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a b s t r a c t

SAMP, the Simple Application Messaging Protocol, is a hub-based communication standard for the ex-
change of data and control between participating client applications. It has been developed within the
context of the Virtual Observatory with the aim of enabling specialised data analysis tools to cooperate
as a loosely integrated suite, and is now in use by many and varied desktop and web-based applications
dealing with astronomical data. This paper reviews the requirements and design principles that led to
SAMP’s specification, provides a high-level description of the protocol, and discusses some of its common
and possible future usage patterns, with particular attention to those factors that have aided its success
in practice.
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1. Introduction

Astronomical research requires complex and flexiblemanipula-
tion and processing of various different types of data. Images, spec-
tra, catalogues, time series, coverage maps and other data types
need their own special handling, typically provided by specialist
tools. Data sets of different types meanwhile are usually related in
various ways arising from their physical origin, for instance cata-
logues are often derived from images and best understood in con-
junction with them, and spectra and time series usually originate
from specific sky positions or regions which may be represented
on images and described by catalogue entries. To extract scientific
meaning from the data it is usually necessary to exploit these link-
ages between data items as well as the internal structure of each.

The working astronomer therefore uses a selection of different
software components, each specialising in a particular type of data
or manipulation, for different data sets and different tasks, and has
to integrate these together in a way that takes account of the rela-
tionships of the data items under consideration.

For batch or pipeline-type processing the required tool integra-
tion is usually, in terms of data flow, fairly straightforward: the out-
put of one step can be fed to the input of the next as a file, stream

∗ Corresponding author.
E-mail address:m.b.taylor@bristol.ac.uk (M.B. Taylor).

1 Present address: Google, USA.

http://dx.doi.org/10.1016/j.ascom.2014.12.007
2213-1337/© 2015 Elsevier B.V. All rights reserved.
of bytes, or some kind of parameter list, often under the control of
a script of some kind.

During the exploratory or interactive phase of data analysis
however, this traditional model of tool integration is less satisfac-
tory. Within a given GUI analysis application it is usual to interact
with the data using mouse and keyboard gestures to perform ac-
tions like selection or navigation with instant visual feedback, in
many cases with some kind of internal linkage between different
data views. But communicating such actions or their results be-
tween different tools tends to be much more cumbersome. A way
can often be found to reflect a result generated by one tool in the
state of another, for instance by reading sky coordinates reported
by one tool and typing or pasting them into another, or saving an
intermediate result fromone tool to temporary storage and reload-
ing it into another, but it can be fiddly and tedious, especially if
similar actions are required repeatedly. This lack of convenience is
more than just an annoyance, it can interrupt the flow of the data
exploration, reduce the parameter space able to be investigated,
and effectively stifle discovery of relationships present in the data.

From this point of view, a single monolithic astronomical data
analysis user application providing the best available facilities for
interactive presentation, manipulation and analysis of all kinds of
astronomical data and their interrelationships seems an attractive
prospect. In reality of course, no such one-stop analysis tool exists.
The obvious practical difficulties aside, it is not even clear that
deviating so far from the Unix philosophy of ‘‘Make each program
do one thing well’’ (McIlroy et al., 1978) would be desirable.
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These considerations have driven the development of a frame-
work for communication between independently-developed
software items, written in different languages and running in dif-
ferent processes. Such applications can thus be made to appear to
the user as a loosely integrated suite of cooperating tools, providing
facilities such as data exchange, linked views and peer-to-peer or
client–server remote control. Although communication between
interactive desktop tools was the original stimulus for what is now
SAMP, the framework is flexible enough to support other usage
patterns as well.

Two previous papers on SAMP have been presented in the
ADASS conference series: Taylor et al. (2012a) briefly outlines the
architecture and explains the Web Profile, and Fitzpatrick et al.
(2013) lists some existing client libraries. The current paper dis-
cusses the protocol, its communication model, and its current us-
age in sufficient detail to understand the design decisions taken
and their consequences, particularly from the point of view of
the usage scenario outlined above. Section 2 traces the evolution
of SAMP from its predecessor PLASTIC alongside a comparison
with some alternative messaging systems, Section 3 outlines some
high-level design principles, Section 4 presents a description of the
protocol itself along with some of the thinking behind it, Section 5
considers its use in practice, and Section 6 concludes by reviewing
the current status and possible future directions for SAMP, as well
as the factors that have encouraged its uptake. For the complete
and definitive details of the protocol, the reader is referred to the
standard document itself (Taylor et al., 2012b).

