in F . Then

the components of a

(

0
N

)

tensor in F are the numbers obtained when that tensor

is fed N basis vectors.

For example, for the tensor g,

g(~eα, ~eβ) ≡ ~eα.~eβ

≡ ηαβ

using the definition of g( , ), and expressing the components of g as gαβ = ηαβ , as is
appropriate for special relativity (but not for GR ...). Clearly based on this argument,
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g is a

(

0
2

)

tensor, since it takes two vectors into a scalar (the scalar product of basis

vectors).

4.4.1 One-forms

If

(

0
0

)

tensors are scalars, and

(

0
2

)

tensors are things like g, what are

(

0
1

)

tensors?

These one-forms are defined as quantities which can be fed vectors to return
scalars: if p̃ is a one-form, then

p̃(~a) is a real number.

In particular, if p̃ is fed a basis vector, then the real number produced will be a component
of p̃

pα ≡ p̃(~eα)

The notation here is important: compare

pα = αth component of a one-form p̃ in frame F
aα = αth component of a vector ~a in frame F

Now, p̃ is a linear function of vectors, with

p̃(k~a) = k p̃(~a)

for scalar k, so
p̃(~a) = p̃(aα~eα)

= aα p̃(~eα)

= aα pα

≡ a0p0 + a1p1 + a2p2 + a3p3

This contraction of ~a and p̃ differs from a scalar product in having all positive signs —
there’s no statement about the metric tensor g in the formulae above (and note that we
can’t make a scalar product of p̃ and ~a because they aren’t both vectors!).

How does a one-form transform under the LT? We can write

pᾱ = p̃(~eᾱ)

= p̃(Λα
ᾱ ~eα)

= Λα
ᾱ p̃(~eα)

= Λα
ᾱ pα

that is, the components of a one-form transform like the basis vectors, using the inverse
LT to vector components:
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one-form component transform pᾱ = Λα
ᾱpα

vector component transform aᾱ = Λᾱ
αa

α

basis vector transform ~eᾱ = Λα
ᾱ ~eα

Just as the vectors ~a have basis vectors ~eα, so the one-forms p̃ have basis one-forms
ω̃α so that

p̃ = pα ω̃
α

These basis one-forms must be consistent with p̃(~a) = pαa
α, so

p̃(~a) = pα a
α

= (pα ω̃
α)
(

aβ ~eβ

)

= pα a
β (ω̃α ~eβ)

which, since ~a and p̃ are arbitrary, requires that

ω̃α~eβ = δα
β

which defines the one-forms {ω̃α} in terms of the {~eα}, and from which it can be proven
that the basis one-forms transform like vector components under LT,

ω̃ᾱ = Λᾱ
α ω̃

α

What, physically, is a one-form? It is what a vector crosses, and tells you how
much a quantity changes under changes of position. The derivative of a scalar function
is a one-form.

That is, it helps to think of a one-form as a local approximation to

a set of contour lines in two dimensions (2D)
a set of planes of equal value in 3D
a set of volumes of equal value in 4D

Forming the quantity p̃(~a) then tells you how much the quantity p̃ changes in
direction ~a. For example, in 2D, a close-packed set of contour lines corresponds to a
large p̃, since a small vector displacement ~a gives a large change in value of whatever is
being contoured. Well-separated contours would correspond to a small p̃, since it takes
a large vector displacement ~a to get much change.

Clearly this is closely related to the gradient of a field φ, ∇φ, that you encountered
when doing vector calculus. We’ll see exactly how close later (in lecture 5)
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4.4.2

(

0
N

)

tensors

A one-form is a linear mapping of a vector to a real number

p̃(~a) = scalar .

A

(

0
2

)

tensor is a linear mapping of two vectors to a real number

P (~a,~b) = scalar .

And clearly a

(

0
N

)

tensor takes N vectors to a scalar

P (~a,~b,~c, ...) = scalar .

Just as for a one-form, the components of a

(

0
N

)

tensor can be obtained by feeding the

tensor the basis vectors
Pαβγ... = P (~eα, ~eβ , ~eγ , ...)

so that
P (~a,~b,~c, ...) = P (aα~eα, b

β~eβ , c
γ~eγ , ...) = aαbβcγP (~eα, ~eβ , ~eγ , ...)

= aαbβcγPαβγ...

If P(~a, ~b,~c, ...) is to be invariant under LT, then it also follows that

Pᾱβ̄γ̄... = Λα
ᾱ Λβ

β̄ Λγ
γ̄ ...Pαβγ...

and
P = Pαβγ... ω̃

α ⊗ ω̃β ⊗ ω̃γ ...

where ⊗ means p̃⊗ q̃(~a,~b) = p̃(~a)q̃(~b). Note, in general, p̃⊗ q̃ 6= q̃⊗ p̃: the tensor product,
⊗ is not commutative.

4.4.3

(

M
N

)

tensors

Let’s stop doing special cases and launch to the general case.

a tensor of type

(

M
N

)

is a linear function of M one-forms and N vectors into

real numbers (i.e., scalars)

Thus a

(

1
0

)

tensor is a vector, a

(

0
1

)

tensor is a one-form, and so on.
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For example, consider a tensor function of one one-form and three vectors,
R( , , , ). For this tensor

R(p̃,~b,~c, ~d) = scalar

Rα
βγδ = R(ω̃α, ~eβ , ~eγ , ~eδ)

Rᾱ
β̄γ̄δ̄ = Λᾱ

α Λβ
β̄ Λγ

γ̄ Λδ
δ̄ R

α
βγδ

and so on. R may seem like a complicated quantity, but like all tensors it really isn’t
— it’s merely a linear function of four other quantities to a real number. And the R
quantity is defined so that it has a physical reality independent of the observer who
happens to observe it.
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5. The flat-space metric tensor, velocity, momentum

5.1. The flat-space metric tensor
Earlier we turned up a quantity g, with components ηαβ in special relativity

ηαβ ≡ ~eα.~eβ =

{

−1 α = β = 0
+1 α = β 6= 0
0 α 6= β

and I said that g tells us about the geometrical structure of special relativity. Let’s
investigate further.

Clearly I can always choose g to be symmetric, since

g(~a,~b) = g(~b,~a) = ~a.~b

by definition. So what is g(~a, )? It must be a quantity which, when fed a vector like ~b,
returns a scalar. Therefore it’s a one-form. Since it’s clearly a one-form closely related
to ~a, let’s call it ã. That is,

ã(~b) ≡ g(~a,~b) = ~a.~b .

Since g is symmetric, g( ,~a) must also be ã, since when fed ~b in the first slot the same

scalar ~a.~b is returned.

The components of ã are ã(~eα) by definition, and these

aα ≡ ã(~eα) = g(~a,~eα) = ~a.~eα

= (aβ~eβ).~eα

= aβ(~eβ .~eα)

= ηαβa
β

so that g, with components ηαβ is exactly what is needed to change from vector to
one-form components

aα = ηαβa
β .

We say that the metric tensor g is the quantity which converts a vector to its equivalent
one-form by “lowering the index”.

In the same way, the inverse of the metric tensor g−1, with components ηαβ , can
be used to convert a one-form to its equivalent vector by “raising the index”: since

aα = ηαβa
β

ηγαaα = ηγαηαβa
β

= δγ
βa

β

= aγ
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Strictly this is only possible if det g 6= 0, as it is in special relativity. The components of
the metric g and its inverse are

ηαβ =

{

−1 α = β = 0
+1 α = β 6= 0
0 α 6= β

ηαβ =

{

−1 α = β = 0
+1 α = β 6= 0
0 α 6= β

and it’s easy enough to confirm that these are inverses.

So now given any one-form, p̃, or vector ~a, we can easily make the associated
vector or one-form.

It follows that the magnitude of a one-form, defined as equal to the equivalent
vector magnitude, is given by

p̃.p̃ ≡ ~p.~p

= ηαβp
αpβ

= ηαβ(ηαγpγ) (ηβδpδ)

= ηαγδδ
αpγpδ

= ηγδpγpδ

and with the help of g we can use either the one-form or the vector components to
calculate magnitudes.

Finally, just as for vectors the scalar product is

~a.~b = −a0b0 + a1b1 + a2b2 + a3b3

so for one-forms it is
p̃.q̃ = −p0q0 + p1q1 + p2q2 + p3q3

and
~a.~b = ηαβa

αbβ = aαbα = aαb
α

or the identical quantity can be calculated using the one-forms

ã.b̃ = ηαβaαbβ = aαb
α = aαbα .

5.2. Velocity

Let’s use some of these ideas to talk about velocity in more general terms than before.
So far, we’ve used the expression “velocity” to refer to the velocity of one frame relative
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to another in the Lorentz Transform. We can regard this as a simple version of a more
complicated issue — how to define the velocity of any one object (for example a dust
particle) as observed in some frame F .

v=1

x( )τ

dx

u(x)

t

x

(in world line) x

We’re used to velocity as the rate of change of position. We must extend this idea
for SR, since position is now a four-vector rather than the old 3-vector. On a space-time
diagram, velocity is the local gradient of the line — in more than two dimensions we
have to generalize slightly,

the velocity of a particle is the tangent vector to that particle’s world line.

That’s OK for the direction of the vector, which is now clearly geometrical and
coordinate-independent. But what of the length? This is defined by the unit of time
that we choose — and we choose to measure time in the local comoving reference frame
of the particle, usually referred to as the MCRF, momentarily comoving reference
frame since the particle may be accelerating. This means that the velocity of a particle
is the time basis vector in the MCRF of the particle — i.e., it’s ~e0̄ in the F̄ , where
F̄ is the MCRF.

This is, essentially, obvious. In the MCRF, the “velocity” of the particle is one
second per second on the time axis, since the particle is (by definition) at rest. This is
a geometrical definition, and hence is true in any other reference frame.
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Thus we write for the particle velocity

~u = ~e0̄ .

But we know that ~e0̄ = Λα
0̄ ~eα, and so

~u = Λα
0̄ ~eα .

Using the general LT, given earlier

Λᾱ
α(v,n) =

{ γ α = ᾱ = 0
−γvni α = 0, ᾱ = i or α = i, ᾱ = 0
(γ − 1)ni nj + δij α = i, ᾱ = j

for a boost at velocity v in direction n,

~u = γ~e0 + γvn1~e1 + γvn2~e2 + γvn3~e3

= γ~e0 + γ~v

as usual, so that

u0 = γ ; u1 = γv1 ; u2 = γv2 ; u3 = γv3 .

We can also get at the velocity in a different way from the world line, using more
sophisticated language than the LT, now that we have the metric tensor g to give us the
scalar product. Since velocity is the unit tangent vector of a particle’s world line, if we
consider a small displacement d~x of the particle, near ~x, such that the particle remains
on the world line,

ds2 = d~x.d~x = invariant

and real particle displacements are timelike, so that in the MCRF of the particle the
spacelike displacements dxī = 0. Thus I can write

ds2 = −dτ2

where τ is the time increment in the particle’s MCRF. Thus

(

d~x

dτ

)2

=

(

d~x.d~x

dτ2

)

= −1

so that d~x
dτ is a unit vector (a vector of unit magnitude, even if negative in the square), is

constructed to be tangent to the particle’s world line, and in the MCRF coincides with
~e0̄. Therefore it is the particle velocity

particle velocity , ~u =
d~x

dτ
=

d~x

(−ds2)1/2
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which tells us exactly how to calculate the particle’s velocity given its world-line.

Why is this important? Because it’s our first example of a fundamental relativistic
principle — that the equations of physics must be written (or be capable of being
written) in a form that’s independent of the frame of reference. The result

~u =
d~x

dτ

obeys this dictum: ~u is a physical quantity, a coordinate-independent vector, ~x is a
physical quantity, another coordinate-independent vector, and τ is a third physical
quantity, a coordinate-independent scalar that can be constructed from ~x using the
metric g.

5.3. One-forms as derivatives

We can use this idea of velocity further, to illuminate the interpretation of one-forms a
bit more. It turns out that a one-form is a derivative. Define a scalar field φ(~x) over all
events ~x. Let this field be observed by a particle on some world-line, and parameterize
that world line by a scalar, τ , which we might as well make the proper time. Of course,
we can’t use τ for a photon, but there is another quantity we can use instead. The
velocity of a particle on this world line (see figure) is

~u =
d ~x

d τ
=
( dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)

note, here we have exact differentials, not partial.

How much does φ change on a world line?

dφ

dτ
=

d

dτ
φ(~x) =

∂φ

∂t

d t

d τ
+
∂φ

∂x

dx

d τ
+
∂φ

∂y

d y

d τ
+
∂φ

∂z

d z

d τ

Therefore
dφ

dτ
=
∂φ

∂t
u0 +

∂φ

∂x
u1 +

∂φ

∂y
u2 +

∂φ

∂z
u3

where dφ
dτ is a real number, uniquely associated with any event on the curve, and therefore

a scalar, and the uα are the components of a vector. Now, something which combines
with a vector to give a scalar is a one-form, therefore d̃φ is a one-form with components

d̃φ =
(∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

We call d̃φ is the gradient of φ. Let’s check on the Lorenz transformation of d̃φ

d̃φᾱ = d̃φα
∂xα

∂xᾱ
= d̃φα

∂

∂xᾱ

(

Λα
β̄x

β̄
)

= Λα
ᾱ d̃φα
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so d̃φ transforms as we expect. It is conventional to write φ,α for the partial derivative

φ,α =
∂φ

∂xα

and you should note, that α is a subscript on the left hand side (since φ,α is the αth

component of the one-form d̃φ) and a superscript on the right hand side (since xα is the
αth component of vector ~x).

We can use this to look at the basis one-forms in a different way, too. Suppose
that we take φ as being one of the xα. Then

xα
,β = δα

β

but for basis one-forms ω̃α, we have

ω̃α(~eβ) = δα
β ,

and therefore we can identify the basis one-forms as the gradients of the coordinate
functions

ω̃α ≡ d̃ xα

so that the βth component of ω̃α is δα
β . Thus, for example, we can write

d̃φ ≡ φ,α ω̃
α ≡ φ,α d̃x

α ≡
∂φ

∂xα
d̃xα .

5.4. Momentum

We define momentum exactly as in ordinary dynamics — it’s the velocity times a mass,

~p = m~u

where m is sometimes referred to as the “rest mass”. Perhaps it’s better to think of it
purely as a scalar quantity — something that is invariant under Lorentz transform —
intrinsic to the particle being discussed.

We manipulate momentum just as we would manipulate it in ordinary dynamics:
the total momentum of a system of particles is obtained by a vector sum: if (i) labels
the particles (not any index!)

~ptotal =
∑

(i)

~p(i)

and the non-relativistic result that the total momentum is conserved suggests that total
4-vector momentum should also be conserved.
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And so it is, as demonstrated by experiment. But that need not have been the
case, since there are a number of ways that we might have defined momentum so that
the correct non-relativistic limit was achieved ... for example, by adding higher-order
terms in the velocity, such as

~p = m~u+ ku3~u

where k might be another quality of the particle other than mass.

Note that p0 has the significance of being called “energy”: that is, energy in SR in
a particular reference frame is defined as the 0th component of the momentum 4-vector
in that reference frame. And it’s easy to prove that in the low-v limit

p0 → m

(

1 +
1

2
v2

)

corresponding to a “rest-mass energy” of m (or mc2, putting back the c factors) and a
“kinetic energy” of 1

2mv
2.
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6. The stress-energy tensor, conservation laws

6.1. Particle flux
We’ve seen that the velocity vector ~u = ~e0̄, the time basis vector of the particle’s world
line in its MCRF, and that the particle’s momentum vector is ~p = m~u where m is the
particle’s (rest) mass. What about a set of particles moving with velocity v? What
is their collective number per second passing some point (or the number per metre, in
geometrical units)?

What sort of quantity are we talking about? For a given surface, we want the
number of particles per unit time per unit area crossing the surface. That is, for a
given 3-D surface (which will have 3D of space, or 2D of space and 1D of time, or some
combination), what is the number of particles?

To make progress, we need to say what a surface is. We define a surface as some
boundary which obeys φ(~x) = constant for some choice of the function φ. That is, φ,α,
the gradient of φ(~x) is some non-zero value, and so we can define a unit one-form normal
to the surface of constant φ by

ñ ≡
d̃φ
∣

∣

∣
d̃φ
∣

∣

∣

where
∣

∣

∣d̃φ
∣

∣

∣ =

√

∣

∣

∣d̃φ.d̃φ
∣

∣

∣ .

Now, for the particle flux we want something which combines with ñ to give a
scalar (a count of number of particles, clearly a real number). This must be a vector,

call it ~N . Then ñ( ~N) will be the number of particles per unit “volume” across the surface
defined by ñ.

In the particle MCRF, there is no motion, so ~N has no spatial but only a time-like
part. And outside the MCRF we expect

N ∝ v

N ∝ np

where np is the particle density, since this is true at small velocities. So try

~N = np~u

where ~u is the velocity vector, and np is the number of particles per unit volume in the
MCRF (a unique, scalar, number which all observers can agree about).

Since this is the product of a scalar and a vector, it is a vector as required. And
at small v,

N0 → np ; N1 → npv
x ; N2 → npv

y ; N3 → npv
z
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also as required. At high speeds,

N0 → np

(

1− v2
)− 1

2

corresponding to the particle density increasing because of Lorentz contraction, just as we
would expect. Therefore ~N has the right sort of properties, and is a sensible flux vector.
Whether it’s really the correct flux vector or not depends on logical and experimental
tests — but in fact it all works out well, and again we have been able to build a logical
4-vector based on the non-relativistic limit.

Now, if we take φ = z (say, in F coordinates), then

ñ ≡ d̃z = (0, 0, 0, 1) in F coordinates

and so

ñ( ~N) = Nαnα = N z = γnpv
z

which is the number of particles per unit time per unit (x, y) area flowing across the z̄
surface.

If we choose φ = t, then following the same logic

ñ ≡ d̃t = (1, 0, 0, 0) in F coordinates

and

ñ( ~N) = Nαnα = N t = γnp

which is the number of particles per unit (x, y, z) volume flowing across the time surface,
which is simply the number of particles per unit volume.

Thus the number of particles per unit volume is simply a time-like flux. In the
spatial directions, “unit volume” converts to “unit area × unit time”, and we have the
ordinary spatial flux.

6.2. The stress-energy tensor

This tensor is of particular importance, since it will turn out to be the source of
gravitation in GR. And its form in SR will carry over directly to GR.

6.2.1. The stress-energy tensor for dust

“Dust” in GR is a gas without pressure — a set of particles which move, but have no
internal energy density (no random velocities or inter-particle forces) in their MCRF.

Then we can construct the stress-energy tensor from its definition:
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the stress-energy tensor is the flux of momentum in some direction (α = 0, 1, 2, 3)
across a surface in some direction (β = 0, 1, 2, 3).

That is, the stress-energy tensor T is a second-rank tensor, with components such
that when fed a surface one-form it returns the (vector) flux of momentum across the
surface.

For dust,
T = ~p⊗ ~N .

Now, it’s obvious that T defined like this is a second-rank tensor, since it’s
constructed from two vectors

~p = m~u momentum/particle

~N = np~u particle flux

and in the MCRF of the particles, where only the time component of ~u is non-zero,

p0̄ = m

N 0̄ = np

T 0̄0̄ = mnp = ρ (all other terms zero)

where ρ is the density of particles in the MCRF. That is, in this frame there is no
momentum flux (since all the particles move together). We can use ρ to rewrite

T = ρ~u⊗ ~u

so that the components of T are

Tαβ = T (ω̃α, ω̃β)

= ρ~u(ω̃α)~u(ω̃β)

= ρuαuβ

and therefore in a frame in which the particles move at velocity v in direction n,

Tµν =







ργ2 µ = ν = 0
ρvniγ2 µ = 0, ν = i or µ = i, ν = 0
ρv2ninjγ2 µ = i, ν = j

which shows the symmetry of T explicitly (clearly T µν = T νµ), and also that the apparent
density of particles in a frame where the particles are moving with speed v is

ρapparent = ργ2

which is, if you like, the LT for density. One γ factor arises from the Lorentz contraction
of volume in the direction of the flow, the other from the “relativistic transformation of
mass” (a horrible concept).
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6.2.2. Relativistic thermodynamics

We do thermodynamics in relativity in the MCRF (the “simplest possible frame”). Then
the laws of thermodynamics are:

0th law There is an empirical temperature relating to heat content: i.e., there is a
meaningful quantity called temperature in the MCRF.

1st law The law of conservation of energy:

∆Q = ∆E + P∆V

where E is the total energy content of some fluid element, ∆Q is the heat flow into that
heat element, and P∆V is the work done by the fluid element by changing its volume
by ∆V (i.e., a loss of internal energy if the fluid expands).

Now, if fluid of volume V contains N particles of mass m, and the particles aren’t
created or destroyed, then the particle density is np = N

V , and so

V =
N

np

∆V = −
N

n2
p

∆np

and so if we write the energy of the fluid element as

E = ρV

including the rest-mass energy in the total density,

∆E = ρ∆V + V∆ρ

and back in the first law,

∆Q = (ρ∆V + V∆ρ) + P∆V

=
N

np
∆ρ−

N

n2
p

∆np(ρ+ P )

so that the heat absorbed per particle is

δq =
∆Q

N
=

1

np

(

∆ρ−
∆np

np
(ρ+ P )

)

= Tf∆S by definition

where S is the entropy per particle and Tf is the temperature of the fluid.
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2nd law Statement about the properties of S — since this is true in the MCRF, it is
true everywhere (all observers can identify the MCRF).

