Yy o o viccurovihiv 1ovovvo £ IUJ- 4VLE. L0V TVOIOUOTOWWWL

Mass Estimation Using the Virial Theorem

The big use of the virial theorem is to determine the mass of a static assembly
of point masses — for example, the total mass of a globular cluster of (perhaps) 10°
stars, or a cluster of 103 galaxies. In the simplest application of the virial theorem, we
assume spherical symmetry and that all the objects are of the same mass, m. There
are refinements of the theory where these assumptions are dropped, which makes the
manipulations more difficult. We use the virial theorem in the form

GM =v2R,

where for N equal-mass objects
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Then to get the total mass, M, we must measure the mean square velocity of galaxies in
the cluster, v2, the velocity dispersion; and the harmonic mean radius of galaxies in the
cluster, R., the “effective radius.”

How do we get these from what we see?

a) Measurements of Vv2, the velocity dispersion

We measure velocities by Doppler shifts, so we only measure radial components
of galaxy velocities (the relativistic transverse Doppler effect has never been seen in a
gravitational dynamics situation!).

So, suppose we measure the radial velocity, v,, for many (100 or so) galaxies in
a cluster. Then we get a distribution of velocities, and we can find the mean square
dispersion of galaxy velocities about the systemic radial velocity, vs. The systemic
velocity is the mean velocity of the system,
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where the sum is over cluster members only. The radial velocity dispersion, o, is given
by
1
o, = ((vs — US)2> =~ Noo (vy — US)2
GC

But we need the total (three-dimensional) velocity dispersion, V v2, in the virial theorem.
This is . \ ) ) \

02 = (v7) = ((vz — Vsg)” + (vy = Vsy)” + (V2 — Vs2)7)

= 3((v; — U8)2>

= 30?2
This result is true if the velocity distribution is isotropic (as we would expect for a
spherical cluster). Therefore, we can use the observable radial velocity dispersion, o, to

infer the unobservable three-dimensional velocity dispersion, V2. In terms of o,, the
virial theorem becomes

GM = 3R.0?

o Note the importance of the assumption of spherical symmetry, which provides
v2 = 302. This assumption allows us, once again, to solve the ubiquitous problem of
the hidden dimensions ... in this case, also the two hidden velocities v, and v,.

b) Measurement of R., the effective gravitational radius

R, the effective gravitational radius, is defined by

1_1 m;m;
R—M22Tij ’

e .
pairs

where M = 21111 m; is the total mass of a group of N point masses with separations
{ri;}. If all the m; are the same, say m, then

How can we estimate R, from observations of a cluster of masses in which
we observe only the projected separations between objects, p;;, not the true (3-D)
separations r;;7?

1 1
E — cannot be used as an estimator of E — because the few pairs with
Pij Tij
pij ~ 0 dominate the sum, giving a very bad estimate for R. (since these small p;;
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1 1
are the hardest to measure accurately), although mathematically > — and > — are
i Tij
closely related if the vectors r;; are randomly aligned.

Instead, it is better to assume spherical symmetry and then to use the properties
1
of the observed projected distribution to get { — ). Suppose that we measure a number
Tij
of galaxies/unit area on the plane of the sky v(p), where p is the distance from the
center of the cluster. Then 27v(p)p dp is the number of galaxies in the annulus between
projected radii p and (p + dp).

The surface density profile, v(p), is the projection of the true 3-D density
distribution, n(r), the number of galaxies/unit volume in the cluster.

oo

vp) = [ nr) dz

— 00
where the integral is along the line of sight, z, and
r? = 102 + 22

The problem is then to calculate n(r) from the observed v(p). This “inversion problem”
is difficult and is another example of the ubiquitous problem of the 3rd dimension in
astrophysics.

The standard method for solving this problem is Plummer’s method of strip
counts. Suppose that we count the number of galaxies in a one-dimensional strip
between x and (z + dz) from the center of the cluster. Let this number be S(z)dz.
Then S(z) is a projection of v(p) in the y direction:

S(z) = 7V(p) dy

where
p2 — 3]'2 + yZ

(note that I've changed from cylindrical (p,@,z) coordinates to Cartesian (z,y, z)
coordinates).

Using the expression for v(p),

S(z) = 70 dy 7 dz n(r)

Change to polar coordinates in the y-z plane:

w2:y2+z2
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so that
//dydz == /27rwdw
and
r? = w? + 22
so that
/wdw — /7" dr
Then
o o0 o0 o0
= / /dydzn /27rwdwn(r):/27rrdrn(r)
—00 —00 0 T
and so
% =21z n(x) |,
ie.,

o= (%),

So, by doing the 1-D strip counts, we can get n(r); but the appearance of a
differential operator in this result makes it difficult to obtain an accurate n(r) from
noisy measurements of S(z). How can we use this result to derive R.? M(r), the mass
enclosed within radius r, is

r

M(r) = /47r7‘2d7“ mn(r)

0

and the potential energy is

so that, from the definition

R, can be deduced. [r = R is the edge of the mass distribution: n(r) = 0 for > R.]

Page 4



Yy o o viccurovihiv 1ovovvo

£z IUJ- AVLE .

L7 0T vl o1 oW W/

In fact, we can find a simple formula for R.:

r

1
M(r):—/47ra:2dmm—-§
2rx  dx

[

ds
=2 =2 4q

= —2m[zS(z)]y; + 2m/S(:U) dr

2m{/r5(x) der(r)}

so that the total mass, M (R), is simply

R
M(R)sz/S(a:) dr

0

since S(R) = 0. Similarly, for the gravitational potential,

R r
U:—/g {/47rr2mn(7")dr'}47r7'2drmn(r)

0

But
2mr dr
so that
ras | dS (')
_ 2 [ @O 13,0 r
U=-4Gm /dr dr/rdr T
0 0
Rd r
— 4G 2/— dr {[T’S(T’)]G/ S(r') dr’ }
T
0 0
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0
r R R
+ 4Gm? S(r)/S(r’) dr’ —/S(r)2 dr
0 0 0

R
= —2Gm2/52(r) dr .
0

Then, using it is easy to show that

This is an attractive result: it provides a direct route to R, from plate material.
Since it involves only integrals of observed quantities, it should be accurate.
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