2. Context

2.1. History

In the context of the emerging Virtual Observatory in the
mid-2000s, the benefit of connecting client-side tools to improve
productivity when working with multiple data types became ap-
parent. In fact this problem was not specific to the VO, but the
ease with which multiple related data products could be acquired
using VO technologies, themselves sometimes requiring the use
of separate tools for data discovery and acquisition, amplified the
benefits that such tool integration could deliver. Additionally, the
new shared funding and communications channels between insti-
tutionally and geographically separated software developers that
arose from various VO initiatives proved important in practice as a
platform for experimentation and agreement in this area.

The external scripting capabilities of tools such as Aladin
(Bonnarel et al., 2000), SPLAT-VO (Škoda et al., 2014) and SAOIm-
age ds9 (Joye and Mandel, 2003) already provided the option of
tightly coupledmaster/slave control between pairs of applications,
but did not lend themselves to the kind of cooperative interaction
envisaged. The developers of Aladin experimented with Java in-
terfaces designed for two-way communications; these delivered
some limited integration, but were restricted to applications op-
erating within the same Java virtual machine. Meanwhile the As-
tro Runtime (Winstanley et al., 2007) developed by AstroGrid was
providing to desktop tools a simplified façade for a range of VO ser-
vices using their choice of communication technology (XML-RPC,
REST, Java RMI or JVM call).

From this background, in 2005 discussions between developers
of the AstroGrid, Aladin, VisIVO (Comparato et al., 2007) and TOP-
CAT (Taylor, 2005) software in the context of the Euro-VO frame-
work and the SC4DEVO workshop series led to the development
of a new communication protocol PLASTIC: the PLatform for AS-
tronomical Tool InterConnection (Taylor et al., 2007; Boch et al.,
2006).
PLASTIC built on the implementation and technology choices
present in the Astro Runtime to provide the interaction capabili-
ties required by the participating teams, and prototypedmany fea-
tures that were later inherited by SAMP, including a central hub,
publish–subscribe messaging, use of XML-RPC, loosely-defined
message semantics, and a pragmatic approach to providing ‘‘good-
enough’’ communications. It proved popular with developers and
users, and was incorporated into a dozen or so desktop applica-
tions, which could thereby be used together effectively in produc-
tive and sometimes novel ways.

Interest in PLASTIC was however largely confined to Europe. Ef-
forts to gain IVOA endorsement and expand the pool of applica-
tions that could communicate in thisway led after some discussion
to the drafting by European andUS authors of a successor standard,
the Simple ApplicationMessaging Protocol, whichwas accepted as
an IVOA Recommendation in 2009 (SAMP version 1.11). This stan-
dard was intentionally similar in many respects to PLASTIC, in or-
der to avoid disrupting patterns of successful cooperation already
in use, but the opportunitywas taken to amend somedecisions that
experience had shown to be sub-optimal, and to expand its scope
to accommodate other possible usage patterns. Changes made on
the basis of lessons learned from PLASTIC included a simplifica-
tion of the type system, complete language independence (though
PLASTIC could be used from any language, certain parts of the pro-
tocol were defined with reference to Java), simplification of mes-
sage targeting, improved security arrangements (security is still
rudimentary in SAMP, but opportunities for trivial client spoofing
were removed),modification ofmessage names (nowbothhuman-
readable and wildcard-able rather than opaque URIs), definition of
allmessage parameters and return values as key–value pairs rather
than ordered lists, use of fundamentally asynchronous messaging
for robustness, restriction rather than proliferation of transport
mechanisms, improved error reporting, and better extensibility.