3rd law Statement about the properties of S — since this is also true in the MCRF, it
is true everywhere (all observers can identify the MCRF).

6.2.3. The stress-energy tensor for a perfect fluid

Now how does this dollop of thermodynamics help? In the MCRF we know that

T 0̄0̄ = energy density, ρ

T 0̄ī = flux of 0̄-momentum (energy) across ī surface; related to heat conduction
= 0 in a perfect fluid

T ī0̄ = flux of ī-momentum across 0̄ surface
= 0, nothing flows in the MCRF

T īj̄ flux of ī-momentum across j̄ surface, stress

We can show that T īj̄ must be symmetric, since otherwise a fluid would go into very
rapid rotation: consider the cube of fluid below. Then T ix is the rate of transfer of
momentum by fluid in the cube on the +x-face in the i-direction — that is, it’s the force
in the i-direction that fluid inside the cube exerts on its neighbours on this face. So
the torque about the z axis exerted by the neighbouring cube because of this face is the
opposite, and is

Γz = −Tyxl
2

(

1

2
l

)
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x

y

z

l

l

l

force on cube

and the same torque arises from the −x face. And there are similar torques due to the
+y and −y faces of the cube. Summing them all up

Γz = −2Tyxl
2

(

1

2
l

)

+ 2Txyl
2

(

1

2
l

)

= l3 (T xy − T yx)

= Iθ̈z

where I is the moment of inertia of the cube about the z axis and θ̈z is the angular
acceleration. But we know that I ∝Ml2 ∝ ρl5, where M is the mass of the cube and ρ
is its density, so the angular acceleration is

θ̈z ∝
T xy − T yx

l2

which tends to infinity as l→ 0 unless T xy = T yx. Thus T īj̄ is symmetric, as asserted.

Furthermore, in a perfect fluid there is no viscosity, so all forces must be
perpendicular to the faces of the mass elements and

T īj̄ = 0 unless ī = j̄.

Also, all directions ī = 1, 2, 3 must be the same, so

T īj̄ = constant× δ īj̄ .

We call the constant here the pressure, P : it is the normal momentum flux. Both P and
ρ are defined in the MCRF (so that they are relativistic scalars). Thus, in the MCRF,

T ᾱβ̄ =

{

ρ ᾱ = β̄ = 0
P ᾱ = β̄ 6= 0
0 otherwise
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We can LT this to another frame (or find a frame-invariant expression which reduces to
this in the MCRF and minimally couples) to obtain

Tαβ = (ρ+ P )uαuβ + Pηαβ

which can be written in a way which is manifestly frame-invariant and hence valid in all
frames

T = (ρ+ P )~u⊗ ~u+ Pg−1

since g as we defined it acts on vectors, while T acts on one-forms, so we have to use the
“raised” version of g, which is its inverse. Note that this reduces properly to the dust
result if P = 0.

6.3. Conservation laws

Consider a chunk of fluid, as shown below.

x

y

z

dy

dz

dx

Then the rate of flow of energy into the volume is

(

T 0x(x = 0)− T 0x(x = dx)
)

dy dz +
(

T 0y(y = 0)− T 0y(y = dy)
)

dz dx

+
(

T 0z(z = 0)− T 0z(z = dz)
)

dx dy

since T 0i is the flux of 0-momentum (energy) in the +i direction on the face perpendicular
to the i axis. If the sides of the volume are small this becomes

−

(

∂T 0x

∂x
+
∂T 0y

∂y
+
∂T 0z

∂z

)

dx dy dz
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which is the rate of increase of the energy density contained within the cube, or

∂

∂t

(

T 00 dx dy dz
)

Setting these equal,
∂T 00

dt
+
∂T 0x

dx
+
∂T 0y

dy
+
∂T 0z

dz
= 0

or, in snappier language,
T 0α

,α = 0 .

This is the law of conservation of energy — and clearly if such a law applies to the 0
component of the stress-energy tensor it must also apply to the i-components (i.e., there
must be conservation of momentum too). Then

Tαβ
,β = 0

or in even snappier language
∇.T = 0

Note that, strictly, ∇.T = Tαβ
,α: the divergence applies to the first slot of T . But T is

symmetric, so Tαβ = T βα, so all is well.

We can do exactly the same thing for particle flux: the rate of flow of particles
into the cubic volume is

(Nx(x = 0)−Nx(x = dx)) dy dz + (Ny(y = 0)−Ny(y = dy)) dz dx

+ (N z(z = 0)−N z(z = dz)) dx dy

= −

(

∂Nx

∂x
+
∂Ny

∂y
+
∂N z

∂z

)

dx dy dz

=
∂

∂t

(

dx dy dz N0
)

since N0 dx dy dz is the number of particles in the volume. Rearranging, and using the
tidier notation

Nα
,α = 0 or

∇. ~N = 0

is the law of conservation of particle number.

We derived these two conservation laws with no assumptions about the fluids
being “perfect” — they will be true for other types of fluid too, unless work is being
done from another source (e.g., viscosity), when ∇.T 6= 0, or if particles are created or

destroyed, with ∇. ~N 6= 0. Even then, we could extend the definition of T , or add source
and sink terms in the derivations, to include proper treatment of where the energy or
particles go, although this leads to more complicated expressions for the conservation
laws.
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It’s possible to use these two conservation laws to derive the equations of fluid
motion and mass conservation for relativistic gases, but although that’s exciting and a
good exercise in manipulation, it’s too long for a lecture.

6.5. Integral forms of conservation laws, Gauss’ theorem

We’re dealing with a 4-D space here, so the analogue of Gauss’ theorem that we would
expect is something like

∫

Ω

∇.W d4Ω =

∮

∂Ω

W γ d3Σγ

where d4Ω is an element of volume Ω, but now four-dimensional. d3Σ is an element of the
surface bounding Ω, ∂Ω. This surface element is outward-directed. And ∇.W ≡W γ

,γ

for vector W (or simply referring to one of the indices of a more complicated W ).

This four-dimensional version of Gauss’ theorem is derived exactly like the three-
dimensional version is derived: over the elemental (3D) volume depicted below, the
change in W γ inside Ω because of the flux through the surface ∂Ω is

∮

∂Ω

W i d2Σi = (W x(x = dx)−W x(x = 0)) dy dz

+ (W y(y = dy)−W y(y = 0)) dx dz

+ (W z(z = dz)−W z(z = 0)) dx dy

= W i
,i dx dy dz

=

∫

Ω

W i
,i d

3Ω

x

y

z

dy

dz

dx
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Now for an arbitrary volume Ω, we fill the volume with lots of little cuboids. All the
surface integrals cancel over the interior surfaces, and we’re left only with the outer
surfaces. Therefore the change in W γ within the volume

∮

∂Ω

W id2Σi =

∫

Ω

W i
,id

3Ω

equal and opposite
(dxdy points out of volume)

and making an identical argument over the four dimensional space-time (and considering
a more complicated cuboid) will lead to

∮

∂Ω

W γ d3Σγ =

∫

Ω

W γ
,γ d

4Ω

We are left asking what d4Ω is — it’s the 4-space volume element, dx0 dx1 dx2 dx3.
And the surface element d3Σ is a one-form surface element directed outwards from the
four-space volume, as sketched below.

d 3Σγ

d 3Σγ

Ω

δΩ
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7. Non-Cartesian tensors

7.1. Polar coordinates and tensors
We need to develop a way of dealing with non-orthogonal axes to be able to handle GR,
where the coordinates are arbitrary and can become pretty distorted. So I’ll develop
the type of notation that we need by working first with polar coordinates in 2D as
an illustration before asserting that this works in more complicated coordinates and
applying it to the case that we’re interested in.

Consider a system of coordinates (ξ, η) related to (x, y) by

ξ = ξ(x, y)

η = η(x, y)

then small changes (∆x,∆y) cause changes in (ξ, η) as

∆ξ =
∂ξ

∂x
∆x+

∂ξ

∂y
∆y

∆η =
∂η

∂x
∆x+

∂η

∂y
∆y

Specifically for polar coordinates (r, θ),

r =
(

x2 + y2
)

1
2

θ = arctan
y

x

∆r =
x

r
∆x+

y

r
∆y = cos θ∆x+ sin θ∆y

∆θ = −
y

r2
∆x+

x

r2
∆y = −

sin θ

r
∆x+

cos θ

r
∆y

If the (ξ, η) or (r, θ) coordinates are to make sense, then the mapping from (x, y) must
be unique (1:1), and we must require that the mapping has an inverse. In that case, the
Jacobian of the transformation

∣

∣

∣

∣

∂(ξ, η)

∂(x, y)

∣

∣

∣

∣

≡ det

( ∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)

6= 0

For (r, θ), this corresponds to the requirement that

∣

∣

∣

∣

∂(r, θ)

∂(x, y)

∣

∣

∣

∣

=
1

r
6= 0

which is fine everywhere except the singular point r = ∞, where we might anticipate
some problems.
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Now, in an arbitrary set of coordinates (ξ, η), a differentiable scalar field Φ(x, y) ≡
Φ(ξ, η) has derivatives ∂Φ

∂ξ and ∂Φ
∂η . Define the one-form d̃Φ to have (ξ, η) components

(

∂Φ

∂ξ
,
∂Φ

∂η

)

then since Φ is (mostly) arbitrary, we can get a huge set of one-forms by simply choosing
the Φ that we want. The components of d̃Φ transform as

∂Φ

∂ξ
=
∂Φ

∂x

∂x

∂ξ
+
∂Φ

∂y

∂y

∂ξ

∂Φ

∂η
=
∂Φ

∂x

∂x

∂η
+
∂Φ

∂y

∂y

∂η

as we switch from (x, y) to (ξ, η). In shorthand we can write this transformation law for
the coordinate change as

dΦβ′ = Λα
β′ dΦα

where α labels one of (x, y), β′ labels one of (ξ, η), and the extension to more dimensions
is obvious. The transformation matrix is

Λα
β′ =

∂xα

∂ξβ′

and Λ expresses a transformation into a potentially non-Cartesian coordinate system
(note the analogy with SR). Λ has an inverse if its Jacobian is not zero. The inverse
transformation then uses the inverse of Λ

dΦα = Λβ′
α dΦβ′

and

Λβ′
α =

∂ξβ′

∂xα

We can now define vectors as linear functions of one-forms into scalars. Their
transformation laws are then the opposite of the transformation laws of the one-forms
(by the same logic as we used to show this for the LT),

aβ′ = Λβ′
α a

α

aα = Λα
β′ a

β′

If these things are written out as matrices, then the vectors behave as column
matrices with the one-forms behaving as row matrices, and it becomes clear that the
forwards and backwards transforms are scaled transposes of one another.
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Note in this case, unlike the LT, the transformation matrices need not be
symmetric. In fact for the transformation (x, y) ↔ (r, θ),

Λr
x = cos θ

Λθ
x = −

sin θ

r

Λr
y = sin θ

Λθ
y =

cos θ

r

and the inverse matrix components are

Λx
r = cos θ

Λy
r = sin θ

Λx
θ = −r sin θ

Λy
θ = r cos θ

from which it’s easy to prove

Λα′
β Λβ

γ′ = δα′
γ′

Λα
β′ Λ

β′
γ = δα

γ

so that the inverse relationships work as required.

The basis vectors in (ξ, η) can then be calculated using the usual relationship

~eα′ = Λβ
α′ ~eβ

and the (trivial) Cartesian basis vectors in (x, y), ~eβ . Therefore,

~eξ = Λx
ξ ~ex + Λy

ξ ~ey

and for example, for (r, θ) coordinates

~er = Λx
r ~ex + Λy

r ~ey = cos θ ~ex + sin θ ~ey

~eθ = Λx
θ ~ex + Λy

θ ~ey = −r sin θ ~ex + r cos θ ~ey

In the same way, the basis one-forms can be obtained from

ω̃α′ = Λα′
β ω̃

β

and are
d̃r ≡ ω̃r = Λr

x ω̃
x + Λr

y ω̃
y = cos θ ω̃x + sin θ ω̃y

d̃θ ≡ ω̃θ = Λθ
x ω̃

x + Λθ
y ω̃

y = −
sin θ

r
ω̃x +

cos θ

r
ω̃y

Notice that the basis one-forms and vectors change in orientation and magnitude
from point to point. ~er has the same magnitude everywhere but varying orientation.
d̃θ ≡ ω̃θ has varying magnitude and orientation.
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ω∼

e
e

e

e

r

θ

θ

ω∼ θ

r

r

dr∼
dθ∼

x

y

In fact, the magnitudes of the vectors and one-forms are

|~er| = 1
∣

∣

∣
d̃r
∣

∣

∣
= 1

|~eθ| = r
∣

∣

∣d̃θ
∣

∣

∣ =
1

r

|~eθ| increases with distance from the origin (∝ r), because a unit change in θ (e.g.,
1 radian) moves a larger (x, y) distance at larger r.

∣

∣

∣
d̃θ
∣

∣

∣
decreases with distance from the origin (∝ 1/r), because a unit (x, y) distance

is covered by a smaller θ change than at small r.

These are inverse statements about the relationship between a coordinate change
∆θ and the corresponding distance change ∆s. The fact that |~eθ| increases with distance

implies that
∣

∣

∣d̃θ
∣

∣

∣ decreases with distance, since the one-form and vector are in “dual”

vector spaces.

To calculate the magnitude of one of the polar coordinate basis vectors, I use

|~er| = |~er · ~er|
1
2

= ((cos θ~ex + sin θ~ey) · (cos θ~ex + sin θ~ey))
1
2

=
(

cos2 θ (~ex · ~ex) + 2 sin θ cos θ (~ex · ~ey) + sin2 θ (~ey · ~ey)
)

1
2

=
(

cos2 θgxx + 2 sin θ cos θgxy + sin2 θgyy

)
1
2

= 1

knowing that gxx = gyy = 1 and gxy = 0 for the metric tensor in Cartesian coordinates
(since the ~ex and ~ey basis vectors are perpendicular and unit).
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To do this calculation I needed to use the metric tensor in Cartesian coordinates.
Of course, I know that in polar coordinates

gr r = ~er · ~er = 1 (by above)

gr θ = ~er · ~eθ = 0 (similarly)

gθ θ = ~eθ · ~eθ = r2 (similarly)

It is often convenient to show the components of g in some basis by writing the line
element (the interval in SR) as, for example

ds2 =
∣

∣dr~er + dθ~eθ

∣

∣

2
= dr2 + r2 dθ2

which gives the separation squared of two points separated by dr and dθ at (r, θ). The
inverse metric tensor g−1 has components

grr = 1

grθ = 0

gθθ = r−2

and so the gradient of a scalar field, Φ, becomes

d̃Φ = Φ,α d̃x
α

which has components (in (r, θ) coordinates)

(Φ,r,Φ,θ)

with a corresponding vector

~dΦ =
(

grrΦ,r + grθΦ,θ

)

~er +
(

gθrΦ,r + gθθΦ,θ

)

~eθ

=

(

∂Φ

∂r

)

~er +
1

r2

(

∂Φ

∂θ

)

~eθ

which has components (in (r, θ) coordinates)

(

Φ,r,
1

r2
Φ,θ

)

That is, the one-form components of d̃Φ and the vector components of ~dΦ differ even in
a flat/Euclidean space. This is because of the choice of coordinates — Cartesian
coordinates (and only Cartesian coordinates) in Euclidean space have one-form and
vector components which are the same. And this is why physics students have been
able to duck the issue about what is really meant by a gradient for so long.

Page 7.5



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

7.2. Tensor calculus in a non-Cartesian basis

Notice that ~er and ~eθ change in direction and/or magnitude, ~ex and ~ey do not. This
means that differentiating a vector may cause some trouble: consider differentiating

~ex = Λr
x ~er + Λθ

x ~eθ = cos θ ~er −
1

r
sin θ ~eθ

~ex is a constant vector and so has zero derivative — so when the RHS of this equation is
differentiated we must expect that the derivatives of the coefficients (which are non-zero)
are cancelled by the derivatives of the polar coordinate basis vectors, and we must learn
how to differentiate these basis vectors.

We know that
~er = cos θ ~ex + sin θ ~ey

~eθ = −r sin θ ~ex + r cos θ ~ey

and hence

∂

∂r
~er =

∂

∂r
(cos θ ~ex + sin θ ~ey) = 0

∂

∂θ
~er =

∂

∂θ
(cos θ ~ex + sin θ ~ey) = − sin θ ~ex + cos θ ~ey =

1

r
~eθ

∂

∂r
~eθ =

∂

∂r
(−r sin θ ~ex + r cos θ ~ey) = − sin θ ~ex + cos θ ~ey =

1

r
~eθ

∂

∂θ
~eθ =

∂

∂θ
(−r sin θ ~ex + r cos θ ~ey) = −r cos θ ~ex − r sin θ ~ey = −r ~er

These can now be used to show that

∂

∂r
~ex =

∂

∂r

(

cos θ ~er −
1

r
sin θ ~eθ

)

= 0

as required, and similarly for ∂~ex

∂θ
∂~ey

∂r , and
∂~ey

∂θ .

In general terms, a vector
~a = aα~eα

will differentiate as
∂~a

∂xβ
=
∂aα

∂xβ
~eα + aα ∂~eα

∂xβ

=
∂aα

∂xβ
~eα + aα Γµ

αβ ~eµ

where the coefficients

Γµ
αβ =

(

∂~eα

∂xβ

)µ

are called Christoffel symbols. This particular one is the µth component of the β-
gradient of the α basis vector. These give the geometry-dependent terms that must
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be added to the simple derivatives of the components of a vector to obtain the correct
(frame-independent) gradients.

This means that the Christoffel symbols specify how physical quantities like
vectors change with position because the coordinates in use are not the “best”
coordinates (e.g., Cartesian coordinates on a plane). In GR their physical meaning will
be the apparent accelerations that are felt because the coordinates in use are
not the coordinates of a freely-falling frame. That is, the Christoffel symbols
contain gravitational accelerations.

For our 2D polar coordinates we have eight Christoffel symbols. These are given
in the handout, but repeated here:

Γr
rr =

[

∂~er

∂r

]r

= 0

Γr
rθ =

[

∂~er

∂θ

]r

= 0

Γr
θr =

[

∂~eθ

∂r

]r

= 0

Γr
θθ =

[

∂~eθ

∂θ

]r

= −r

Γθ
rr =

[

∂~er

∂r

]θ

= 0

Γθ
θr =

[

∂~eθ

∂r

]θ

=
1

r

Γθ
rθ =

[

∂~er

∂θ

]θ

=
1

r

Γθ
θθ =

[

∂~eθ

∂θ

]θ

= 0 .

Once we have got the Christoffel symbols, we can calculate derivatives of vectors in
any chosen coordinate system without switching to or from Cartesians. This is a great
savings in time, and lets us stick with a single chosen coordinate system (note that the
expressions for the Christoffel symbols above make no mention of (x, y) coordinates).

Let’s rearrange our expression for the derivative of a vector:

∂~a

∂xβ
=
∂aα

∂xβ
~eα + aα Γµ

αβ~eµ

=
∂aα

∂xβ
~eα + aµ Γα

µβ~eα

=

(

∂aα

∂xβ
+ aµ Γα

µβ

)

~eα
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so that the 4 (in polar coordinates, or 16 in SR) αth and βth components of ∂~a
∂xβ are

∂aα

∂xβ
+ Γα

µβ a
µ .

∂~a
∂xβ can be regarded as the βth component of a

(

1
1

)

tensor field, ∇~a. When fed a

one-form (because of ~a) and a vector (because of ∇), this returns a scalar. ∇~a is called
the covariant derivative of ~a, and has components

(∇~a)
α

β ≡ ∇βa
α ≡ aα

;β ≡ aα
,β + aµΓα

µβ

where I’ve introduced the notation

aα
;β ≡

(

∂~a

∂xβ

)α

for the components of the covariant derivative. Compare the notation that we use for
the partial derivative

aα
,β ≡

∂aα

∂xβ
.

The difference between the covariant and partial derivative is the inclusion of terms
involving the Christoffel symbols, which take account of the properties of the coordinates
we are using, to create a the coordinate-invariant covariant derivative.

By doing the “;” rather than the “,” operation, we get to calculate the components
of ∇~a in whatever coordinate system we want. ∇~a is a physical quantity, which has real
existence independent of its coordinate representation. To calculate the components of
∇~a in any coordinate system, we can either

1. do it in Cartesian coordinates (where the Christoffel symbols vanish), then transfer
into the the coordinates we want; or

2. look up the Christoffel symbols and do it directly.

The second method is much more convenient, and this is why these definitions are so
important.

And incidentally, for a scalar field Φ,

∇Φ ≡ d̃Φ

since the scalar field Φ doesn’t depend on the basis vectors, so for a scalar Φ;α ≡ ∇Φα =
(

d̃Φ
)

α
= ∂Φ

∂xα = Φ,α. That is, for a scalar the covariant and partial derivatives are the
same.

Other operations are also possible. For example we calculate a divergence as the
contraction of ∇~a,

∇αa
α ≡ ∇ · ~a = scalar
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which therefore has the same value in any coordinate system —∇.~a is frame independent.
For our plane polar coordinate example,

∇ · ~a = aα
;α

= aα
,α + Γα

µαa
µ

= ar
,r +

(

Γr
rra

r + Γr
θra

θ
)

+ aθ
,θ +

(

Γθ
rθa

r + Γθ
θθa

θ
)

= ar
,r + aθ

,θ +
1

r
ar

=
1

r

∂

∂r
(r ar) +

∂

∂θ
aθ

a result which may be familiar to you! Extending this idea, if ~a = ∇Φ, where Φ is a
scalar field, we get the Laplacian

∇ · ∇Φ =
1

r

∂

∂r
(r (∇Φ)

r
) +

∂

∂θ

(

(∇Φ)
θ
)

=
1

r

∂

∂r

(

r

(

grr ∂Φ

∂r
+ grθ ∂Φ

∂θ

))

+
∂

∂θ

(

gθr ∂Φ

∂r
+ gθθ ∂Φ

∂θ

)

=
1

r

∂

∂r

(

r
∂Φ

∂r

)

+
1

r2
∂2Φ

∂θ2

This is where the Laplacian in plane polar coordinates (or any other coordinates) comes
from — and gives an easy way to calculate any derivatives we want.

7.3.1. Covariant derivative of other tensors

For vectors we have an expression for covariant derivatives of components

aα
;β = aα

,β + Γα
µβ a

µ

and we know that for a scalar field

Φ;β = Φ,β

What about one-forms? Use the same sort of arguments as when we were looking at the
LT properties. Consider the quantity p̃(~a) = Φ, where Φ is a scalar. Then

(∇Φ)β = Φ,β

=
∂pα

∂xβ
aα + pα

∂aα

∂xβ

=
∂pα

∂xβ
aα + pα (aα

;β − Γα
µβa

µ)
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and therefore the βth component of the tensor gradient of Φ is

Φ,β =

(

∂pα

∂xβ
− Γµ

αβpµ

)

aα + pαa
α

;β

But the second term on the RHS is the βth component of a tensor, and the LHS is
certainly the βth component of a tensor. Therefore the first component on the RHS
must also be the βth component of a tensor. Thus the quantity

∂pα

∂xβ
− Γµ

αβpµ

must be a

(

0
2

)

tensor in component form. And therefore the tensor ∇p̃ has components

∇βpα = pα;β = pα,β − Γµ
αβpµ

Notice the negative sign for one-forms. In general, the covariant derivative of an
object is equal to the partial derivative of the object plus terms containing the Christoffel
symbols with positive sign for ‘up’ components (vectors) and negative sign for ‘down’

components (one-forms). For example the covariant derivative of a

(

0
2

)

tensor is

∇βTµν ≡ Tµν;β = Tµν,β − Γα
µβTαν − Γα

νβTµα

of a

(

2
0

)

tensor is

∇βS
µν ≡ Sµν

;β = Sµν
,β + Γµ

αβS
αν + Γν

αβS
µα

and of a

(

1
1

)

tensor is

∇βU
µ

ν ≡ Uµ
ν;β = Uµ

ν,β + Γµ
αβU

α
ν − Γα

νβU
µ

α

The pattern of terms here is worth remembering — putting the “+” or “-” in the wrong
place is the curse of beginning relativists. The keys are:

each index of the tensor in turn takes on a dummy value (α in the above), and this
index matches an index on the Christoffel symbols (up or down as appropriate)

the final lower index of the Christoffel symbols is the index of the derivative (β
in the above) in all cases

the other index on the Christoffel symbols is fixed by matching to the LHS of the
equations
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the Christoffel symbols have positive signs for derivatives of up indices, negative
for derivatives of down indices

7.4. Calculating Christoffel Symbols

The Christoffel symbols tell us what extra terms we need in differentiation when we use
non-Cartesian coordinates. The metric tensor g tells us what the distance is when we use
coordinates of some type (i.e., it tells us something about the geometry). Therefore we
expect that the Christoffel symbols are related to the metric tensor. The derivation of
that relationship is given in the handout, and need not be memorized (the formula for the
Christoffel symbols will always be given to you), but is repeated here for completeness.

For a vector ~a, we get a one-form using the metric tensor, as g(~a, ) = ã. In
Cartesian coordinates,

∇β ã = g (∇β~a, )

since the components of vectors and one-forms are the same in Cartesian coordinates,
and covariant differentiation of components is what we mean by ∇β . But

∇β ã = g (∇β~a, )

is a valid tensor equation derived in one coordinate system, and must be valid in all
coordinate systems. Therefore

aα;β = gαµa
µ
;β

(which will only work for “;β”, not “, β”, since “;β” is coordinate-independent, while
“, β” isn’t). Now we also know that aα = gαβa

β , and so

aα;β = gαµ;βa
µ + gαβa

µ
;β

Comparing these two relations we see that

gαµ;β = 0

in all coordinate systems. This is obvious anyway, since we know that ∇g = 0 in
Cartesian coordinates, and this equation is a frame-independent equation, and therefore
is valid in all coordinate systems. But pressing on, we can write gαµ;β in full using the
Christoffel symbols

gαµ;β = gαµ,β − Γν
αβgνµ − Γν

µβgαν = 0

(which you can easily test using our plane polar coordinate example). We can use this
expression to get an equation for the Christoffel symbols in terms of derivatives of the
metric tensor.

Rewrite this as an equation for gαµ,β , and then write two further equations with
interchanged indices (β and ν), and (α and β). This gives the set of three equations

gαµ,β = Γν
αβ gνµ + Γν

µβ gαν

gαβ,µ = Γν
αµ gνβ + Γν

βµ gαν

gβµ,α = Γν
βα gνµ + Γν

µα gβν
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Add the first two and subtract the third, then we get

gαβ,µ + gαµ,β − gβµ,α = gνβ (Γν
αµ − Γν

µα) + gαν (Γν
βµ + Γν

µβ) + gνµ (Γν
αβ − Γν

βα)

But
Γν

αβ = Γν
βα

(to be proven later), therefore the RHS becomes

2 gανΓν
βµ

and so

gαγgανΓν
βµ =

1

2
(gαβ,µ + gαµ,β − gβµ,α) gαγ

and therefore we get the final result that

Γγ
βµ =

1

2
gγα (gαβ,µ + gαµ,β − gβµ,α)

Note: this derivation works only if we’re using a coordinate basis, so the
derivatives commute. In a more general basis system the derivatives do not commute,
and everything becomes much nastier — we need to include the so-called commutation
coefficients, cαβγ . I will always use a coordinate basis to avoid this problem!

To show that the Christoffel indices are symmetric in their lower two indices, let

us start from a scalar field, Φ. ∇Φ, is a one-form, therefore ∇∇Φ is a

(

0
2

)

tensor, with

components
∇α∇βΦ = Φ,β;α

(note the use of “,” for a scalar derivative, and “;” for the subsequent vector derivative).
Now, in Cartesian coordinates the partial derivatives commute, with

∂

∂xα

∂

∂xβ
=

∂

∂xβ

∂

∂xα

and therefore in Cartesian coordinates ∇∇Φ is symmetrical. But “symmetry” under
axis switches is a coordinate independent statement, and so ∇∇Φ is symmetrical in all
coordinates. Therefore

Φ,β;α = Φ,α;β

and so
Φ,β,α − Γµ

βα Φ,µ = Φ,α,β − Γµ
αβ Φ,µ

But partial differentiation always has Φ,α,β = Φ,β,α, and Φ is arbitrary so that Φ,µ is
not always zero, so that

Γµ
βα = Γµ

αβ

as asserted earlier.
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To repeat, the essential result is that we calculate the Christoffel symbols using

Γµ
αβ =

1

2
gµσ (gσα,β + gσβ,α − gαβ,σ)

in a coordinate basis.
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8. Curvature

8.1. Pseudo-Riemannian manifolds
So, we have come to the point where we know how to do covariant differentiation —
that is, how to deal with calculating the rates of changes of physical quantities in general
coordinates.

What are these general coordinates? We are trying to describe the rates of change
of some physical quantity with a continuous parameter, like time, or distance in the
direction that we are moving. What is important here is that the parameter is continuous
— that is, the spacetime in which we are describing our physics can be parameterized
by continuous parameters (for example, the t, x, y, z coordinates).

A set that can be parameterized by a continuous parameter is called a manifold,
and a manifold that also has a metric (so that we can talk about intervals between points
with different parameters) and is differentiable (so that we can define one-forms and
vectors) is a Riemannian manifold. Technically, we describe the spacetime of relativity
as a pseudo-Riemannian manifold, because the interval between events is not positive
definite. And since the space of events ~x requires N = 4 parameters to describe it, our
physics is based on a 4-dimensional pseudo-Riemannian manifold.

As an illustration, the surface of the circle x2 +y2 = a2, with z = 0, in Minkowski
space has three dimensions — which we can take to be the coordinates (t, x, y), or the
easier set for this geometry, (t, r, θ).

Notice that we require a metric, with components gαβ in some coordinate system.
The gαβ may be complicated functions of location in the manifold. The metric g

• is always symmetric

• can always be tranformed to be diagonal, with components ±1 or 0 on the
diagonal.

That is, we can choose to regard g as transformable to η, the metric of special relativity,
which can be written

η =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







with signature +2 (sum of terms on diagonal). The transformation to take g to η is local
to the particular point at which we do the transformation. And what this means is that
sufficiently close to any point, it is possible to choose coordinates that make
the metric η, i.e., to make the spacetime appear locally flat.

Saying that another way, any spacetime, with any set of metric components, has a
tangent spacetime which is flat. Such a tangent spacetime is called a local Lorentz frame,
and is inertial.
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Or, paraphrasing again, near any one point we can take choose coordinates to that
the metric is flat, with all the derivatives of g → 0 and so all the Christoffel symbols,
Γµ

αβ = 0.

What we cannot do, however, is force the second derivatives of g to zero: these
measure the amount of curvature in the spacetime. And in GR, it is this curvature
which is produced by the stress-energy tensor, T , and which corresponds to gravitation.

8.2. Curvature and parallel transport

I have been talking about the “flat spacetime” represented by the metric η, without
really saying what I mean by “flat”. Now is the time to rectify this omission. And to
discuss what we mean by curvature.

There are two types of curvature:

(1) extrinsic curvature — the curvature of a manifold in relation to a higher-
dimensional manifold in which it is embedded; and

(2) intrinsic curvature — the curvature of a manifold that can be defined entirely
within the manifold itself.

For example, consider a cylinder. This is a 2-D surface in our normal 3-D world,
which has extrinsic curvature when viewed in a 3-D flat space, but no intrinsic curvature,
since it can be made by continuously deforming a flat plane without tearing or crumpling.
How would an ant that lives on the cylinder know that it has no intrinsic curvature?
Because distances measured in the surface of the cylinder are the same as distances would
be when measured on a normal 2-dimensional plane. We say that the cylinder has flat
geometry but non-trivial topology.

In GR we need to discuss intrinsic curvature — this is what is related to the
phenomenon that we usually call gravitation. Any extrinsic properties of spacetime
would rely on a higher-dimension embedding space, but we don’t need that. And we
should be aware that there is nothing in GR which relates to the topology of the
spacetime — only to the curvature.

gravity → local geometry → intrinsic curvature
? → extrinsic curvature

8.2.1. Parallel transport

Draw a curve (which is defined as a path with some parameter, λ). At every point, draw

a vector parallel to the vector at the previous point. If the vector field ~V has values at λ
and λ+ dλ which are parallel and of equal length, we say that ~V is parallel-transported
along the curve.
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A

V(
V(

λ
λ+dλ)

)

path x(λ)

That is, in the neighbourhood of the point A,

d~V

dλ
= 0 .

But
d~V

dλ
=
∂V α

∂xβ

dxβ

dλ
= uβV α

,β

using the chain rule, and with the definition that

~u =
d~x

dλ

is the tangent vector at A. Now, in a locally-flat region near A, where a local Lorentz
frame can be defined,

uβV α
,β = uβV α

;β

since all the Christoffel symbols are zero in this inertial coordinate system, and therefore
for parallel transport at A,

uβV α
;β = 0 .

But this is a frame-invariant expression, and therefore will hold in any coordinate basis.
Therefore for parallel transport, in any basis,

uβV α
;β = 0

∇~u
~V = 0

where the second expression is written in coordinate-free language (and therefore looks
prettier) but means the same thing as the first: the directional derivative of the vector
~V along the path with tangent vector ~u is zero.

Page 8.3



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

8.2.2. Parallel transport around a closed loop

Let’s do this parallel-transport construction around two closed curves, and see what
happens. In both cases I will do the transport around a triangle in a 2-D space. First,
a triangle in a flat space.

v

C
B

A

As the vector ~v is taken along the path A → B → C → A, under parallel transport
so that at each point it is moved to stay parallel to itself, it returns to A in precise
coincidence with its starting value.

Now do the same thing on the 2-D surface of a sphere.

A

BC

As the vector ~v is taken along the path A → B → C → A, under parallel transport so
that at each point it is moved to stay parallel to itself, it returns to A at some angle
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to its original direction. The change of angle arises because the space that we moved in
is curved. And since this is an intrinsic construction (we didn’t move outside the 2-D
surface of the sphere), we have found a method of measuring the intrinsic curvature of
the space.

Other methods can be found — for example, we could measure the change in area
of a flat object the size and orientation of that object. For example, for a triangle we
would measure the area as half product of the length of the base times the height only
if the spacetime was flat. The triangle ABC on the surface of the sphere clearly doesn’t
have this for its area. But these other methods are related to the result we get from the
parallel transport argument, so we’ll stick with that here.

8.3. Measuring curvature: the Riemann tensor

We use this idea of parallel transport to obtain a measure of the curvature of a space from
the difference in the value of a vector at the beginning and end of its parallel transport
around a closed loop.

Consider a loop in the (x1, x2) surface (all other components will be similar).

v

x  = b

x  = a + δ a

bδx  = b +

A

B

C
D

x  = a 

Then we expect from the discussion of parallel transporting a vector that the mismatch
between the value of the vector at the beginning and the end of its transit around the
loop from A to B to C to D to A will depend linearly on

• the value of the vector itself,

• the size of the loop in the x1-direction, and

• the size of the loop in the x2-direction.
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That is, we expect
∆vα ∝ vβ dx1 dx2

but there is no reason to single out the x1 and x2 directions: we expect all directions to
be taken equally into account. So the general result must be

∆vα ∝ vβ dxµ dxν .

That is, a vector quantity is related linearly to the product of three other vector
quantities. The most general way of making this relationship is if the constant of

proportionality is a

(

1
3

)

tensor: we call it the Riemann curvature tensor, and write

δvα = −Rα
βµν v

β δaµ δbν

in component form, where the third and fourth indices on R refer to the area components,
and the sign of R is a matter of convention: different books use different conventions.
With the choice given here, it is possible to prove (after some longish manipulations, see
the handout) that the components of R are given by

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

σµΓσ
βν − Γα

σνΓσ
βµ .

You will never need to calculate R: but this is what it is. Notice that it has
exactly the type of shape that you might expect. It depends on the Christoffel symbols,
since these are the quantities that measure the tendancy of vectors to change direction
and magnitude because of the choice of coordinates.

All the components of the Riemann curvature tensor are zero for a flat manifold.
In a curved manifold the components are functions of position. Possibly complicated
functions of position!

And since we can always choose coordinates so that the metric tensor looks like
η (that is, if we choose to work in a local Lorentz frame) where the Christoffel symbols
vanish but the derivatives of the Christoffel symbols do not vanish, it is clear
that the Riemann tensor depends on the second derivatives of the components of the
metric tensor — which is what you would expect for “curved coordinates”.

8.3.1. Some properties of the Riemann tensor

In fact we can work through all the algebra in a locally inertial frame, we can to show
that

Rα
βµν =

1

2
gασ
(

gσν,βν − gσµ,βν + gβµ,σν − gβν,σµ

)
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which makes it explicit that the Riemann tensor depends on second derivatives of the
metric tensor (and is non-linear: second order in the metric coefficients). This also shows
up the symmetries of the Riemann tensor

Rαβµν = −Rβαµν

Rαβµν = −Rαβνµ

Rαβµν +Rανβµ +Rαµνβ = 0

These symmetry relations are frame-independent, valid in a local inertial frame, and
therefore valid everywhere (unlike the expression for R in terms of partial derivatives of
the metric tensor given earlier).

We can also use these results to prove the Bianchi identities

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0

which it will turn out ensure that mass-energy is conserved in GR, ∇ · ~T = 0.

The Riemann tensor is a

(

1
3

)

tensor. We can therefore contract it, to obtain a
(

0
2

)

tensor, the Ricci tensor

Rµν = Rα
µαν .

We can make one more contraction, after raising an index of the Ricci tensor, to get the
Ricci scalar

R = Rµ
µ = gµν Rµν .

It turns out that these contractions are the only distinct contractions of the Riemann
curvature tensor: the other contractions are zero, or related to the Ricci tensor or scalar
by a sign change.

We can make a special combination of the Ricci tensor and Ricci scalar to create
a new tensor

Gαβ = Rαβ −
1

2
gαβR

which has special significance. This is called the Einstein tensor, and appears in the
field equations of General Relativity — it is the quantity “created” by the stress-energy
tensor. Using earlier knowledge about the Riemann tensor, it’s easy to prove that the
Einstein tensor is symmetric

Gαβ = Gβα

and only slightly harder to prove (with the assistance of the Bianchi identities) that it
has zero divergence

Gαβ
;β = 0

which can also be written in coordinate-independent language as

∇ ·G = 0 .

This will turn out to be a requirement so that energy and momentum are conserved in
GR.
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9. Geodesics

9.1. Parallel-transport and geodesics
We can use the idea of parallel transport to construct geodesics, defined as curves that
parallel-transport their own tangent vectors. That is, for a geodesic

∇~u~u = 0

i.e. uβuα
;β = 0

i.e. uβuα
,β + Γα

βγu
βuγ = 0

or
d

dλ

(

dxα

dλ

)

+ Γα
βγ
dxβ

dλ

dxγ

dλ
= 0

where in the last of these expressions (often called the geodesic equation, though the first
is also the geodesic equation), λ is the parameter of the curve.

We have some freedom to choose λ — if we choose it to be the proper time of a
particle with the curve as its world line, then ~u is the velocity of the particle. However,
λ is a more general quantity and can be used also for light rays with no proper time.
Any linear transformation of λ, such as φ = aλ+ b with a, b constants, has ~x(φ) a valid
solution of the geodesic equation (try the transformation λ→ φ) — we refer to λ (or φ)
as an affine parameter.

In a locally-flat region, where the Christoffel symbols vanish, clearly the geodesic
equation reduces to

d2xα

dλ2
= 0

which solves to the straight-line solution

xα = Aαλ+Bα .

In fact we can say, in a very real sense, that all geodesics are straight. This
definition about “parallel transport of the tangent vector” is the only sensible definition
of a straight line — it means that the curve at each point keeps moving in the direction
of its local tangent vector. No other frame-independent definition of “straight” makes
sense.

A geodesic is also a line of extremal length between two points A and B: small
changes in the path cause no change in the distance s(A,B) between the points, where

s(A,B) =

∫ λB

λA

|~u.~u|
1/2

dλ

and ~u is the tangent vector. That is, if you use the calculus of variations on this expression
to solve for the extremal path ~x(λ), you will recover the geodesic equation.
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Note that the geodesic equation is a set of four coupled, non-linear, second-order
differential equations for the ~x(λ). To find a solution we must specify eight quantities,
such as an initial position of the geodesic, ~x(λ0), and an initial direction, ~u(λ0) = d~x

dλ .

All particles move on geodesics unless affected by non-gravitational
forces. Therefore the geodesic equation is the “equation of motion” for any
particle moving under the influence of gravitation alone.

9.2. Geodesics in the weak-field metric

It will turn out (when we look at the Einstein field equations) that in weak gravitational
fields we can write the metric as

ds2 = −(1 + 2φ)dt2 + (1− 2φ)(dx2 + dy2 + dz2)

where φ is the usual Newtonian gravitational potential, of the form

φ = −
GM

(x2 + y2 + z2)
1/2

c2

(where I throw the term c2 in gratuitously, to make it clear that φ here is a dimensionless
quantity).

What is the path of a particle that moves in such a metric? We can describe this
path as a parameterized curve, ~x(λ), as described by the geodesic equation. Using the
form

∇~u~u = 0

where ~u is the tangent vector to the particle world line (that is, it’s the particle velocity
vector), we can now solve for the path. It’s perhaps easier to work in terms of the particle
momentum, ~p = m~u, where m is the particle mass, when the geodesic equation takes the
form

∇~p~p = 0

which I can write in component form as

pα
(

pβ
,α + Γβ

µα p
µ
)

= 0 .

Suppose that the particle motion is non-relativistic, with velocity v ¿ c. Then
the time component of the momentum 4-vector is much larger than any of the space
components

p0 À pi ∀ i .