Also new in SAMP was the notion of a Profile to provide formal
separation between the abstract messaging model and the trans-
port layer. One reason for its introduction was to enable the possi-
ble future use of the protocol for messaging in less ‘‘PLASTIC-like’’
contexts. At the time, requirements for improved performance or
security were envisaged; to date extensions in those directions
have not been explored, but the Profile mechanism has paid off
by supporting the later development of the Web Profile to sup-
port browser-based clients alongside desktop ones. The introduc-
tion of the Web Profile in SAMP version 1.3 (2012) has been the
main change to date since the initial version.

2.2. Other messaging systems

Many general- and special-purpose messaging frameworks ex-
ist. It is beyond the scope of this paper to provide a comprehensive
review, butwe provide here a brief comparison between SAMP and
a few of the alternatives.

Several generic messaging frameworks share some features
with SAMP, for example AMQP, ZeroMQ, XPA, and D-Bus. To our
knowledge, none satisfy SAMP’s key requirements of an easily
implementable platform-neutral standard supporting straightfor-
ward messaging between a shared community of clients in quite
the way required, though some of these systems could be used as
transport layers on which future SAMP profiles could be built, in
the same way that XML-RPC has been used in the existing profiles.
SAMP deliberately restricts some choices related to implementa-
tion and usage to reduce the burden on client developers, so it is
perhaps not surprising that genericmessaging frameworks are not,
on their own, appropriate.
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One or twomessaging systems howevermerit further mention.
WAMP, the Web Application Messaging Protocol,2 bears some
striking architectural similarities to SAMP including a combination
of RPC and publish–subscribe messaging mediated by a central
component known inWAMP terminology as the Router. However,
it does not address the issue of router discovery, so there is no
prescribed way for clients to initiate communication.

The Intent mechanism for inter-process communication that
forms part of the Android operating system, while its target en-
vironment clearly differs from that of SAMP, shares with it some
characteristics in terms of design and usage. For instance message
semantics may be defined in a way which is either app-specific
(‘‘explicit’’) or vague (‘‘implicit’’), in the latter case resulting in a
user choice at runtime between candidate receiving apps. Further-
more, bulk data transfer is achieved using URIs to refer to an ex-
ternal data source rather than conveying the payload within the
message.

An example of a domain-specific messaging framework is the
Systems Biology Workbench (Sauro et al., 2003), which is close
in spirit to SAMP, enabling platform-independent remote method
invocation between components (known as ‘‘modules’’) in the
field of systems biology, based around the SBML data format. One
point of difference is that the SBW infrastructure itself orchestrates
the loading of modules to provide the required functionality (the
Android OS does something similar with Intents); in SAMP this
choice of components is left to the user, though components like
AppLauncher (Lafrasse et al., 2012) are available to layer automatic
client startup on top of the basic protocol where desired.

3. Design for interoperability

The overriding objective for the design of SAMP has been to
foster interoperability in practice. This requires not just a mes-
saging systemwith sufficient communication capabilities, but also
one which developers of popular analysis tools, and ideally private
scripts as well, are actually willing and able to integrate into their
software. To achieve this, a number of principles have been fol-
lowed.

In the first place, it is as far as possible platform independent.
The definition of the protocol is not dependent on or biassed to-
wards use of particular implementation languages or operating
systems.

Second, ease of adoption. Application authors have found ba-
sic use of SAMP to require little implementation effort. In practice,
availability of easily deployable SAMP client libraries developed
within the SAMP community for a number of implementation lan-
guages have been an important factor in this. However the commu-
nications are, by design, simple enough that basic SAMP use is not
hard to achieve given only an XML parser and HTTP access capa-
bilities. Ease of use by end users is equally important, so that those
running analysis tools can benefit from the integration capabilities
that SAMP provides without needing to perform expert configura-
tion (ideally, any explicit setup at all) or to understand the details
of the messaging system.

Third, extensibility and flexibility. Building into the system the
capability to use it in ways driven by the requirements of the client
tools rather than just those foreseen by the standard authors in-
creases its likely usefulness. Themechanisms for extensibility have
been particularly designed to allow the introduction of new fea-
tures without affecting existing ones, with the aim of reducing
compatibility issues.

2 http://wamp.ws/.
Fig. 1. Schematic of SAMP Hub and clients joined in a star topology. Black lines
indicate clients registered with the hub. The red half-arrows indicate the progress
of amessage from a sending client (whichmay ormay not be callable) to a receiving
client (which must be callable), passing through the Hub.