We can also use
pαpβ

,α = muαpβ
,α

= m
d

dτ
pβ
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where τ is the particle proper time — the time as measured by a clock moving with the
particle (which plays the role of the affine parameter of the particle path here).

Using these in the geodesic equation, the β = 0 component of that equation
becomes

m

(

dp0

dτ

)

+ Γ0
00 p

0 p0 = 0

to first order in v (since I’ve dropped the terms in the Christoffel symbols and the space-
space and space-time components of the momentum 4-vector).

From the formula for the Christoffel symbols,

Γ0
00 =

1

2
g0α (gα0,0 + gα0,0 − g00,α)

= φ,0 +O(φ2) .

Therefore, in the weak-field limit, where φ¿ 1, we can take only the first term here, to
obtain

m
dp0

dτ
= −m2 φ,0

or
dp0

dτ
= −m

∂φ

∂t
.

The interpretation of this is that the particle energy (p0) changes only if the gravitational
potential is a function of time. If the gravitational potential is static, then the particle
energy is a constant of the motion. This should be familiar to you from the normal theory
of orbits — but we’ve gained a further insight about how what happens if the potential
changes with time, and the quantity p0 is a bit more subtle than the usual kinetic energy
of a particle, since it includes something to do with the gravitational energy.

What about the space-like terms in the geodesic equation? Take the terms with
β = i. Then to lowest order in velocity the geodesic equation becomes

m
dpi

dτ
= −Γi

00p
0p0

where I’ve again ignored the smaller space-time and space-space terms on the right-hand
side. The Christoffel symbols are given by

Γi
00 =

1

2
giα (gα0,0 + gα0,0 − g00,α)

=
1

2
(1− 2φ)−1 δij (−g00,j)

= φ,j δ
ij +O(φ2)

so that in the weak-field limit the geodesic equation becomes

dpi

dτ
= −mφ,i .
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This says that the rate of change of momentum arises from the gradient of the
gravitational potential — which is the usual Newtonian result if we identify τ with t
(which is OK for non-relativistic particle motions, as we assumed at the start).

So, by following through the logic of the geodesic equation and the assumed
weak-field metric (which we should still demonstrate to be valid), we have recovered
equations which are consistent with the Newtonian equations in the weak-field and low-
speed limit. That is, we’ve demonstrated that GR is at least as good as Newtonian theory
in explaining the motions of the planets and other gravitational motions of particles.

9.3. Radial null geodesics in the FRW metric, and redshift

To ram the activities of working with geodesics home a little further, let’s consider the
case of the metric of the Universe, the FRW metric

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2

(

dθ2 + sin2 θdφ2
)

)

where a(t) is the scale factor of the Universe, which is a function of time that we have
to solve for from the field equations of General Relativity, and k is a constant.

It is a feature of the Universe that it is isotropic and homogeneous (at least as
expressed by this metric), so we can take ourselves as being at the origin of coordinates.
Any incoming light rays that we detect therefore have dθ = dφ = 0, by symmetry. That
means that the equations of motion of the light rays can be obtained directly from the
metric by putting ds = 0 (light rays are null geodesics),

−dt2 + a(t)2
(

dr2

1− kr2

)

= 0 .

For incoming light rays, which arrive at r = 0 (the location of the observer) at t = t0,
having been at r at t, we can write the equation of the path r(t) as

∫ t0

t

dt

a(t)
=

∫ r

0

dr

(1− kr2)
1/2

where I’ve chosen the correct sign of the square root for incoming light rays.

Now suppose that the light originated at a galaxy with radial coordinate r1 at
time t1. Then

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr

(1− kr2)
1/2

= f(r1)

where f(r1) is some function which depends on the value of k (it may be a sin or a sinh
function, or even simply the function r).
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Suppose that the distant galaxy emits light with wavelength λ1 and frequency
ν1 = c/λ1. Then adjacent peaks of the light wave are emitted at times t1 and t1 + 1

ν1
.

Then we can calculate the arrival times of these peaks: they will be t0 and t0 + 1
ν0

where
ν0 is the frequency at which the light is received. And using the above equation, we
know that

∫ t0

t1

dt

a(t)
= f(r1) =

∫ t0+
1

ν0

t1+
1

ν1

dt

a(t)

or, rearranging the limits on the integrals

∫ t1+
1

ν1

t1

dt

a(t)
=

∫ t0+
1

ν0

t0

dt

a(t)

So if ν0 À ˙a(t),

1/ν1
a(t1)

=
1/ν0
a(t0)

or

λ0

λ1
=
a(t0)

a(t1)

That is, the observable wavelength that we see differs from the emitted wavelength by a
factor which is the ratio of the scale factors of the Universe now and when the light was
emitted.

This is the origin of the redshift. Since the Universe is expanding, a(t0) > a(t1),
and so λ0 > λ1. We define the ratio of the emitted to the observed wavelength to be
1 + z, where z is the redshift of light from the observed distant galaxy, so we have

1 + z ≡
λ0

λ1
=
a(t0)

a(t1)

or, in other words, the factor 1+z is a direct measure of the relative sizes of the Universe
now and when the light was emitted.

9.4. Geodesic deviation and the Riemann tensor

In a flat space parallel lines stay parallel. In a curved space parallel lines do not stay
parallel. The Riemann tensor describes the extent to which they want to converge or
diverge.
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ξ

A

A

Consider two geodesics, starting from two points that are close to each other, with a
separation vector ~ξ. Then if ~v is the tangent vector of the geodesics, it is possible to
prove (with some effort) the equation of geodesic deviation

∇~v ∇~v
~ξ = R

(

~v,~v, ~ξ
)

.

That is, the acceleration of ~ξ, the separation of the geodesics, with location along the
geodesics, is proportional to the Riemann tensor. In a flat spacetime, where the Riemann
tensor vanishes, ~ξ is a linear function of the affine parameter (the distance along the
geodesic). In a curved spacetime, the deviation from this linear function is driven by the
magnitude of the Riemann tensor: that is the trajectories of adjacent particles are
made to diverge or converge faster because of the curvature.

In physical terms, where we think of gravitational effects, the Riemann tensor
measures the “tidal force” — the tendency of adjacent particles to move closer to one
another because of local clumping of matter.
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10. Einstein Field Equations

10.1. Postulating the field equations
In Newtonian gravity, the effect of gravity is described by the potential, φ(r), and this
potential is calculated by the field equation

∇2φ = 4πGρ

where ρ(r) is the density. For a point mass we can use this equation to show that

φ = −
GM

r

which is dimensionless if I insert the usual c2 factor underneath to make it look
relativistic. What we see here is that in Newtonian gravity

mass density → gravity

In general relativity we must come up with a more general expression. We can’t
use ρ as the source of gravity, even if we make the obvious relativistic extension that ρ
is the total energy density (including rest mass, kinetic, thermal, . . . energies), since the
apparent density is different for different observers and it doesn’t make sense to use the
density in the MCRF of the gravitating material (it should be something characteristic
of the observer’s frame that dictates the observer’s motion). However, since we know
that in the non-relativistic limit the theory should reduce to Newtonian gravity

• the source of gravity should be analogous to ρ

• it should reduce to ρ in the non-relativistic limit.

Earlier we constructed the stress-energy tensor T, with T 00 being the apparent total
energy density in some specific frame, and equal to the density in the non-relativistic
limit. However, T is a frame-independent quantity and more general than the density.
So we postulate that T is the source of gravity.

In so doing, we must use the entire tensor and not only the T 00 component, since
only the entire tensor is frame-independent.

We are also trying to construct a theory where we understand the effects of gravity
via the properties of the metric. So the field equations must take the form

function of g = scalar constant×T

which would be a frame-independent equation (actually 16 equations). And for this to

be valid, the function of the metric tensor that we use must be a

(

2
0

)

tensor.
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But in Newtonian gravity, we know that it’s the second derivative of the potential
that’s related to one component of T. Hence in general relativity we require that the
function should be a function of the second, first, and zeroth derivatives of g.

What functions of the metric tensor do we have that fit? The only tensor that
we’ve constructed that’s anything to do with second derivatives of the metric tensor is

the Riemann curvature tensor, R. The Riemann tensor is a

(

1
3

)

tensor, and is too big

to do what we want. However, from any large tensor we can always construct a smaller
tensor by contraction, and the only unique contraction of the Riemann tensor is called
the Ricci tensor

Rµν = Rα
µαν .

Of course, we can always make Rµν from the Ricci tensor defined like this by raising the
indices

Rµν = gµα gνβ Rαβ

so we can choose the Ricci tensor as the quantity that is related to the stress-energy
tensor.

If we’re also allowed zeroth derivatives of the metric, however, we should be
allowed to add some of the metric tensor to the Ricci tensor too, since the Ricci tensor
and metric tensor are both second-rank tensors. And the amount of the metric tensor
that we add will depend on some scalar. This might be a pure number, or it might be
the scalar that can be made from the Riemann curvature tensor, the Ricci scalar, which
is a contraction of the Ricci tensor

R = Rµ
µ = gµν Rµν .

No other independent contractions of the Riemann curvature tensor exist (the symmetries
of R are such that the other possible contractions are zero, or related to the Ricci tensor
or scalar by a sign change).

So, putting this all together, we can guess that the form of the field equations of
general relativity should be

Rµν + θ R gµν + Λ gµν = kTµν

where k, θ, and Λ are constants (scalars) and the left-hand side involves the metric
tensor, the Ricci tensor, and the Ricci scalar.

Now, let’s suppose that we require local conservation of energy and
momentum. This corresponds to

Tµν
;ν = 0

(note the use of the covariant derivative, which is the general-relativistic generalization of
the special-relativistic partial derivative, and we are assured that this is correct because
the “,” version is correct in a local Lorentz frame).
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Trying this out on our field equation, for energy conservation to be valid,

(Rµν + θ R gµν + Λ gµν);ν = 0 .

But gµν
;ν = 0 always (this is obvious, since∇.g = 0 in a local Lorentz frame, and because

this is a frame-invariant expression, it must be valid in any general frame). This means
that the term in Λ vanishes. What about the covariant derivative of the Ricci scalar? A
bit more algebra is needed here (a few pages), but the symmetries of the Riemann tensor
cause

Rµν
;ν =

1

2
(gµνR);ν

from which we can see that energy conservation is enforced if

θ = −
1

2

We define the new tensor

Gµν = Rµν −
1

2
gµνR

called the Einstein tensor. Then the field equation can be written (in frame-invariant
form)

G + Λg = kT .

The discussion that has led up to this point is not rigorous — there are many
other choices possible that reduce correctly to Newtonian gravity and special relativity
(for example, we might add any further powers of the Ricci scalar, since this is small
for weak fields). However, the equation above is about the simplest equation which
can reproduce the non-relativistic limits. The field equation as written here is linear in
curvature, but non-linear in the metric (recall that the Riemann tensor itself is non-linear
in the metric, so the contractions are non-linear, and the product of the metric tensor
with the Ricci scalar is certainly non-linear).

What are the constants appearing in the field equation? They are

Λ the cosmological constant, and

k = 8πG (or 8πG/c4 in physical units), which is shown by taking the weak-field
limit of the field equation and enforcing agreement with Newtonian gravity.

10.1.1. Goodbye to G

At this point we become real relativists by losing the constant G. When we discussed
special relativity, it became natural to scale physical variables so that time and distance
are measured in the same units. We did this by
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c→ 1

Now we can do the same thing for GR. Because we can see that G arises only as
the scaling between curvature and mass density, it will be convenient to scale physical
variables to that mass, time, and distance are all in the same units (metres). We do this
by taking

G→ 1

Thus, in special relativity, a velocity v is

(

v/ms−1
)

= v ×
(

2.99792458× 108
)

where the numerical constant is c/ms−1. And similarly in general relativity

(M/kg) = (M/m)×
(

2.99792458× 108
)2
×
(

6.67259× 10−11
)−1

where the second numerical constant is G/m3 kg−1 s−2. This works out to be

(M/kg) = (M/m)×
(

1.347× 1027 kg m−1
)

so, for example, the mass of the Sun, 1.989× 1030 kg, is only 1.477 km.

In these units, the field equations of general relativity are

G + Λg = 8πT .

These are 16 equations, which are reduced to 10 equations since g, G, and T are
symmetrical. And four of these ten equations are redundant, since we know that energy
is conserved, so there are four auxiliary equations

∇ ·T = 0 .

10.1.2 The cosmological constant

The cosmological constant Λ is controversial. GR is simpler without it, but there’s no
particular reason to chuck it out: it comes in naturally enough in the derivation above.
The meaning of Λ is interesting. Since

Tµν = (ρ+ P )uµuν + Pgµν

the field equations effectively set the Gµν component of the Einstein tensor equal to

8π Tµν − Λ gµν = 8π

(

(ρ+ P )uµuν +

(

P −
Λ

8π

)

gµν

)

Page 10.4



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

so that Λ comes in as a sort of extra fluid in the Universe, with a negative pressure, so
that the total pressure is

P ′ = P −
Λ

8π

and a positive density, so that the total density is

ρ′ = ρ+
Λ

8π
.

We say that the Λ-term is like an extra vacuum energy field, with equation of state

PΛ = −ρΛ .

Compare this with the more normal radiation fields, which have

Prad =
1

3
ρrad

or cold matter density field, for which

Pdust = 0 .

By contrast, P = −ρ is an “exotic” equation of state. If we wish, we can lose the Λ term
by absorbing it into the stress-energy tensor as a component of the mass density of the
Universe, with this strange equation of state.

10.2. The weak-field metric

Earlier I talked about geodesics in an assumed weak-field metric of the form

ds2 = −(1 + 2φ)dt2 + (1− 2φ)(dx2 + dy2 + dz2) ,

and showed that these were consistent with the Newtonian equations of motion. Now
we have the field equations, let’s prove that this is consistent with the Poisson equation
for the potential, φ,

∇2φ = 4πρ

(with G = 1) as is required to close the argument (and check the 8π factor in the field
equations).

There is a sophisticated way to do this, but I’m going to use brute force and
ignorance to illustrate that everything works through simply. And in all the equations I
will work only to order φ, assume that the metric is static (all time derivatives of φ are
small), and that the matter that’s causing the curvature is moving non-relativistically.
Then from the line element above,
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g00 = −(1 + 2φ) g00 = −(1− 2φ)
gij = (1− 2φ)δij gij = (1 + 2φ)δij

with the other metric components zero. The Christoffel symbols are given by the usual
expression

Γα
µν =

1

2
gασ (gσµ,ν + gσν,µ − gµν,σ)

which with a little manipulation leads to expressions (correct to first order in the
gravitational potential)

Γ0
00 = φ,0

Γ0
0i = Γ0

i0 = φ,i

Γ0
ij = δijφ

,0

Γi
00 = φ,i

Γi
0j = Γi

j0 = −δi
jφ,0

Γi
jk = δjkφ

,i − δi
jφ,k − δi

kφ,j

which are getting a little more complicated. For the Riemann curvature tensor,

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

σµΓσ
βν − Γα

σνΓσ
βµ

the assumption that the fields are weak allows us to lose the terms in products of the
Christoffel symbols, and gives us non-zero components only for

R0
i0j = δijφ,00 − φ,ij

Ri
0j0 = φ,i

,j + δi
jφ,00

Ri
0jk = −δi

kφ,0j + δi
jφ0k

Ri
kj0 = δi

jφ,0k − δjkφ
,i

,0

Ri
kjl = −δi

lφ,jk + δklφ
,i

,j + δi
jφ,kl − δjkφ

,i
,l

where the notation involves

φ,ij ≡
∂2φ

dxi dxj
.

These can be contracted to calculate the components of the Ricci tensor (again to order
φ), giving

R00 = ∇2φ+ 3φ,00

R0i = Ri0 = 2φ,0i

Rij = δij
(

∇2φ+ φ,00

)

where I’m writing

∇2φ ≡
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
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as usual. A final contraction gives the Ricci scalar

R = 2∇2φ .

The Einstein tensor is then

G00 = 2∇2φ+ 3φ,00

G0i = Gi0 = −2φ,0i

Gij = δij φ,00

For matter which is moving non-relativistically, and which has zero pressure (i.e., has
a pressure much less than ρc2, which is always the case for Newtonian gravity), the
stress-energy tensor

Tµν = (ρ+ P )uµuν + Pgµν

reduces to only one non-zero term,
T 00 = ρ

so that in the Einstein field equations, with zero cosmological constant (which is again
an excellent approximation for Newtonian cases)

G = 8πT

leads to the 6 unique equations

2∇2φ+ 3φ,00 = 8π ρ

φ,i0 = 0

φ,00 = 0

from which we can see that the potential φ is static (from the second equation: the spatial
gradient of φ can’t be zero if we’re to have any sort of interesting gravitational effects).
And substituting a zero second time derivative from the third equation (φ,00 = 0) in the
first, we get an equation for the potential function

∇2φ = 4π ρ

which is exactly the Poisson equation from Newtonian theory.

This confirms the consistency of general relativity and Newtonian gravity, and
the use of the 8π factor in the Einstein field equations.

Technically, I’ve missed out an important step, which is to demonstrate that
the coordinates I used (t, x, y, z) can be interpreted in a Newtonian sense as time and
positions. However, the metric can be seen to be close to Minkowski in form, and we’d
predict that the differences between the (t, x, y, z) coordinates and the observable times
and positions are small (of order φ), so that to order φ the above argument is correct and
no further development is needed. Refer to GR textbooks for a more complete treatment.
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11. The equations of motion of the Universe

11.1. The Friedmann-Robertson-Walker metric
On the large scale the Universe is isotropic and homogeneous. That is,

• on sufficiently-large scales the Universe has roughly the same density everywhere
— i.e., the Universe is homogeneous on the large scale

• in all directions, averaged over sufficiently-large scales, the Universe looks the
same — i.e., the Universe is isotropic

• and we assume that we are not in any special position, so that all observers will
see roughly the same isotropic, homogeneous, Universe as we do. This is called
the cosmological principle.

What this means is that to a reasonable approximation we can describe the large-scale
structure of the Universe by isotropic, homogeneous, models, and this will dictate
the form of the metric. We may also choose to include small-scale structures to this, to
describe local variations in density — but this is a frill which shouldn’t affect the overall
description of the Universe, which is what we’re after at the moment.

What sort of metric is implied? In the metric we describe this physics using the
mathematical statements:

(1) spacetime must contain homogeneous and isotropic subspaces at constant time
(constant-time hypersurfaces are homogeneous and isotropic); and

(2) the rest frame of “average galaxies” defines constant-time hypersurfaces.

So our time, t, coordinate can be chosen to be the proper time for galaxies. The general
form of the metric has a line element

ds2 = g00 dt
2 + 2 g0i dt dx

i + gij dx
i dxj .

With the choice that t is the proper time, we know that g00 = −1, since a world line
with dxi = 0 (i.e., the world line of a particle at rest) has ds2 = −dt2.

But all observers at rest in the frame of the galaxies must agree on the definition
of time. This means that the time basis vector ~e0 is perpendicular to the space basis
vectors ~ei in coordinates fixed to the frame of the galaxies, and hence that g0i = 0. The
metric therefore simplifies to

ds2 = −dt2 + gij dx
i dxj .

We now use the assumption of isotropy. If the Universe is isotropic at time t0,
then isotropy at time t1 implies that

gij(t = t1) = f(t1, t0) gij(t = t0)
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where the function f(t1, t0) represents a scaling with time which is the same for all
metric coefficients. If this were not true, then we could have a different time-dependence
in the x than the y directions, which would lead to anisotropy. The consequence of this
is that we can factor out the time-dependence in the metric components, and write

gij = [a(t)]
2
γij(x)

where a(t) is some function of time, and is called the scale factor. You will recall from
Lecture 9 that this scale factor is responsible for the redshift.

Isotropy also requires that the γij encode spherical symmetry about the origin
of coordinates or any other point in the spacetime. This means that at fixed (r, t) the
separation of points must go like dθ2 + sin2 θ dφ2 where (θ, φ) are angular coordinates,
and this is multiplied by some distance factor. Further, we know that we can choose these
angular coordinates to be perpendicular on the surface of a sphere, so ~eθ is perpendicular
to ~eφ, and gθφ = 0.

We define the radial coordinate r, so that at fixed time t0, the separation of two
points near angle θ, φ separated by dθ, dφ is

a(t0) r
(

dθ2 + sin2 θ dφ2
)1/2

and so that the radial coordinate basis vector is perpendicular to the ~eθ and ~eφ basis
vectors. This means that ~eθ and ~eφ lie in spherical surfaces, while ~er is perpendicular to
these surfaces, and hence that grθ = grφ = 0.

This has simplified the metric, and brings it to the form

ds2 = −dt2 + a2
(

e2G(r) dr2 + r2
(

dθ2 + sin2 θ dφ2
)

)

where I’ve chosen a convenient form for the only remaining metric component that we
need to study,

grr = [a(t)]
2
e2G(r)

where G(r) is an unknown function of r (and can’t depend on the other coordinates for
reasons of isotropy).

To make progress we will impose homogeneity: we will require that every point
in the Universe sees the same curvature at constant time. That is, we require that the
Ricci scalar be constant everywhere at constant time.

From this metric we must now calculate the Ricci scalar. We have non-zero metric
components

gtt = −1

grr = a2 e2G

gθθ = a2 r2

gφφ = a2 r2 sin2 θ
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from which we can calculate the Christoffel symbols: the only non-zero ones are

Γt
rr = aȧe2G

Γt
θθ = aȧr2

Γt
φφ = aȧr2 sin2 θ

Γr
rt = Γr

tr = Γθ
θt = Γθ

tθ = Γφ
φt = Γφ

tφ =
ȧ

a

Γr
rr = G′

Γr
θθ = −re−2G

Γr
φφ = −r sin2 θe−2G

Γθ
θr = Γθ

rθ = Γφ
rφ = Γφ

φr =
1

r

Γφ
θφ = Γφ

φθ =
cos θ

sin θ

Γθ
φφ = − sin θ cos θ

where G′ ≡ dG
dr . We can now calculate the Riemann tensor, in the usual way, from

Rα
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

σµΓσ
βν − Γα

σνΓσ
βµ

or simply contract to the Ricci tensor

Rµν = Γα
µν,α − Γα

µα,ν + Γα
σαΓσ

µν − Γα
σνΓσ

µα

which turns out to be relatively easy to calculate since many of the terms are zero. The
non-zero terms all lie on the diagonal, and are

Rtt = −3
ä

a

Rrr = e2G

[

(

aä+ 2ȧ2
)

+
2

r
G′e−2G

]

Rθθ = r2
[

(

aä+ 2ȧ2
)

+ (rG′ − 1)
e−2G

r2
+

1

r2

]

Rφφ = r2 sin2 θ

[

(

aä+ 2ȧ2
)

+ (rG′ − 1)
e−2G

r2
+

1

r2

]

where the close similarity of the Rθθ and Rφφ is not a coincidence. We can now contract
once more to calculate the Ricci scalar, which is

R = 6

(

ä

a
+
ȧ2

a2

)

+
1

a2

2

r2
(

1− e−2G (1− 2rG′)
)

.
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For spatial homogeneity at fixed time, R must be independent of r. This means
that the second term on the RHS must be a constant, i.e., that

2

r2

(

1−
(

re−2G
)′
)

= 6k

where k is some constant (and I write 6k because of the factor 6 on the first term on the
RHS). This can be rearranged and integrated pretty easily, the result is

e−2G = 1− kr2 +
A

r

where A is some constant. And this then gives us a metric component

grr = a2

(

1− kr2 +
A

r

)−1

.

What can we do about the constant A? Well, near r = 0, the term A/r becomes
large, which causes grr → 0. But we know that close to any point (and this includes the
ordinary point r = 0), the metric must be locally flat, so that grr 6= 0. This requires
A = 0 (otherwise we’re locally in a singularity). And so the metric component becomes

grr = a2
(

1− kr2
)−1

.

and the line element of the so-called Friedmann-Robertson-Walker metric (FRW metric
for short) is then

ds2 = −dt2 + [a(t)]
2

(

dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

)

This can be rewritten in a number of ways by redefining the radius coordinate (we have
perfect freedom to change coordinates as we wish): one good choice is to take

dχ =
dr

(1− kr2)
1/2

when the metric looks like

ds2 = −dt2 + [a(t)]
2 (
dχ2 + f(χ)2

(

dθ2 + sin2 θ dφ2
))

for some function f(χ) which depends on the value of k. f(χ) is then something to do
with the relationship between angular size and proper size of a distant object, while χ
looks more like what we conventionally think of as a radius. But remember that χ or r
are just coordinates (numbers), and not to be thought of as distances in the Newtonian
sense.
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11.2. The dynamics of the Universe

Adopt the FRW metric in its raw form,

ds2 = −dt2 + [a(t)]
2

(

dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

)

and let’s use the field equations of GR to work out the dynamics of the Universe. Using
the earlier result for G(r), and the expressions that we had for the Ricci tensor and
scalar, we now have updated forms

Rtt = −3
ä

a

Rrr =
1

1− kr2
(

aä+ 2ȧ2 + 2k
)

Rθθ = r2
(

aä+ 2ȧ2 + 2k
)

Rφφ = r2 sin2 θ
(

aä+ 2ȧ2 + 2k
)

R = 6

(

ä

a
+
ȧ2

a2
+

k

a2

)

where the high symmetry of the Ricci tensor caused by the assumptions of homogeneity
and isotropy are evident. From this symmetry you’d guess that there are much simpler
ways of calculating the Ricci tensor than flogging through all the algebra involving the
Christoffel symbols and the Riemann tensor, and you’d be right, but this would involve
proving some results that we don’t otherwise need. I refer you to advanced books on GR
to see what tricks are available for spatially homogeneous metrics.

Returning to our problem, we can write down the Einstein tensor

Gtt = 3

(

k

a2
+
ȧ2

a2

)

Grr = −
1− kr2

a2

(

k

a2
+ 2

ä

a
+
ȧ2

a2

)

Gθθ = −
1

a2r2

(

k

a2
+ 2

ä

a
+
ȧ2

a2

)

Gφφ = −
1

a2r2 sin2 θ

(

k

a2
+ 2

ä

a
+
ȧ2

a2

)

Now we must consider the stress-energy tensor for the Universe. We are dealing
with a “fluid” of material (galaxies, radiation). And by assumption, there is a frame (the
rest frame of the galaxies) in which this fluid has no bulk motion and to which we have
tied our coordinate system. Therefore if we approximate the material in the Universe as
a perfect fluid,

Tµν = (ρ+ P )uµuν + Pgµν
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with ~u = (1, 0, 0, 0) in (t, r, θ, φ) coordinates. So I have

T tt = ρ

T rr = P
1− kr2

a2

T θθ = P
1

a2r2

Tφφ = P
1

a2r2 sin2 θ

and the field equations
Gµν + Λgµν = 8πTµν

are

ȧ2 + k =
8π

3
ρa2 +

Λ

3
a2 tt

2aä+ ȧ2 + k = −8πPa2 + Λa2 rr

2aä+ ȧ2 + k = −8πPa2 + Λa2 θθ

2aä+ ȧ2 + k = −8πPa2 + Λa2 φφ

with the other 12 equations being the identity 0 = 0. Notice that the three equations
derived from the rr, θθ, and φφ components are identical. This is a consequence of the
spatial isotropy of our metric.

These equations can be tidied up into their standard forms

ȧ2

a2
+

k

a2
=

8π

3
ρ+

Λ

3
energy equation

ä

a
= −

4π

3
(ρ+ 3P ) +

Λ

3
acceleration equation

which describe the evolution of the scale factor of the Universe. The first equation is
something like a statement of energy conservation: ȧ2 is like the kinetic energy per unit
volume of the Universe’s expansion, the term in ρa2 is like the gravitational potential
energy, and the term in Λa2 is like the compressional energy associated with the vacuum.
k can then be interpreted as an energy constant (and you’d expect the properties of the
Universe to be different depending on whether the total energy is positive or negative).

The second equation is a statement that the Universe is decelerated by the effect
of matter (∝ (ρ + 3P ), notice the effect of the pressure here), and accelerated by the
tension of the vacuum. If the cosmological constant is small, then the Universe is being
decelerated (as long as the pressure of the cosmic fluid isn’t large and negative, P > − 1

3ρ).
But there are, perhaps, situations in which the Universe might accelerate.

Of these two equations, both of which describe the change of the scale factor with
time, one is redundant — and we usually take this to be the second, which is the more
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complicated. This is redundant since it follows from the first equation and the law of
conservation of energy. For this metric the law of conservation of energy

Tµν
;ν = 0

is four equations, three of which are the trivial 0 = 0 identity (for µ = r, θ, or φ). The
remaining equation is

T tν
;ν = 0

T tν
,ν + TανΓt

αν + T tαΓν
αν = 0

T tt
,t + T rrΓt

rr + T θθΓt
θθ + TφφΓt

φφ + T ttΓν
tν = 0

ρ̇+ 3P
ȧ

a
+ 3ρ

ȧ

a
= 0

which can be written in the more suggestive form

d

dt

(

ρa3
)

= −P
d

dt

(

a3
)

.

How to interpret this? The volume element for an infinitesimal element of the Universe
is the volume measured in a local Lorentz frame, and this is shown in Lecture 14 to be

d4Ω = (−g)1/2 dt dr dθ dφ

where g is the determinant of the metric tensor written as a matrix. In the current case,
g = gtt grr gθθ gφφ, so

d4Ω =
a3 r2 sin θ

(1− kr2)1/2
dt dr dθ dφ

and the (3-space) volume element at fixed time is

dV = a3 r2 sin θ

(1− kr2)1/2
dr dθ dφ .

The volume of a bit of the Universe at a fixed spatial location (r, θ, φ) changes with time
∝ a3. The rate of change of ρa3 is therefore the rate of change of the total energy content
of a fluid element, and P ˙(a3) is the work done by that fluid element as it expands, −P dV

dt .
So

d

dt

(

ρa3
)

= −P
d

dt

(

a3
)

.

is simply a thermodynamic statement about there being no place to lose energy in the
Universe: since the Universe is isotropic, there can be no energy flows (there’s nowhere
for the energy to flow to!), and so dE = −PdV , which is exactly what we have here.
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We can recover this equation just as easily by differentiating the Friedmann
equation.

d

dt

(

ȧ2 + k
)

=
d

dt

(

8π

3
a2ρ+

Λ

3
a2

)

2aä =
8π

3
˙(ρa2) +

2

3
Λaȧ

2a

(

−
4π

3
(ρ+ 3P ) a+

Λ

3
a

)

=
8π

3
(ρ̇a2 + 2ρaȧ) +

2

3
Λaȧ

The Λ terms cancel, leaving

−ȧ(ρ+ 3P )a = −ρ̇a2 + 2ρaȧ

ρ̇a2 + 3ρaȧ = −3Paȧ

˙(ρa3) = −P ˙(a3)

again. This means that any two equations of this set of three are enough, and we usually
choose the simplest. But the full set is available for use, and is

ȧ2

a2
+

k

a2
=

8π

3
ρ+

Λ

3
Friedmann equation

ä

a
= −

4π

3
(ρ+ 3P ) +

Λ

3
acceleration equation

d

dt

(

ρa3
)

= −P
d

dt

(

a3
)

equation of state.
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12. Cosmological parameters

12.1. The Hubble constant and deceleration parameter
Let us return to the Friedmann and acceleration equations

ȧ2

a2
+

k

a2
=

8π

3
ρ+

Λ

3
ä

a
= −

4π

3
(ρ+ 3P ) +

Λ

3

and consider what they say at the present (at t = t0). Inserting this time into these
relations we get information about the current rate of expansion of the Universe, ȧ0, and
the current acceleration of the Universe ä0. Define two parameters which measure the
sizes of these quantities: we measure the current expansion rate of the Universe by the
Hubble constant,

H0 =
ȧ0

a0

and the current slowing down of the Universe by the deceleration parameter,

q0 = −
ä0a0

ȧ2
0

where, as usual, a0 = a(t0), and ȧ0 = ȧ(t0), ä0 = ä(t0).

Using these definitions in the Friedmann and acceleration equations at t = t0,

H2
0 +

k

a2
0

=
8π

3
ρ0 +

Λ

3

−q0H
2
0 = −

4π

3
(ρ0 + 3P0) +

Λ

3
.

The Universe is now matter-dominated, so ρ0 À P0, and in the simplest models of the
Universe we take Λ = 0. Taking these limiting cases, we can use the second of the above
relations to eliminate the current density ρ0 in terms of the parameters q0 and H0,

4π

3
ρ0 = q0H

2
0

and replace the curvature parameter, k, using

k

a2
0

= (2q0 − 1)H2
0 .

Substituting these expressions back into the Friedmann equation,

ȧ2

a2
+
a2
0

a2
(2q0 − 1)H2

0 = 2q0H
2
0

ρ

ρ0
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and using the dust equation of state, ρ ∝ a−3, which corresponds to conservation of
the number of particles in the Universe, which is clearly consistent with a low
temperature (so that particles can’t pair-produce),

ρ

ρ0
=
(a0

a

)3

this becomes
ȧ2 = H2

0a
2
0

(

1− 2q0 + 2q0
a0

a

)

.

What we have done here is to replace the physical parameters k and ρ0, by the
kinematic parameters H0 and q0 which (as we will see later) should be amenable to
direct observational determination using measurements of “geometrical” properties of
the Universe.

We can now integrate the expression for a(t). There are three cases that we need
to consider.

12.1.1 Flat Universe, q0 = 1
2 , k = 0

In this case the differential equation for a(t) is as simple as it can be:

ȧ2 = H2
0a

2
0

(a0

a

)

which can be integrated directly to give the Einstein – de Sitter solution,

a(t)

a0
=

(

3

2
H0t

)2/3

.

We call this a flat Universe since the spatial part of the metric is simply dr2 +
r2
(

dθ2 + sin2 θdφ2
)

, exactly as it would be in a three-dimensional space with zero
curvature.

12.1.2 Closed Universe, q0 >
1
2 , k = +1

Before doing the integration, a technical note (a caution). You will see from what we’ve
derived above that

k

a2
0

= (2q0 − 1)H2
0

so how can I take k = +1 while also saying that a0 is the scale factor at the present time,
equal to 1? The answer is that k = +1 is enforced by making a scaling of the radius
coordinate (as I am free to do in General Relativity). If I do so, then I must either accept
a0 as a parameter that I carry along, or absorb the a0 scaling into the definition of time
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(which appears in H0). But what we do see from the relation between k and q0 is that
q0 >

1
2 implies positive k, so there is no inconsistency of sign in choosing k = +1.

Solving the equation for a(t) is possible directly, but it is easier to obtain the
solution in parametric form. Define an auxiliary parameter, φ, called the development
angle, by

a(t)

a0
=

q0
2q0 − 1

(1− cosφ)

then the equation for φ(t) is obtained by substituting this into the differential equation
for a(t), and making a simple integration, to find

φ− sinφ =
H0t

q0
(2q0 − 1)

3/2

where I’ve chosen the constant of integration so that a(t) = 0 at t = 0, as usual.

We call this a closed Universe for reasons which will become apparent shortly.

12.1.3. Open Universe, q0 <
1
2 , k = −1

Once again it is easier to solve for a(t) by introducing a development angle, ψ. The
definition of ψ in terms of a(t) is

a(t)

a0
=

q0
1− 2q0

(coshψ − 1)

and substituting this into the expression for ȧ and making a simple integration, we find
that ψ(t) is given by

sinhψ − ψ =
H0t

q0
(1− 2q0)

3/2

in clear analogy with our earlier result for q0 >
1
2 .

And this is called an open Universe, because of its interpretation.

12.2. Interpretation of the solutions

The first result that we can get from these solutions is the present age of the Universe:
the time t0 now. The timescale that relates to the age is set by the Hubble constant,
which is conveniently written

H0 = 100h100 km s−1 Mpc−1

where h100 is a dimensionless measure of the Hubble constant, and is likely to be 0.5−0.7.
Then the characteristic timescale for the expansion of the Universe is

H−1
0 = (3.09× 1017)h−1

100 sec = (9.78× 109)h−1
100 years.
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Putting a = a0 in the solution for a(t) for for k = 0, we find that the age of the
Universe is t0 = 6.5h−1

100 years. For k = +1 the value of t0 depends on how rapidly the
Universe has been decelerating since the Big Bang — for q0 = 2, the age of the Universe
is 4.6h−1

100 years. Finally, for k = −1 the age of the Universe again depends on how rapid
the deceleration has been, and for q0 = 0.1 the age is 8.3h−1

100 years.

The three solutions are plotted below, where rather than align them at t = 0
(which is a little confusing), I’ve aligned them at t = t0, the present time. It can
be seen that the three curves are very similar at the present — the slopes are the same
(determined by the value of H0), so the only difference is in the curvature of the functions
(measured by q0). This close similarity of the curves at the present is what makes it so
difficult to tell whether the Universe is open, flat, or closed (what the value of q0 is).
However, the long-time predictions of the functions are very different.

For k = −1 or k = 0, we see that the solution a(t) increases without limit as
t→∞. At large times, a ∝ t2/3 if k = 0 and a ∝ t if k = −1. That is, in these two cases
the Universe expands for ever, with the rate of expansion, ȧ, tending to zero if k = 0,
and tending to a constant value if k = −1.

If k = 0 we say that we have a critical-density Universe: the deceleration of the
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Universe caused by its matter content and pressure is just enough that the expansion
rate falls to zero eventually, but the matter content is not enough to cause a recollapse.

If k = −1, the Universe has insufficient matter to cause the recollapse: at large
time there is so little matter to cause deceleration that the Universe expands at constant
speed. In fact, you can see that the curvature of the function plotted for q0 = 0.1 is
small at all times — the matter content of the Universe causes rather little deceleration
for such a small q0.

What about k = +1? Here we see that the Universe expands from zero size to a
maximum, and then recollapses. From the parametric solution,

a(t)

a0
=

q0
2q0 − 1

(1− cosφ)

φ− sinφ =
H0t

q0
(2q0 − 1)

3/2

we see that a(t) = 0 at φ = 0 or 2π, and that this corresponds to times t = 0 and

t =
2πq0
H0

(2q0 − 1)
−3/2

corresponding to the Big Bang and the Gnab Gib or Big Crunch. Half-way between these
two times there is a phase of maximum expansion, where

a

a0
=

2q0
2q0 − 1

so for q0 = 2 (for example), if we are in this type of Universe, the maximum size of the
Universe will be 4

3 times its present-day size.

That is, for the three different models

k = −1 q0 <
1
2 t0 > 6.5h−1

100 Gyr Universe expands for ever open

k = 0 q0 = 1
2 t0 = 6.5h−1

100 Gyr Critical case flat

k = +1 q0 >
1
2 t0 < 6.5h−1

100 Gyr Universe will recollapse closed

The critical case is characterized by the density of the Universe being at its critical
value. In the Friedmann equation at t = t0,

H2
0 +

k

a2
0

=
8π

3
ρ0

if we continue to take Λ = 0. For k = 0, the density of the Universe now must have the
special value

ρcrit =
3H2

0

8π
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or, putting back the factors of G and c,

ρcrit =
3H2

0

8πG
= (1.88× 10−26)h2

100 kg m−3 .

If the current density of the Universe exceeds ρcrit, the current critical density of the
Universe, then the Universe will recollapse.

The ratio of the current density of the Universe to the current critical density of
the Universe is an important parameter, Ω0, the density parameter,

Ω0 =
ρ0

ρcrit

and Ω0 > 1 then corresponds to a closed Universe that will recollapse.

This “physics” parameter, Ω0, is closely related to the “geometry” parameter, q0.
For a matter-dominated Universe with Λ = 0, the acceleration equation is

ä

a
= −

4π

3
ρ

which at t = t0 (i.e., the current time) becomes

ä0

a0
= −

4π

3
ρ0 .

Eliminate ä0 in favour of q0, then

q0 =
4π

3

ρ0

H2
0

=
1

2

ρ0

ρcrit

That is,

q0 =
1

2
Ω0

for a matter-dominated Universe with Λ = 0.

By analogy with Ω0, we often define an “equivalent density parameter” for Λ.
Returning to the Friedmann equation for a matter-dominated Universe, but no longer
dropping the cosmological constant, at t = t0

ȧ2
0

a2
0

+
k

a2
0

=
8π

3
ρ0 +

Λ

3
.

Eliminate ȧ0 in favour of H0, then this can be written

H2
0 +

k

a2
0

= H2
0Ω0 +

Λ

3
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or
k

a2
0

= H2
0 (Ω0 + ΩΛ − 1)

where

ΩΛ =
Λ

3H2
0

and clearly k = 0 now requires that Ω0 + ΩΛ = 1. That is, a flat Universe results when
the sum of the matter density and the density of the vacuum energy is equal to the
critical density.

A few years ago we wouldn’t have bothered with this — it was standard to take
Λ = 0. However, cosmological data are now showing some signs that Λ may not be zero:
although Λ still appears to be much to small to have any effect in the solar system it may
be large enough to affect the Universe as a whole. As I said in an earlier lecture, though,
the existence of Λ is still controversial — particle physics arguments tend to suggest that
the vacuum energy is large, and ΩΛ À 1, but this would say that the Universe could
not ever get to more than a few seconds old, which is a little at odds with observation.
So many cosmologists still like to assume that it’s exactly zero. We shall see within the
next five or ten years, as precise data on the structure of the Universe come in.
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13. Hubble law and classical cosmological tests

13.1. The Hubble Law
The first indication that the Universe is non-static was the Hubble law, which relates the
“velocity” cz of an object to its “distance”. How does this law follow from what we’ve
done so far?

It is clear, I think, that the redshift, z, does not necessarily imply a velocity in
the usual sense. Galaxies are, after all, at rest in the system of coordinates that we have
chosen. However, the spacetime between them is swelling at a rate specified by the scale
factor, and this causes galaxies to get a non-Doppler redshift. We can, if we wish, call
cz a sort of representative velocity of a galaxy: for small real galaxy velocities, v, the
redshift contribution made by the Doppler effect is

∆λ

λ
=
v

c
= z

by the definition of z, and hence small velocities produce small redshifts cz.