Finally, the approach has been above all pragmatic, favouring
the straightforward over the rigorous in cases of conflict. For in-
stance message delivery is not guaranteed, but can be expected to
work most of the time. The security model will prevent casual in-
terference, but may be vulnerable to determined attack. Seman-
tics are tagged using short readable strings on the assumption of
sensible choices, rather than URIs with guaranteed private names-
paces. Performance is easily good enough to handle exchange of
short control messages on a timescale commensurate with user
actions, but not for sustained throughput of high data volumes. It
may however be noted thatmost of these items could if required be
ameliorated by future introduction of a new Profile with different
transport characteristics.

These principles and their application, in some cases informed
by positive and negative lessons from the experience of PLASTIC,
might not be appropriate for all contexts but have led to a messag-
ing infrastructure which ought to be easy for client developers to
understand and adopt, andwhich has in fact beenwidely taken up.

4. Protocol description

SAMP is based on a star topology, and its central component
is a Hub through which all communications are passed (Fig. 1).
Clients first perform a resource discovery step to locate the Hub,
and then register with it, establishing a private communication
channel through which subsequent calls to the Hub’s services can
be made. These services include accepting metadata about the
registering client, providing information about other registered
clients, and forwarding messages to those clients. These messages
may elicit responses, which may optionally be passed back to the
message sender, again via the Hub. All registered clients are able
to send messages in this way. Any client may optionally declare
itself callable, in which case it is also able to receive messages
sent by others. Callability is optional since it is more difficult to
achieve in client code, requiring some server-like capacity on top of
the ability to invoke Hub services, and simple actions like sending
an image or table can be achieved without this requirement. In
addition to declaring itself callable, a client wishing to receive
messages must explicitly subscribe3 to one or more MTypes
(message types). Everymessage is labelled with anMType, and the
Hub will only deliver messages to clients that have declared their
interest in theMType in questionwith an appropriate subscription.
When sending messages, clients may either broadcast them to all
subscribed clients or target them to a named client, but in the
latter case deliverywill fail if the target client has not appropriately
subscribed. If a client has no further use for SAMP communications
(for instance on application exit), it can and should unregister.

3 The term ‘‘subscription’’ derives from the ‘‘publish–subscribe’’ messaging
pattern. Itmay however bemore helpful to think of subscription as declaring support
for a particular message type.

http://wamp.ws/


84 M.B. Taylor et al. / Astronomy and Computing 11 (2015) 81–90
This framework combines the notions of publish–subscribe
(pub/sub) and Remote Procedure Call (RPC) messaging. Like pub-
lish–subscribe, messages are only delivered to appropriately sub-
scribed recipients, but like RPC the sender may optionally target
messages to a selected recipient, and may optionally receive re-
sponses from the recipient(s). The targeting mode, response re-
quirement, andmessage content are all decoupled fromeach other.

The details of this system are codified in a three-layer
architecture:

Abstract API: defines the services providedby theHuband clients
Profile: maps the Abstract API to specific communication opera-

tions, such as bytes on the wire
MTypes: provide semantics for the actual messages exchanged

between clients.

Note that SAMP thus defines two distinct sets of Remote Pro-
cedure Call (RPC) operations: the functions declared by the Ab-
stract API, concerning themechanics of client–hub communication
and message delivery, and SAMP Messages themselves classified
by MType, bearing the application-level content that clients wish
to exchange with each other. The syntax and semantics of the for-
mer are carefully defined by the SAMP standard, but the form and
content of the latter are agreed outside of SAMP itself by cooperat-
ing client developers.

Because of the central rôle of the Hub in this pattern, it presents
a single point of failure and potential bottleneck. However, SAMP
messages are usually short, and in practice performance issues
have not generally been apparent.

The following subsections present a more detailed account of
these ideas, along with some of the considerations that influenced
their design. Sections 4.1–4.3 describe the three architectural lay-
ers listed above, and Sections 4.4 and 4.5 describe the underlying
type system and how it is used to underpin extensibility in SAMP.