For an object at coordinate r1, what would be the value of the redshift? For
simplicity, I’ll do this for a flat (Einstein – de Sitter) cosmology, though I could do it
equally well in any cosmology.

We relate z and r1 by knowing that light travels to us on a radial null geodesic.
Hence, using the FRW metric

ds2 = −dt2 + [a(t)]
2

(

dr2

1− kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

)

with dθ = dφ = 0, the world line of an incoming light ray has

dt = −a(t)
(

1− kr2
)− 1

2 dr

and so the path r(t) is given by

∫ t0

t

dt

a(t)
=

∫ r

0

dr

(1− kr2)1/2

where I’ve taken care to choose the correct sign. Now for an Einstein – de Sitter
cosmology, k = 0, and

a(t)

a0
=

(

3

2
H0 t

)2/3

.

so that the path of the incoming light ray is

∫ t0

t

dt

a0

(

3
2 H0 t

)2/3
=

∫ r

0

dr
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which integrates to

ra0 =

(

2

3H0

)2/3

3
(

t
1/3
0 − t1/3

)

.

Suppose we observe a galaxy with redshift z1. What is its r-coordinate, r1?
Clearly we have observed that galaxy using an incoming light ray, so we can relate the
r-coordinate from which the light started to the time from which the light left the galaxy.
We have one more piece of information, though: the redshift, which tells us what the
time was at which the light left the galaxy, since it is a direct measure of the scale factor
of the Universe when the light was emitted compared to the scale factor when the light
was detected. That is,

(1 + z1) =
a(t0)

a(t1)

where t1 was the time at which the light was emitted. Using the expression for a(t),

(1 + z1) =
a(t0)

a(t1)
=

(

t0
t1

)2/3

and

t0 =
2

3H0
.

The result for r1, the coordinate position of the galaxy seen at redshift z1, is then

a0r1 =
2

H0

(

1− (1 + z1)
−1/2

)

.

The quantity a0r1 is the proper distance of the galaxy, d1 — that is, it’s the
distance that would be measured in a local Lorentz frame that contains both the galaxy
and ourselves (taking the galaxy as being near enough to use that the approximation of
a local Lorentz frame containing both is OK). So for small d1 and small z1, I can expand
to get

d1 =
1

H0

(

1−

(

1−
1

2
z1 +

3

8
z2
1 +O(z3

1)

))

and working to first order in z1, this becomes

H0d1 = z1 .

Reinsert the factor c needed to take this into physical units from scaled units,

v1 = H0d1

i.e., the velocity cz1 of recession of a galaxy is proportional to its distance from us, d1.
The constant of proportionality is the Hubble constant. It was this result, which showed
the Universe expanding away from us (plus the Copernican idea that we’re not repellent,
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it’s just that everything in the Universe is expanding uniformly and so moving away from
everything else) which led to the idea of the non-infinite, and non-eternal Universe.

13.2. Luminosity distance and the Hubble Diagram

How bright is a source at redshift z? That is to say, what is the flux (the detected energy
per unit area per unit time) of radiation from a source of luminosity L (the energy
radiated per unit time) that can be detected by an observer?

The answer is

F =
L

4πa2
0r

2
1(1 + z)2

where r1 is the radial coordinate of the source and a0 is the current value of the scale
factor. Deriving this result will give us a good idea about how relativistic arguments
proceed.

Suppose the observer has a detector of area Ad, oriented perpendicular to light
rays from the source. Let these light rays be detected at time t0 (the present). If the
source is at radial coordinate r1, then the area of a two-sphere about the source at the
time of detection is

4πr21a
2
0

(recall that we defined the radial coordinate so that distances on a two-sphere are a0r1δθ,
where δθ is an angle separation, and areas on a two-sphere are a2

0r
2
1δΩ, where δΩ is an

element of solid angle. The expression above simply integrates over δΩ). Therefore the
fraction of the emitted energy at the source which is received by the detector is

Ad

4πr21a
2
0

.

But this radiation is redshifted: individual photons emitted at the source at
frequency ν are detected at frequency ν/(1 + z), so the energy received from a constant
number of photons is decreased by a factor of (1 + z).

And also the photons radiated over a time interval ∆t1 at the source are received
over a redshifted time interval ∆t0 = ∆t1 (1 + z), so less energy per unit is received by
a factor (1 + z). Therefore the received energy per unit time at the detector is

FAd = L×
Ad

4πr21a
2
0

×
1

1 + z
×

1

1 + z

where the RHS is the (emitted energy per second) times the (fraction of the sphere
covered by the detector) times the (redshifting factor for the received energy) times the
(time spread factor). Removing the area of the detector, we get the equation I quoted
at the beginning,

F =
L

4πa2
0r

2
1(1 + z)2

.
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It is convenient to write this as

F =
L

4πD2
L

where DL is the luminosity distance, the distance that appears in the relation between
flux and luminosity if this relation is written like the usual inverse-square law. With this
definition,

DL = a0 r1 (1 + z) .

This relationship isn’t too useful, unless we know the coordinate r1 of the emitting
source. And we get this in the usual way from an argument about the path of light from
the source to the observer. A radial null geodesic connects the emission and reception
events at (t1, r1) and (t0, r0), and so, from the FRW metric

−dt2 + a2 dr2

1− kr2
= 0 .

Rearranging and choosing the correct sign, and integrating

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr

(1− kr2)1/2
.

It is easier to deal with this equation if we convert from a t integral to an integral over
the scale factor a. Clearly

da = ȧ dt

and with a = a0 at t0, a = a1 = a0 (1 + z)−1 at t = t1,

∫ a0

a0(1+z)−1

da

ȧ a
=

∫ r1

0

dr

(1− kr2)1/2

(this sneaky trick is well worth remembering). Now we can use the Friedmann
equation written in the form

ȧ2 = H2
0a

2
0

(

1− 2q0 + 2q0
a0

a

)

.

and replace the curvature parameter, k, using

k

a2
0

= (2q0 − 1)H2
0 .

to get an expressing relating the radial coordinate r1 to the redshift z. If I also change
the scale-factor variable from a to

x =
a

a0

Page 13.4



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

to make the notation look easier, the integral I’m left with is

1

a0H0

∫ 1

(1+z)−1

dx

x

(

1− 2q0 +
2q0
x

)− 1
2

=

∫ r1

0

dr
(

1− (2q0 − 1)H2
0a

2
0r

2
)− 1

2 .

This can be integrated to give

a0r1 =
zq0 + (q0 − 1)

(

(1 + 2q0z)
1/2 − 1

)

H0q20(1 + z)
.

The final result for the luminosity distance is then (reinserting the missing c factor to
convert to physical units),

DL =
c

H0q20

(

zq0 + (q0 − 1)
(

(1 + 2q0z)
1/2 − 1

))

.

This tells us how to measure H0 and q0 (and, by implication, the density and
age of the Universe, the curvature of the Universe, and so on). Consider observing
“standard candles”, galaxies with the same luminosity Lg, at varying redshifts (in fact,
we use supernovae in galaxies, galaxy luminosities, Cepheid stars, and so on as distance
indicators). Then look at how the flux of such galaxies varies as a function of redshift.
If we express the flux in usual optical terms as bolometric magnitude,

mbol = m0 − 2.5 log10 F

where the constant m0 defines the zero point of the magnitude scale, and plot mbol

against log10 z, we get the Hubble diagram, which looks like
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At small z,

DL =
cz

H0

(

1 +
1

2
(1− q0)z +O(z2)

)

so

mbol = m0 − 2.5 log10

(

LgH
2
0

4πc2

)

+ 5 log10

(

z

(

1 +
1

2
(1− q0)z +O(z2)

))

and the slope of the mbol/ log10(z) graph at small z is 5 for any choice of H0 or q0.
Deviations from a straight line on such a graph correspond to different values of q0. And
the value of H0 can be determined from the level of the curve at some z.

However there are pitfalls:

(1) we need to know the absolute value of Lg to get H0, but we usually don’t — we
don’t have a fully-calibrated galaxy in the laboratory. However we can do a pretty
good job with Cepheids.

(2) we need to know that Lg is standard, but in fact when we look at this curve we’re
looking to very different parts of the Universe (potentially a long way back in
time), so it could be that galaxies are changing in properties with redshift (for
example because of time-varying star formation rates).

(3) the redshifts have to be representative of the expansion of the Universe, and not
of the peculiar motions of galaxies — their random motions add a Doppler shift
to the cosmological redshift

(1 + z) = (1 + zcosmological)(1 + zpeculiar)

which can cause the redshifts of nearby objects to be very non-representative of
the cosmological redshift.

As a result, the practical difficulties of using this method are immense. At low redshift,
and using Cepheids, this is probably the best way of trying to get at H0. But as a
method of getting at q0 it is bad.

There are a few complications, too. It’s not easy to measure the bolometric
magnitude (the integrated light output of an object): normally we measure only the
light in a particular waveband, such as the optical V band. Since the emitted light
comes from a bluer part of the spectrum, we see different parts of the spectrum of a
galaxy (or star, or supernova) as we look at objects of different redshift, and we must
correct them all back to a common passband. Such a correction is called a K-correction.

Another problem with using fuzzy-edged things like galaxies as distance indicators
is that you can’t be sure that you’re looking at all the galaxy light — the galaxy gradually
trails off into the noise, and some of the light is missed. To get around this, one often
looks only at the light out to some fixed radius (e.g., 50 kpc) ... but for the faintest
objects, which are the most distant, this may mean that the object is not much larger
than the point spread function of the telescope being used, and an aperture correction
may be needed to correct to the same fixed radius of an object.
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14. Classical cosmological tests, continued

14.1. The angular diameter distance
An alternative way to attempt to measure the value of q0 is to look at an object of known
linear size as a function of distance from us. That is, we look at the angular sizes of
standard rods, such as galaxies of a particular type, at different redshift.

How do we calculate the angular size of an object of a given linear size? Suppose
a galaxy has a proper diameter (diameter in a local Lorentz frame) dg (¿ a(t1)r1), lies
at radial coordinate r = r1, and is observed to have redshift z. What is its apparent
angular size?

Return to the FRW metric, which tells us what we want to know.

ds2 = −dt2 + [a(t)]
2

(

dr2

1− kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

)

Based on this, at a fixed time (so dt = 0) and fixed radial coordinate (so dr = 0), an
element of proper size (ds) can be related to an element of angle (dθ — we choose to put
the object at fixed φ, for simplicity) by

ds = a(t) r dθ

so for our galaxy
d1 = a(t1) r1 θg

where θg is the angular extent of the rod. But light rays from the ends of the rod travel on
radial null geodesics to us, situated at the origin of coordinates, and hence the observable
angular size of the galaxy is also θg, with

θg =
d1

a(t1) r1
.

We have already shown that for an object at redshift z the radial coordinate is
given by

a0r1 =
zq0 + (q0 − 1)

(

(1 + 2q0z)
1/2 − 1

)

H0q20(1 + z)

and the scale factor at time t1 when the light was emitted is related to a0 by

a(t1) =
a0

1 + z
.

Hence we can write the angular size of the object as

θg =
dg

DA
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where DA is the angular diameter distance,

DA =
c

H0q20

(

zq0 + (q0 − 1)
(

(1 + 2q0z)
1/2 − 1

))

(1 + z)2

=
DL

(1 + z)2
.

Notice that the angular diameter distance is not the same as the luminosity
distance — the ordinary flat-space ideas about the meaning of distance don’t work too
well in GR.

But now we can look to see how the angular size of an object of fixed linear size
changes with redshift. This is shown in the diagram below, for an object with linear size
20 kpc and h100 = 0.5.

What is going on here? We see that for q0 > 0, there is a redshift at which the
angular size is a minimum, and then the angular size rises for larger z — in other words,
the further away an object is, the larger its angular size.

This is a consequence of the curved geometry of the Universe. Think of the
meaning of this for a closed space — for example, the apparent angular size of a rod
on the surface of a sphere, as seen from the north pole. When the rod is close to the
observer, it lies across many lines of longitude, and therefore its angular size (the number
of lines of longitude that it crosses) is large. As the rod moves down towards the equator
it cuts fewer lines of longitude, until when it reaches the equator it cuts the minimum
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number (has the smallest angular size). As we then move the rod towards the south pole,
it crosses more lines of longitude again, until when it reaches the south pole it crosses
all lines of longitude and has angular size 2π radians.

The analogy isn’t exact, however, because we’re looking back into a past when the
Universe had a different curvature, and much of the shape of the curve is tracking this
time-dependence and not the present-day geometry of the Universe. Nevertheless, the
minimum angular size should be an observable phenomenon. At q0 = 0.5, the angular
size of any object decreases out to z = 1.25, and then increases again. And the redshift of
minimum angular size depends on the value of q0 — so we might hope to use “standard
rods” in the form of standard galaxies to find this minimum redshift and hence measure
q0. Unfortunately this doesn’t work — galaxies evolve too much between z = 1 and the
present, so we can’t treat them as fixed objects. Attempts are still being made to use
this technique, though, with other supposedly standard-sized objects.

Note an interesting consequence of the results for DL and DA: the surface
brightness of an object at redshift z is the flux of that object over its angular size.
If we assume that the object is spherical, with luminosity L and radius R, the flux and
angular radius of that object are

F =
L

4πD2
L

θR =
R

DA

and hence the flux per unit solid angle (the surface brightness) is

F

πθ2R
=

L

4πR2

D2
A

D2
L

∝ (1 + z)−4 .

That is, the surface brightness of any object drops off as (1 + z)4. This fading out of
distant objects makes them very hard to see — for example, a galaxy at z = 2 has a
central brightness that is only about 1 per cent of the central brightness it would have if
it was nearby. It might, therefore, vanish under the noise in a detector which is looking
for it.

Notice also that this is different from the situation in a Minkowski metric, where
surface brightness is a relativistic invariant.

14.2. Volume of the Universe

How large is a volume element in a pseudo-Riemannian manifold? By the volume
element, I mean the quantity d4Ω needed in the 4-D Gauss law,

∫

Ω

∇.T d4Ω =

∮

∂Ω

T.d3Σ̃
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where d3Σ̃ is the surface element one-form. In a local Lorentz frame patch (that is, in
a coordinate system which is tangent to the spacetime at the point we’re interested in
and which has a flat-spacetime metric), we know that the 4-D element of volume is

d4Ω = dx0dx1dx2dx3

where the {xα} are coordinates in which gαβ = ηαβ + O(|∆~x|2) for small shifts ∆~x
from the tangent point. In another coordinate system, {xα′}, the Jacobian relates the
coordinate expressions of the volume element, as

dx0dx1dx2dx3 =

[

∂(x0x1x2x3)

∂(x0′x1′x2′x3′)

]

dx0′dx1′dx2′dx3′

where the Jacobian is the usual determinant

∂(x0x1x2x3)

∂(x0′x1′x2′x3′)
=











dx0

dx0′
dx0

dx1′
dx0

dx2′
dx0

dx3′

dx1

dx0′
dx1

dx1′
dx1

dx2′
dx1

dx3′

dx2

dx0′
dx2

dx1′
dx2

dx2′
dx2

dx3′

dx3

dx0′
dx3

dx1′
dx3

dx2′
dx3

dx3′











= detΛ

where Λ is the usual transformation matrix,

Λα
β′ =

∂xα

∂xβ′

But we know that g and η are related because the interval is invariant. This implies that

g = ΛηΛT

where ΛT is the transpose of Λ, and hence that

detg = detΛ det η detΛ

= −(detΛ)2

since detΛT = detΛ, and det η = −1. Therefore, if we write g ≡ detg, where g is the
matrix of the metric coefficients,

dx0dx1dx2dx3 = (−g)1/2 dx0′dx1′dx2′dx3′

That is, in any arbitrary coordinates {xα′}, the proper volume element (that is, the true
volume of a space-time 4-volume element, as seen in the tangent flat spacetime at a
particular instant) is then

(−g)1/2dx0′dx1′dx2′dx3′

For example, consider the flat-space metric in polar coordinates, which can be specified
by the line element

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 .
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Clearly, the quantity g = −r4 sin2 θ, and hence the spacetime volume element is

d4Ω = r2 sin θ dt dr dθ dφ .

At fixed time, the corresponding three-volume element is the amount which you get by
factoring out the thickness of the four-volume in the time direction (dt), and is

d3Σ = r2 sin θ dr dθ dφ

which should be recognisable!

Now let’s apply this result to calculate the proper volume of the Universe out to
some redshift, z. This volume is

Vpr =

∫ z

z=0

(−g)1/2 dr dθ dφ

For the FRW metric,

(−g)1/2 = [a(t)]
3 (

1− kr2
)− 1

2 r2 sin θ

and so the proper volume at the present time is

Vpr,0 = a3
0

∫ z

z=0

r2 dr

(1− kr2)
1/2

sin θ dθ dφ

where the integrals are over all θ and φ, and over r from the coordinate at which we are
located (r = 0) to the coordinate corresponding to redshift z. We can do the angular
integrals rather simply, to get

Vpr,0 = 4π a3
0

∫ r1

r=0

r2 dr

(1− kr2)
1/2

and, once again, we have to calculate the relationship between r1 and z. We’ve done this
before, in the derivation of luminosity distance. The result was (if Λ = 0)

a0r1 =
zq0 + (q0 − 1)

(

(1 + 2q0z)
1/2 − 1

)

H0q20(1 + z)
.

We must also substitute for k, using the standard result

k

a2
0

= H2
0 (2q0 − 1)

to get the master integration to be performed. The integral isn’t too tough: nor is the
result terribly pretty for most choices of q0, so I won’t write the answer down. The main
character of the result can be seen from the integral and the equation for r1 — for any
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value of q0, the volume is finite, and remains finite as z → ∞. This occurs because the
history of the Universe is finite. If q0 >

1
2 we can go further, and say that the proper

volume of the Universe remains finite at all times, since the recollapse phase limits the
amount of the Universe that is ever in causal contact with us. In that condition, note
that although the Universe is finite in volume it is unbounded — there are no edges.

We use the dependence of the volume of the Universe on q0 as a method of
measuring q0, by counting the number of objects that are visible. Since we know how
many objects per unit volume there are near us, and how bright they are, we can use
the variation of the number of objects of particular brightness with that brightness as
a test for how the volume of the Universe changes with z (and hence r). Of course,
the calculation is complicated by the need to allow for the differing brightnesses of (say)
galaxies, and so we see different fractions of the total galaxy population at different
redshifts, and we can’t really get at the proper volume, but only the volumes on back
light cones, but the principle is correct: by measuring the number counts we get to
measure the rate of change of the volume of the Universe with r, and hence the value of
q0.

Unfortunately, the properties of most objects in the Universe vary so much with
z (i.e., time) that it’s almost impossible to do this. However, it ought to be possible
using supernovae (SN Ia appear to be very homogeneous objects, but are they really
occurring at the same rate now as in the past?) or possibly gravitational lensing. So far
no believable and consistent results have emerged.

One further point worth mentioning — the volume of the Universe is particularly
strongly affected by Λ, the cosmological constant. So this type of test — counting objects
as a function of redshift — should be a good way of measuring Λ, if the problems with
source evolution can be solved.
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15. The thermal history of the Universe

15.1. Matter and radiation in the Universe
The present-day Universe contains matter, with a dust-like equation of state

P = 0 ρm ∝ a−3

with matter density ρm and also a small amount of radiation. The energy density in
radiation is dominated by the energy of the microwave background radiation (which is
everywhere in the Universe). The equation of state of radiation is

P =
1

3
ργ

and hence using the equation of conservation of energy,

d

dt

(

ργa
3
)

= −P
d

dt

(

a3
)

we get
ργ ∝ a−4 .

We can understand this result for radiation very simply. In the Universe at
present, photons in the background radiation field interact only very weakly with the
matter (the matter is too cold, and there’s rather few particles per unit volume).
Therefore the number of photons in the background radiation is very nearly conserved,
and so the number of photons per unit volume

nγ ∝ a−3 .

But in addition, as the Universe expands the energy content of any individual photon is
reduced because the photons are redshifted. So

εγ ∝ a−1

and the energy per unit volume is therefore decreasing as

ργ ∝ a−4 .

Not coincidentally, this matches the drop-off in surface brightness with redshift.

I’ve asserted that radiation is dynamically unimportant in the Universe at the
present time. Let’s investigate further. At present the microwave background radiation,
the dominant radiation field in the Universe, is of almost exactly Planckian spectrum
and has

Trad = 2.728± 0.002 K .

Page 15.1



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

The energy density in the radiation field is then

uγ = aRT
4
rad = 4.2× 10−14 Jm−3

where aR is the radiation constant (7.6 × 10−16 Jm−3 K−4). The equivalent density in
radiation now is therefore

ργ 0 = 4.68× 10−31 kg m−3 .

By contrast, the matter content of the Universe has

ρm 0 = Ω0 ρcrit

= Ω0

(

3H2
0

8πG

)

=
(

1.88× 10−26
)

h2
100 Ω0 kg m−3

so that the present-day ratio of the density in radiation to the density in matter is

ργ 0

ρm 0
= (2.5× 10−5)Ω−1

0 h−2
100

which is substantially less than 1. The Universe is, indeed, very matter-dominated at
present.

15.2. Equipartition

But this was not always the case — we’ve shown that the matter and radiation densities
vary differently with scale factor. At earlier times,

ργ

ρm
∝
a0

a
= (1 + z)

so that matter and radiation were of equal density at

1 + zeq =
(

4× 104
)

Ω0 h
2
100

which is called the epoch of equipartition. At earlier times the Universe was radiation-
dominated; at later times the Universe was matter-dominated, as it is at present. This
density history can be seen in the plot below, which was calculated for Ω0 = 1 and
h100 = 0.5, which makes zeq ≈ 104.
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15.3. Decoupling

We might also ask about the temperature of the Universe as a function of time. Since the
Universe is homogeneous, there is nowhere for energy flows to go, and hence we expect
adiabatic changes in the temperature of matter and radiation that are driven only by
the change in (proper) volume of the Universe. Therefore

Tm ∝ ρ
2
3
m ∝

(a0

a

)2

∝ (1 + z)2

Tγ ∝ ρ
1
4
γ ∝

a0

a
∝ (1 + z)

so that matter is cooling much faster than radiation at present (and I assumed that
the matter had a polytropic index γ = 5

3 ). As we look back to earlier redshifts, the
temperatures of matter and radiation are higher. Matter and radiation interact very
little at the present since matter is of low density. In the past the density of matter
increases, so the possibility of interaction increases. In addition, the temperature of the
matter increases. So there is a particular time in the past, the time of decoupling,
before which matter was dense enough to interact strongly with radiation (strongly
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enough that the interaction time is much less than the expansion time of the Universe).
At earlier times, matter and radiation must have had the same temperature. Hence a
plot of matter and radiation temperatures against redshift would look like (for Ω0 = 1,
h100 = 0.5, ΩB = 0.1)

At times before decoupling, the matter and radiation were at the the same
temperature, since they strongly interact. As the Universe expands the rate at which
radiation is scattered by matter decreases (principally because the density of the
scatterers decreases), but the interaction remains fast until the density and temperature
drop enough that the scattering length becomes long.

Ignored here is the effect of quasars and young stars, which reheat the intergalactic
medium (IGM) at some redshift z ≈ 10 because of their enormous output of UV radiation.
Very quickly at some redshift, which is known to be greater than the redshift of most
quasars from the absence of the Gunn-Peterson effect in their spectra, the temperature
of the IGM jumps to something like 106 K. And this means that most matter in the
Universe today is not at the ≈ 10 mK that the calculation above would predict, but
rather at X-ray emitting temperatures.
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15.4. Recombination and reionization

There is a third important redshift associated with the interaction of matter and radiation
— the redshift of recombination. Recombination is the time at which the Universe
becomes neutral. This is going to be close to the time at which matter and radiation
decouple, since neutrality enforces decoupling. The precise relationship between zdec and
zrec, however, depends on the rate of expansion of the Universe, and how much baryonic
matter the Universe contains.

We can calculate the redshift of reionization using the Saha equation, which says
that in equilibrium, and at temperature T , the reaction

p+ e− ↔ 1H

produces particle densities

npne

nH
=

(

2πmekT

h2

)3/2

e−χ/kT .

This equation can be derived from a consideration of the chemical potentials of the
species in the recombination equilibrium equation, and involves the ionization potential
for hydrogen (χ = 13.6 eV).

Define zrec as the redshift of recombination, and let this be the redshift at which
ne ≈ np ≈ nH , with nH the number density of neutral hydrogen. The Universe is
mostly hydrogen (in other words, I’ll ignore the helium content for the moment), so the
baryon density at zrec is

nB ≈ nH + np = nB0(1 + zrec)
3

where nB0 is the present-day baryon number density, which is (for a pure hydrogen
Universe)

nB0 =
ΩB ρcrit,0

mH
= ΩB

3H2
0

8πGmH
= 11.2ΩB h

2
100 m−3

where ΩB is the fraction of the critical density which is contained in baryons. For
ΩB = 0.1 and h100 = 0.5, the current baryon density is 0.28 m−3. We also know that
the temperature at recombination is

T (zrec) = Trad(1 + zrec)

since the temperature of radiation in the Universe is simply related to the temperature
of the microwave background radiation today. Substituting these into the Saha equation
produces

3

16π

ΩB H
2
0

GmH
(1 + zrec)

3 =

(

2πme kB Trad (1 + zrec)

h2

)3/2

exp

(

−
χ

kB Trad (1 + zrec)

)

,
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which can conveniently be written

(1 + zrec)
3/2 exp

(

A

1 + zrec

)

= B

with
A = 5.78× 104

B = 3.09× 1024ΩB h
2
100

Which we can solve to find
zrec = 1380

so that the temperature of the Universe at recombination was about 3770 K. At this
time, the timescale of interactions between photons and electrons was

tγ e ≈
1

neσT c

where σT = 6.7×10−29 m2 is the Thomson scattering cross-section and ne ≈ 3×108 m−3

(from the value of ΩB and zrec). This gives an interaction time of about 5000 years,
which is only about 2 per cent of the age of the Universe at zrec (2.5 × 105 years: all
numerical values for ΩB = 0.1, h100 = 0.5, and Ω0 = 1). This justifies the idea that the
Universe is in thermal equilibrium at the epoch of recombination — photon/electron
interactions are so fast that matter and radiation are in excellent thermal contact.

We can also use the Saha equation to see that at z only slightly less than zrec
the fractional ionization in the Universe is much lower — because of the exponential
factor. Therefore recombination happens quickly, and is swiftly followed by decoupling.
Recombination and decoupling define the middle and the end of the phase of the
Universe in which the last scattering of the microwave background radiation occurred.
So we can see that this radiation field is telling us directly about the structure of the
Universe at z ≈ 1000.

Finally, there is another interesting thermal phenomenon in the Universe — at
the epoch of reionization. We know that from recombination onwards the Universe was
mostly neutral. But we also know (from observations of quasar spectra) there there
isn’t any remaining neutral material in the intergalactic medium (there are no Gunn-
Peterson effect troughs, where neutral gas has mopped up UV photons). Therefore there
must have been a time, the time of re-ionization, at which the Universe became ionized
again. The redshift at which this happened is, presumably, the redshift at which the
first generation of stars in the Universe formed and started emitting light. This first
generation of stars is likely to have been pretty massive, since these stars formed from
material with little metal content (see discussions of star formation in the literature,
or in earlier courses), and therefore, like the most massive stars today, would have had
high temperature, high luminosity, and hence very high ionizing radiation output.

It is calculated that reionization would have been a fast phenomenon. And it
must have occurred before most quasars formed, so that quasars see only ionized gas.
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Since we see galaxies and quasars to z ≈ 6, we can assume that zri, the reionization
redshift, is 10 or so. And at this time the temperature of the intergalactic medium
rises, probably to 30 keV or more — a temperature high enough that this material cools
only very slowly. Material which has already condensed out of the IGM, into galaxies,
molecular clouds, and so on has a very different history. But that is now a question of the
detailed gravitational and fluid-dynamical processes of structure formation, rather than
the large-scale relativistic cosmology which is the topic of the present lecture course,
and I’ll leave it for graduate studies.

Putting all this together, the recent thermal history of diffuse matter in the
Universe can be represented by the sketch below (which omits the peculiarities in the
temperature of matter after zri produced by stars, quasars, and other structures).

One final thought. Dark matter is presumably only weakly coupled to matter
at present, and even if it has a “dust” equation of state, its current temperature will
depend on the redshift at which it decoupled from the radiation field. If the dark
matter particles are cold, and weakly interact with normal matter and radiation, we
would expect that the dark matter decoupling epoch would be much less than zdec for
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normal matter, and its temperature now would be low. If, on the other hand, the dark
matter has a late decoupling (or may not yet have decoupled — perhaps because the
dark particles have very low rest masses, like neutrinos) then the temperature may be
close to the temperature of the microwave background radiation. See the discussion of
neutrino temperatures in the next lecture.

Page 15.8



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

16. The radiation-dominated era

16.1. The dynamics of the Universe before equipartition
Before equipartition, the Universe was dominated (in energy/density terms) by its
radiation content. The Universe was fully-ionized (zeq > zrec), matter and radiation
were tightly thermally and dynamically coupled (zeq > zdec), and the energy density of
radiation exceeds the energy density of matter.

Under these circumstances, it’s clear that we can no longer use as equation of
state for the Universe the dust equation of state that we used at z < zeq — during the
discussion of the properties of the Universe after the first few hundred thousand years.
Instead, a good approximation would be that the density and pressure of the Universe
are related by a relativistic equation of state, with

P =
1

3
ρ .

Note that this doesn’t mean that the electrons, protons, helium nuclei (and the
few less ionized species) are relativistic — the temperature at zeq is only 104 K or so,
so that even electrons are non-relativistic), but that the dominant density component
of the Universe (the radiation density) has these properties.

With P = 1
3ρ, the Friedmann equation and the equation of state (energy

equation) are
ȧ2

a2
+

k

a2
=

8π

3
ρ+

Λ

3
d

dt

(

ρa3
)

= −P
d

dt

(

a3
)

and the second of these equations reduces to

ρa4 = constant.

As already discussed, this corresponds to the radiation energy density being proportional
to a factor a−3 (like the matter density) because of the cosmic expansion, with an
additional factor a−1 because of the redshifting of the energy of each photon. If we
substitute

ρ = ρeq

(aeq

a

)4

then the Friedmann equation is

ȧ2

a2
+

k

a2
=

8π

3
ρeq

(aeq

a

)4

+
Λ

3
.

This can be simplified. We know that the Λ term is small, or at most comparable with
the present-day value of the density term (from the geometry of the Universe today).
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Hence back at z > 103 the Λ term must have been insignificant, and it can safely be
dropped. Similarly, we know that the curvature term (in k) becomes smaller relative to
the other terms as we go back in time (this is simply the argument about the “flatness
problem” again), and at z > 103, again it must be small relative to the other terms.
Hence in the radiation-dominated phase of the Universe, we can write

ȧ2

a2
=

8π

3
ρeq

(aeq

a

)4

to high accuracy. This means that we need to deal only with the radiation-dominated
Einstein – de Sitter Universe: the closed and open Universe solutions are extremely
close in properties to this one.

Solving this equation is simple: the result is

a = aeq

(

32π ρeq t
2

3

)1/4

so that a ∝ t1/2, and ρ ∝ t−2. That is, the Universe expands more slowly than in the
matter-dominated phase (where the scale factor varied as a ∝ t2/3), but the radiation
density of the Universe changes as t−2 just as the matter density does after equipartition
in an Einstein – de Sitter Universe. In fact we can write the density/time relation more
precisely as

t =

(

32π

3
Gρ

)− 1
2

(re-inserting the G factor). Note that the assumption that we are dealing with an
Einstein – de Sitter Universe factors out the ρeq factor: all cosmologies that are a
reasonable match to the present-day Universe have very similar densities at early times
(z > zeq). Since the density in radiation is related to the temperature by

ρ =
aR T

4

c2

where aR = 7.6× 10−16 Jm−3 K−4 is the radiation constant, I can relate the age of the
Universe, t, to the temperature of the Universe, T , by

T =

(

32π GaR

3c2

)− 1
4

t−
1
2

which can be written conveniently as

(T/K) = 1.5× 1010 (t/sec)−
1
2 or

(kBT/MeV) = 1.3 (t/sec)−
1
2

so that at 1 second after the Big Bang the temperature was about 1.5×1010 K (1.3 MeV),
and we might expect nuclear reactions to be occurring, while by 1 hour after the Big

Page 16.2



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

Bang, the temperature has dropped to 2.5 × 108 K (20 keV), and the entire Universe
resembles the ordinary X-ray emitting gas that is found in clusters of galaxies today.

That is, all the truly relativistic behaviour of the Universe is concentrated in the
first few minutes of its life. After approximately an hour, there is no physics other than
the ordinary laboratory and astrophysical processes that we observe elsewhere. That
is, the Universe is relatively boring from 1 hour after the Big Bang until recombination,
and we ought to be able to understand everything that’s going on.

Let’s check this by putting in values for the density. At one second after the Big
Bang, the density of matter in the Universe is about 4×108 kg m−3, rather higher than
any density that we deal with in laboratory experiments, though substantially less than
nuclear density so that the physics of such matter should not be unusual. At one hour,
the density has dropped by a factor 1.3 × 107, to only 30 kg m−3, rather less than the
density of water.

16.2. e+e− annihilation and neutrinos

In fact the result for the density and temperature of the early Universe as a function
of time needs some modification, because the details of what particles were present and
relativistic makes a substantial difference to the early dynamics of the Universe, at the
point before kBT ≈ 2mec

2, which is when and electrons and positrons annihilated.

What were the major constituents of the early Universe? Take as a reference
time t = 0.01 sec after the Big Bang, when matter was relatively normal and we can be
fairly confident about what was going on. Then the basic constituents of the Universe
were

baryons mB = 931 MeV
electrons me = 511 keV
photons mγ = 0
neutrinos mν = 0 (assumed)
dark matter MD > 1 Gev (assumed)

and we expect that both the normal particles and the antiparticles might be present.
However at this time, kBT ≈ 13 MeV, much less than the rest-mass of a baryon. Thus
there is insufficient energy density to create baryon/anti-baryon pairs (and, presumably,
any dark matter particles), and so we expect that almost all anti-baryons will have
annihilated with baryons.

What are the contributions of each of these species to the energy and entropy
content of the Universe? Immediately we know that we can ignore the rest-mass
equivalent energy content of baryons (since we’re well before equipartition), so we need
only consider photons, electrons (which can be pair-produced), and neutrinos. The
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calculations for the energy densities in photons and neutrinos are similar:

uγ =

∫ ∞

0

4π

c

2hν3

c2

(

ehν/kBT − 1
)−1

dν = aRT
4

uν = 3×

∫ ∞

0

4π

c

2hν3

c2

(

ehν/kBT + 1
)−1

dν =
21

8
aRT

4

where the factor 3 takes account of all three neutrino flavours (the “2” in the equation
for neutrinos takes account of anti-neutrinos just as the “2” in the photon expression
takes account of the polarizations of photons).

For particles with mass the results are a little more complicated since the chemical
potentials need to be taken into account. However, the limiting cases are simple:

ue =

{

7
4aRT

4 kBT À mec
2

0 kBT ¿ mec
2

uB =

{

7
4aRT

4 kBT À mBc
2

0 kBT ¿ mBc
2

uD =

{

7
4aRT

4 kBT À mDc
2

0 kBT ¿ mDc
2

for electrons (and positrons), baryons (and antibaryons), and dark matter particles,
respectively.

I can also write results for the entropy per unit volume in the different species,

sγ =
4

3
aRT

3

sν =
7

2
aRT

3

se =

{

7
3aRT

3 kBT À mec
2

0 kBT ¿ mec
2

sB =

{

7
3aRT

3 kBT À mbc
2

0 kBT ¿ mbc
2

sD =

{

7
3aRT

3 kBT À mDc
2

0 kBT ¿ mDc
2

once again ignoring the small terms for non-relativistic electrons, baryons, and dark
matter particles.

Now, at t = 0.01 sec, kBT ¿ mbc
2 for all baryons, for dark matter, and for

all leptons except electrons and positrons. Hence the energy budget of the Universe
is dominated by the relativistic species (we are well before equipartition, so that the
rest-mass energy of dark matter and baryons in the Universe is insignificant), and the

Page 16.4



Relativistic Cosmology: Physics 419 c©Mark Birkinshaw 2000

total density of the Universe is

ρ(T ) =
ue(T ) + uν(T ) + uγ(T )

c2

=

(

7

4
+

21

8
+ 1

)

aRT
4

c2

=
43

8
aRT

4

= g∗rel aR T
4

where g∗rel is the statistical weight of all relativistic species in the Universe. We can insert
this result into the relationship between time and temperature since the Big Bang

t =

(

32πGρ

3

)− 1
2

to get an improvement over our previous expression

(t/sec) = 1.0× 1020(T/K)−2

(easier to remember than the other result!). Note the importance of g∗rel here — the
dynamics of the early Universe depends on how many species of relativistic particles are
present, and the statistics of these species. To obtain the full solution for the evolution
of the Universe from t = 0 to the present, we would need to know g∗rel at all times,
including each species of particle that makes a significant contribution to ρ(T ).

Now, the expansion of the Universe is adiabatic (since there are no anisotropies
that can drive energy flows), so that the expansion has

sa3 = constant

and the temperatures of the various constituents of the Universe either change together
(if they are tightly coupled by scattering), or independently (if they are weakly coupled).
At t = 0.01 sec, neutrinos and electrons as well as electrons and photons are strongly
coupled — they scatter rapidly compared to the expansion time of the Universe.
Therefore the electrons, neutrinos, and photons have the same temperature and I can
write (as I did, above)

Te = Tν = Tγ ≡ T

since there is a unique “temperature of the Universe”. As the temperature drops,
however, the neutrino-electron interactions become progressively slower relative to the
expansion of the Universe. That is, there is a time of neutrino decoupling, just like
the time of electron (and hence matter) decoupling in the later stages of the expansion
of the Universe. After decoupling the neutrinos will have a temperature which varies
according to

sνa
3 = constant

i.e. Tν ∝ a−1 ∝ (1 + z) .
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For the moment, however, it remains true that Te = Tν = Tγ , since the electrons,
neutrinos, and photons are all relativistic particles (with kBT greater than their rest
masses), so that each independently obeys s ∝ a−3 and so each has T ∝ a−1 ∝ (1 + z).

A major change occurs when Te (= Tγ = Tν) drops to about 1010 K, where
kBT ≈ 2mec

2, which happens at t ≈ 1 sec. Now the electrons and positrons annihilate
— i.e., the equilibrium

e+ + e− ⇀↽ 2γ

is driven strongly to the right and favours photon production. The energy released in
this annihilation heats the photons but not the neutrinos since the neutrinos are no
longer strongly interacting with the photons or electrons. The temperature change can
be calculated by conservation of entropy

seγa
3|before e+e− annihilation = seγa

3|after e+e− annihilation

sνa
3|before e+e− annihilation = sνa

3|after e+e− annihilation

Thus if a1 is the scale factor before annihilation and a2 is the scale factor after
annihilation, Teγ1 is the temperature of the electrons (and photons) before annihilation,
Tγ2 is the temperature of the photons after annihilation, and Tν1 and Tν2 are the
corresponding temperatures of the neutrinos,

a3
1

(

4

3
aRT

3
eγ1 +

7

3
T 3

eγ1

)

= a3
2

(

4

3
aRT

3
γ2

)

a3
1

(

7

2
aRT

3
ν1

)

= a3
2

(

7

2
aRT

3
ν2

)

Recognising that Teγ1 = Tν1, and dividing,

11

3
=

4

3

(

Tγ2

Tν2

)3

so that

Tγ2 =

(

11

4

)
1
3

Tν2

and hence the annihilation of electrons and positrons raises the temperature of the
radiation field to 1.40 times the temperature of the neutrinos. Because the photons and
neutrinos remain relativistic from this time to the present (assuming that neutrinos are
really massless), their temperatures independently evolve as (1 + z), and hence today

Tν0 =
Tγ0

1.40

and the Universe must contain a neutrino background with a temperature of 1.95 K.
This neutrino background has essentially no dynamical consequences (its energy density
is very low), and appears to be undetectable.
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The earliest phases of the thermal history of the Universe therefore are a bit more
complicated than the sketch I drew in the last lecture: I must now add the neutrinos
as a separate species, and so the temperature history between t = 0.01 and 100 sec
(z = 2× 106 and 2× 104) should appear as
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17. Nucleosynthesis and baryogenesis

17.1. Nucleosynthesis
An important change in the make-up of the Universe occurs and somewhat after the
time of electron/positron annihilation, which marks the end of what’s sometimes called
the “lepton era”, when nucleosynthesis converts some of the elementary particles into
composite objects. In many ways the ruling physics here is similar to the physics
of recombination (or physics at the end of the quark era, but that we understand
rather little about), except that it’s not the interaction of electrons and protons to form
hydrogen that’s important, but the combination of nucleons to produce different types
of nuclei. And rather than happening at times a few hundred thousand years after
the Big Bang, when the temperature is a few thousand K, nucleosynthesis occurs in
the first few minutes of the Big Bang, when the temperature is still 109 K or more
(kBT >∼ 100 keV).

Consider the recombination-like process when neutrons and protons react to
become deuterium (and, later, helium). At high enough temperatures (T À 3×109 K),
neutrons and protons are kept in some constant ratio by the equilibrium

n+ νe ⇀↽ p+ e−

n+ e+ ⇀↽ p+ νe

n ⇀↽ p+ e− + νe .

In equilibrium, the chemical potentials are related by

µn + µνe
= µp + µe−

µn + µe+ = µp + µνe

µn = µp + µe− + µνe
.

These three equations are effectively the same, since µe+ = −µe− and µνe
= −µνe

. But
µ ∝ ln(m); so µν ¿ µe ¿ µn and

µn ' µp ,

Statistical-physics expressions for the chemical potential relate it to the de Broglie
wavelength, λ (which sets the phase space volume element), and the partition function,
Z, as

µ = kT ln

(

nλ3

Z

)
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where n is the number of particles per unit volume. Hence the equality of chemical
potentials implies a ratio of particle densities of neutrons and protons given by

nn

np
=

(

λp

λn

)3

·
Zn

Zp
.

But λp ∼ λn, Zn = gne
−Qn/kT and Zp = gpe

−Qp/kT . The degeneracies gn = gp = 2
(since both particles have s = 1

2 ). Qn and Qp are the binding energies (mass deficits)
of n and p. Therefore,

nn

np
= e−(Qn−Qp)/kT ,

or

nn

np
= e−Q/kT .

where Q is the mass excess of neutrons relative to protons, which is equal to 1.293 MeV.

Q = kT at T = 1.5× 1010 K. Thus, as long as the neutrons are in good thermal
contact with neutrinos (at T À 1010 K, while the interaction time of neutrons with
neutrinos is less than the expansion time of the Universe), the fraction of bosons as
neutrons is

nn

np + nn
= Xn =

1

1 + eQ/kT
.

In particular,
Xn = 0.38

at T = 3× 1010 K.

Now, at T <∼ 3×1010 K, good thermal contact is lost and the reactions tend to fall
out of equilibrium, establishing a slightly lower Xn whose value must be obtained from
a detailed study of the n/e/p/νe reaction processes. The Xn established is higher than
the value of zero predicted by thermal equilibrium, because the Universe is expanding
too fast to allow the neutrons to be converted to protons (the expansion time is less than
the interaction time between neutrons and positrons or neutrinos). Perhaps an easier
way to say this is that the neutron/proton equilibrium can’t adjust as fast as is required
by the rapidly-falling temperature of the Universe near this time. As a result, the
neutron fraction “freezes out” at Xn ∼ 0.16 (the value appropriate for T ∼ 9× 109 K
in equilibrium).

But neutrons tend to decay, with a decay time ∼ 1000 sec, so Xn is expected to
decrease on this timescale.

Helium formation competes with neutron decay to remove free neutrons. The
slowest step of 4He production is the formation of deuterium. This is difficult, since 2H
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is weakly bound compared to 4He, so although 4He is energetically favored over n+ p at
T <

∼ 109 K, the necessary preliminary step of deuterium production limits its formation,
and can only start at a lower temperature. We calculate when 2H becomes abundant
by looking at the equilibrium of

p+ n ⇀↽ 2H + γ

(a weak interaction). In equilibrium,

µp + µn = µd

where I’m using d for the deuteron. Using the expression for the chemical potential in
terms of de Broglie wavelength, density, and partition function,

kT ln

(

npλ
3
p

Zp

)

+ kT ln

(

nnλ
3
n

Zn

)

= kT ln

(

ndλ
3
d

Zd

)

and so
npnn

nd
=

λ3
d

λ3
pλ

3
n

·
ZpZn

Zd

md ∼ 2mn, mn ∼ mp, and so we arrive at

npnn

nd
=

(

πmpkT

h2

)3/2

e−I/kT

where I = 2.2 MeV is the binding energy of 2H. Solving, we find that
npnn

nd
∼ nB , the

number of baryons, at z = 2.9 × 108, T = 7.8 × 108 K, and nB = 1013 m−3. So 2H
production (and hence 4He production) only becomes fast at T ∼ 8× 108 K (about two
minutes after the Big Bang), and somewhat later than 4He production becomes very
energetically favorable. By this time some of the neutrons have decayed to protons. At
this stage, Xn has dropped from ∼ 0.16 to ∼ 0.13.

After the “deuterium bottleneck,” 4He forms by

d + d → 4He + γ

or

{

p + d → 3He + γ
n + 3He → 4He + γ

or

{

n + d → 3H + γ
p + 3H → 4He + γ .

These reactions are fast and quickly take almost all the deuterium through to 4He,
eating up all the neutrons that have not decayed.
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The final mass fraction of baryons in helium, Y , can be predicted from the mix
of neutrons and protons before nucleosynthesis. It takes two neutrons to produce one
4He nucleus. Therefore,

n4He(after
4He synthesis) =

1

2
nn(before 4He synthesis) ,

and hence

Y =
4n(4He)

nb

=
2nn(before)

nn(before) + np(before)

= 2Xn(before) ,

where Xn ≈ 0.13 is the fraction of baryons in neutrons surviving to nucleosynthesis.
Therefore we expect the Universe to contain a primordial helium mass fraction

Y ∼ 0.26 .

This is consistent with the measured values of 4He abundance, which is roughly
constant in many objects (distant galaxies, old stars, HII regions, ...). The constancy
of Y and the fit to the theoretical value give us confidence in the reality of a hot Big
Bang.

Other elements are also created in the Big Bang: in particular, appreciable
amounts of 3He, 2H, and 7Li (that is, appreciable compared to the present observed
abundances: all are rare).

We can compare the predicted amounts of, for example, 4He and 2H produced
in the Big Bang (as functions of ΩB , since we do not know ΩB accurately) with those
observed, and try to use this astrophysical method to determine ΩB . (Note that the
prediction is only a weak function of Ω0, since we know that Ω ≈ 1 at nucleosynthesis
and so all Universes behave similarly).

Problem: Although 4He, once produced, is not destroyed, so that the present Y
(corrected for the small contribution from its production in stars) leads directly to the
Big-Bang-produced Y , 2H is affected by later processes, principally by being destroyed in
stars. This correction is probably large, so that the primordial abundance of deuterium
is poorly known. If we make the best-guess correction for deuterium destruction, we
can try to determine ΩB .

The sense of the variation of abundance with Ω0 is that

at higher ΩB , most of the 2H is burned to 4He

at low ΩB , little of the 2H is burned to 4He
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The observed 2H/1H (∼ 3 × 10−5) is probably a lower limit to the primordial 2H/1H.
Thus, 2H/1H really only gives an upper limit to ΩB . However, after correcting for
astration (the processing of material in stars), the current best-buy value for ΩB based
on nucleosynthesis (and assuming Ω0 = 1) is

ΩB0 = (0.013± 0.002)h−2
100

which corresponds to a small fraction of the closure density: most matter in the Universe
is presumably dark.

Note that the value of ΩB deduced from 2H is approximately consistent with the
value found from other methods (such as the total virial masses of systems of galaxies),
and that a detailed analysis of the abundances of all the primordial nucleosynthesized
species yields consistent results for ΩB and Ω0.

17.2. Photon to baryon ratio, entropy, and matter asymmetry

The photon to baryon ratio is an important parameter of the present-day Universe.
This number has been implicit for the last couple of lectures. The present-day baryon
number density is

nB0 =
ΩB0ρcrit,0

mB

where mB is the mass of a baryon, mp ≈ mn ≈ mH (to sufficient accuracy at present).
Putting in the numbers,

nB0 = 11.2ΩB0 h
2
100 m−3

or a pretty good vacuum. ΩB0 is the present-day baryon contribution to the density
parameter.

The number of photons per unit volume is given by

nγ0 =

∫ ∞

0

4π

c
·
B(ν)

hν
dν

where B(ν) is the black-body spectral intensity (corresponding to the microwave
background radiation, which is the dominant radiation field in the Universe)

B(ν) =
2hν3

c2

(

ehν/kBTγ0 − 1
)−1

where Tγ0 = 2.728± 0.002 K. Performing the integral, we find that

nγ0 = 16π ζ(3)

(

kBTγ0

hc

)3

where ζ(x) is the Riemann zeta function and ζ(3) = 1.202 . . ., so that

nγ0 = 4.12× 108 m−3.
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Thus the number of photons per baryon today is

nγ0

nB0
= 3.75× 107 Ω−1

B0 h
−2
100 À 1 .

This is a large ratio, and we can legitimately be puzzled by it. Why should there
be so many more photons than baryons?

We can pose this question another way, by looking at the entropy per baryon in
the present-day Universe. The density entropy of the microwave background radiation
is

sγ =
4

3
aR T

3
γ

(easily derived from thermodynamics). This corresponds to an entropy per photon of

sγ

nγ
=

2π4

45ζ(3)
kB ≈ 3.6kB

(a universal constant). Thus the radiation entropy per baryon in the Universe today is
proportional to the photon/baryon ratio, and is

sγ0

nB0
= 1.35× 108 kB Ω−1

B0 h
−2
100 .

This is enormously greater than the entropy that matter has because of its own
temperature. Why is the Universe in such a high entropy state today? Why is the
disorder so high, but not so high that there is no interesting structure?

The cause of this is, essentially, the baryon asymmetry in the Universe. If nB

and nB are the baryon and anti-baryon number densities, then since baryon number is
conserved in the Universe (mostly ... see later),

(

nB − nB

)

a3 = constant .

In the very early Universe (after the epoch of grand unification), we would expect
the number of baryons to be close to the number of antibaryons and the number of
photons,

nB ≈ nB ≈ nγ

and so the baryon asymmetry

nB − nB

nB + nB

≈
nB − nB

2nγ
≈

nB0

2nγ0

where nB0 and nγ0 are the present-day baryon and photon number densities. That is,
the large entropy per baryon that we see today, corresponding to the large value of

nγ0

nB0
= 3.75× 107 Ω−1

B0 h
−2
100 À 1 .
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corresponds to a tiny but non-zero baryon asymmetry created in the early Universe.

This asymmetry is believed to come from a phase of baryogenesis, associated with
particle-physics processes that involve the non-conservation of baryon number. This
must also involve violation of C or CP symmetry (otherwise there would be an equivalent
process to cancel out the baryon generation), and must occur out of thermal equilibrium
(or there would be no reason to prefer particles over antiparticles and no asymmetry
could be generated). This is sometimes referred to as the Sakharov mechanism.

The guess is that some such process is possible under GUTs at kBT > 1015 GeV,
that is at a time less than 1 nsec after the Big Bang. Indeed, we can turn the
question around and say that a requirement on any GUT is that there should be such
a process, otherwise we can’t understand where the baryon asymmetry came from, and
we would have to put the asymmetry into the initial conditions of the Universe (always
an unsatisfactory situation).

There is a residual problem, of course. The fine-tuning needed to get the number
of baryons and anti-baryons so nearly equal is strange — when a large asymmetry would
have been possible, what process came into action to make only a small asymmetry result
from the symmetry-breaking at the end of the GUT phase?
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18. Horizons and flatness

18.1. Horizons
Light travels on null geodesics, and so the path of a light ray which moves radially
towards an observer at the origin is, as we have used many times,

∫ t0

t

dt

a(t)
=

∫ r

0

dr

(1− kr2)1/2

which we can solve for r(t). If we look at the world line of such a photon, it appears as
in the diagram below (for q0 = 0.4).

What can we see from this diagram? The dominant feature is that there is a
domain of r(t = 0) which lies within the back light cone, and which therefore can have
communicated with us (at r = 0) by the present time t0. There is also a region outside
the light cone which can never have communicated with us, and which therefore is
not causally connected to us. It is also clear that as t0 increases, a larger and larger
coordinate patch of the Universe comes into view.

The region outside the light cone shown is said to lie outside the particle
horizon. That is, it’s in a region of spacetime that is not now causally connected
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to our current event, but might be so connected in the future. A particle horizon
divides the past of an observer into a set of events from which light signals could have
been received from a set of event from which no communication is possible.

Contrast with this an event horizon. This separates the set of events from
which an observer could ever receive signals, including at some time in the future, from
the set of events from which such communication will never be possible.

Look at the figure again: it highlights the interesting horizon problem in
cosmology. At present we see the Universe filled with a very uniform radiation field, the
microwave background radiation, which originates at z ≈ 1000. The uniformity of this
radiation field is extreme, and shows

the Universe is the same over the entire sky at z = 1000.

But the back light cones of all points on the sky at z = 1000 do not have a common
past. Let’s take a closer look at the very bottom of the first diagram, and consider two
locations on the sky, A and B, for which: for example the two points A and B which
lie on opposite sides of the sky at z = 1000. Then these points have their own particle
horizons, which don’t overlap — their horizons are very well separated. But points not
in causal contact have no reason to exhibit the same physical properties: there’s no
reason why the Universe should arbitrarily have decided that all locations should be
created exactly equal. So why is the microwave background from the directions of A
and B similar to a part in 105, when there’s no reason for the thermodynamic properties
of A and B to be the same?

Calculating this for k = 0 (q0 = 1
2 ), it’s easy to show that the path of a light ray
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follows

H0 a0 r(t) = 2

(

1−

(

t

t0

)2/3
)

= 2
(

1− (1 + z)
− 1

2

)

where t0 = 2
3H

−1
0 is the current age of the Universe. This means that a light-ray from a

points with current proper distance (distance today, measured in a local Lorentz frame)
of up to

a0rmax = 2
c

H0
= 6h−1

100 Gpc

from us could have been in causal contact (this is the proper distance to our horizon). At
zrec = 1000, points A and B are about 11.6h−1

100 Gpc separated in present-day distances,
if these are antipodal points on our sky (and the Universe has a trivial topology). But
the horizons of these points only extend to a present-day proper radius

a0r(trec) = 2H−1
0 (1 + zrec)

−1/2
≈ 0.2h−1

100 Gpc

which is much less than their separation. So, as seen in the diagram, there are many
independent patches of sky, all of which look very much the same in the microwave
background radiation. Indeed, the angular size of these patches is roughly 15◦, but
the microwave background radiation does not show much structure on smaller angular
scales, where the emitting material at zrec should have been very inhomogeneous. What
made the Universe so much more isotropic than it should have been?

18.2. Flatness

Not only is the Universe unexpectedly homogeneous, based on the evidence of the
microwave background radiation, but also unexpectedly flat.

Best evidence at the moment says that the density parameter of the Universe (in
all constituents: dark matter, baryons, photons, and even vacuum energy) has

0.2 <∼ Ω0
<∼ 2 .

This is unexpected: we are within a factor of several of Ω0 = 1, the critical density
Universe. But why is this a problem? Let’s look at how Ω depends on time.

The density parameter at time t is the ratio of the density of the Universe to the
critical density at that time,

Ω(t) =
ρ(t)

ρcrit(t)

and both the density in the Universe and the critical density depend on time. At present
the Universe is matter-dominated, so

ρ = ρ0

(a0

a

)3
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where ρ0 is the present matter density (cold dark matter, plus baryons). And the critical
density is defined as the density that makes k = 0, which from the Friedmann equation
is

ρcrit =
3H2

8π
=

3

8π

ȧ2

a2

if we take Λ = 0. The Friedmann equation, with Λ = 0, is

ȧ2

a2
+

k

a2
=

8π

3
ρ

which I can rewrite in terms of the critical density as

8π

3
ρcrit +

k

a2
=

8π

3
ρ

or, in terms of the density parameter,

1

Ω(t)
= 1−

3

8π

k

ρa2
.

At t = t0 this still applies, and so

1

Ω0
= 1−

3

8π

k

ρ0a2
0

so, eliminating k,
1− 1

Ω

1− 1
Ω0

=
ρ0a

2
0

ρa2

and so, in a matter-dominated Universe,

1− 1
Ω

1− 1
Ω0

=
a

a0
.

This means that as a→ 0 (i.e., in the earliest phases of the Universe), for any present-
day value of Ω0,

Ω → 1 .

Parenthetically, notice that if Ω0 = 1, then Ω retains a value of 1 at all times.

But Ω(t = 0) would be expected to be a parameter of the Big Bang model —
it’s simply the density of the Universe at the initial point of time, and sets the initial
expansion rate. There seems to be no reason why it should be exactly one.

And it does need to be one to very high precision. Suppose that at time t1 close
to the time of the Big Bang (say 1 nsec later) the value of Ω = 1 + ε1, with ε1 ¿ 1.
Then to first order in ε1, the density parameter today would be

Ω0 =

(

1−
a0

a1
ε1

)−1

=

(

1−

(

t1
t0

)− 2
3

ε1

)−1
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and so with t1 = 1 nsec ≈ 2 × 10−27 t0 (for h100 = 0.5), we require ε1 < 10−18 if the
density today is not to be significantly outside the range in which we know it to lie.

This is a fine-tuning problem. Somehow the early phases of the Universe “knew”
that they had to have Ω within a part in 1018 of unity (in a number of non-causally
connected patches, indeed), so that the Universe today would be anything like it actually
is. Why was the early Universe so incredibly flat?

18.3. Inflation

The answer to both problems is inflation.

It is supposed that some time shortly after the Big Bang, at a temperature
kBT ≈ 1014 GeV, which by

(kBT/MeV) ≈ 1.3 (t/sec)
− 1

2

would have happened at time t ≈ 10−34 sec after the Big Bang, there was a phase
transition in the fluid. This phase transition might be associated with the breaking of
the symmetry of the strong and weak interactions (or it might have happened earlier,
and had some other cause). At that time, the equation of state of the fluid in the
Universe would have been

ρ = −P

since the stress-energy tensor must have been diagonal and proportional to the metric
tensor (since we associate the phase of inflation with a false vacuum, and so the
stress-energy tensor must be proportional to the metric tensor, the only relativistically
invariant form). In this case, the equations of motion of the Universe are

ȧ2

a2
+

k

a2
=

8π

3
ρ+ Λ

d

dt

(

ρa3
)

= −P
d

dt

(

a3
)

and with ρ = −P , the second equation implies that ρ = constant, ρI . This means that ρ
is behaving like the cosmological constant, Λ: in the Friedmann equation we can absorb
Λ into the definition of ρI to obtain

ȧ2

a2
+

k

a2
=

8π

3
ρI .

In the early Universe the expansion was fast, and the term in k is relatively
unimportant (can be demontrated later, if desired — but it’s a general result that when
the density is high, the curvature term is negligible relative to it. All Universes look flat
at early enough times). Making this approximation, the equation of motion becomes

ȧ = a

(

8π

3
ρI

)1/2
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which integrates to the exponential expansion

a(t) = aI exp

(

(

8π

3
ρI

)1/2

t

)

.

It must be emphasized that this is an extremely fast expansion. At time 10−34

sec the Universe has not been much decelerated, and is still expanding at about c, so the
that proper size of a causally-connected patch of Universe is roughly ct = 3× 10−25 m.

Now suppose that inflation continues from this time for 1 psec, which is not
unreasonable. Then

(

8π

3
ρI

)1/2

t ≈ 100

is not unreasonable (i.e., it’s a guess!), so the exponential factor

exp

(

(

8π

3
ρI

)1/2

t

)

≈ 1043 .

Thus by the end of the phase of inflation, the original small causally-connect
patch, which had radius 3 × 10−26 m has swollen to a causally-connected patch with
radius 3 × 1017 m. Since this is only ∼ 1 psec after the Big Bang, ct ≈ 3 × 10−7 m.
Thus

• a causally-connected patch of Universe that was comfortably smaller than the
size of an atomic nucleus has been inflated to a scale À ct

• even irregularities of a factor 100 in density have therefore been smoothed out
by a factor

(

1043
)3
≈ 10130

simply by being stretched. The Universe has therefore been made very smooth
and uniform. This resolves the horizon problem, since every bit of the Universe
that we see was within the original tiny causal patch that was swollen by the
inflationary episode.

• and the flatness problem is also solved: in the inflationary phase

ȧ2

a2
=

8π

3
ρI

so that the density parameter

Ω =
8πρ

H2
=

8πρ

3

a2

ȧ2
= 1 .

That is, the phase of inflation drives the density parameter of the Universe to 1.
And since later phases of the expansion (according to the results derived earlier)
keep Ω = 1 if Ω = 1 initially, we would expect to find Ω = 1 now.
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What does inflation look like? A sample calculation for a particularly simple
“inflaton field” (perhaps something to do with some symmetry-breaking at very high
energies) is shown below: here Φ is the amplitude of a quantum field, and it can be
seen that inflation is driven (the scale factor is expanding very rapidly) even though
the dynamics of the inflationary field causes it not to remain constant. For very many
quantum fields (very many fields in which there’s an appreciable energy stored in the
field amplitude, rather than the rate of change of the field), a similar sort of solution
will occur — a rapid increase in a while the field changes little (or not at all) followed
by an oscillatory decay of the field to zero.

What, physically, is happening to solve the flatness problem? Suppose that at
the initial state of the Universe there’s some density not in the form of the “inflaton
field”. The rapid expansion takes this density and reduces it exponentially to a very
low level (it’s expanded away). By contrast, the effective vacuum energy, the inflaton
field, doesn’t change much as the expansion proceeds once it has reached ΩI = 1.

So at the end of inflation there’s a microscopic amount of non-vacuum like energy,
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and a lot of vacuum-like energy. What causes inflation to end? Inflation ends when the
inflaton field decays. And this decay is noisy, creating a lot of radiation and matter. This
phase of reheating in the Universe is a major topic of debate — about the mechanism
under which the Universe exits from inflation and becomes “normal” again.

But there is agreement about what results — a mixture of hot matter and
radiation with Ω = 1. Or perhaps not exactly one, since some energy may end up
locked into the Λ-field (with ΩΛ < 1).

And we get one other result for free from this process — we get a mechanism
for introducing perturbations (in the form of the noisy pressure and temperature
fluctuations caused by the exit from inflation: the ripples in the figure above) which can
then start to grow under the influence of gravitation to become modern-day galaxies
and clusters of galaxies. That is, the original perturbations which grow to become
present-day structures need not be put in as a boundary condition, but their properties
might be deduced from the physics of the exit from inflation at reheating.
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