4.1. Abstract API

The Abstract API defines the messaging capabilities of SAMP.
It takes the form of a list of a dozen or so function definitions
with typed arguments and return values, and well-defined se-
mantics. Most of these functions represent services provided by
the Hub, for instance register (which returns information re-
quired by the client for future communications, typically an iden-
tification token) and notifyAll (which requests forwarding a
given message to all appropriately subscribed clients). The re-
mainder represent services required from callable clients, such as
receiveNotification (which consumes a givenmessage orig-
inating from another client).

The messaging model in principle associates a response with
every message, containing at least a completion status flag along
with zero or more MType-defined return values. However it is up
to the sending clientwhether a response is required fromany given
message; inmany cases the status flag is the only return value, and
in this case a sending applicationmay ormay not wish tomake the
effort to pass this on to its user (for instance ‘‘the table you sent
was/was not successfully received’’). If the sender has no interest
in the return value, it can use the ‘‘send-and-forget’’ (notification)
pattern, with lower cost for sender, recipient and hub.

Message processing is fundamentally asynchronous from the
receiver’s point of view, so that message/response times are not
limited to the lifetime of an RPC call in the underlying transport
mechanism. However, the Hub provides an optional synchronous
façade for sending messages when clients expect fast turnaround
and wish to avoid the additional complication of asynchronous
processing.
4.2. Profile

A particular SAMP Profile is what turns the Abstract API into a
set of rules that a client can actually use to communicate with a
running Hub, and hence with other clients.

It performs two main jobs: first, it describes how the functions
defined by the API are turned into concrete communication op-
erations, by specifying an RPC-capable transport mechanism and
rules for mapping the SAMP data types into the parameters and
responses used by that mechanism. Second, it defines a hub dis-
coverymechanism,which tells clients how to establish initial com-
munications with the Hub, usually involving some authentication
step. Particular profiles may also specify additional profile-specific
hub or client services exposed as functions alongside those man-
dated by the Abstract API.

Initially (SAMP 1.11, 2009) only a single profile was defined, the
Standard Profile. This uses XML-RPC4 as a transport mechanism,
and allows hub discovery by storing the URL of the hub’s XML-
RPC server alongwith a secret randomly generated key in a private
‘‘lockfile’’ in the user’s home directory.

Version 1.3 of the standard (2012) introduced a second, theWeb
Profile, for use by web-based clients. This is required for applica-
tions runningwithinweb pages, since the sandboxed environment
imposed by the browser makes the Standard Profile inaccessible.
It shares use of XML-RPC and some other characteristics with the
Standard Profile, but hub discovery has to be done differently, and
there are a number of complications to do with security, described
in Taylor et al. (2012a) as well as the Standard.

This decoupling between the functionality of the service inter-
face and its incarnation in a specific transport mechanism allows
different transports to be introduced without changes to the core
protocol or existing clients, and has a number of benefits. In a given
SAMP session, a client may use the most appropriate Profile for its
SAMP communications and exchange messages seamlessly with
other clients using different profiles; a desktop application can ex-
change messages with a web page just as easily as with another
desktop client. This works because clients only ever communicate
directly with the Hub and not with each other, while the Hub per-
forms lossless translation between profile-specific network oper-
ations and the messaging model defined by the Abstract API.

Future requirementsmay result in additional Profile definitions,
and there is nothing in principle to prevent hub developers from
implementing new ones outside the frame of the SAMP standard.
However, froman interoperability point of view it is important that
all profiles are supported by all common Hub implementations, so
that a client can rely on the availability of a chosen profile in a
SAMP environment, and for this reason unnecessary proliferation
of profiles is discouraged.

4.3. MTypes

An MType (message type) is the description for a message
with particular syntax and semantics. It is analogous to a function
definition in an API, and consists of a labelling string (sometimes
itself also known as the MType) along with a set of zero or more
typed and named arguments, a set of zero or more typed and
named return values, and some associated semantics indicating
what the sender of such a message is trying to convey.

By way of example, a commonly used MType is
image.load.fits, defined like this:

4 XML-RPC is a simple protocol for remote procedure calling based on HTTP and
XML. It resembles a very much slimmed-down SOAP. Documentation can be found
at http://www.xmlrpc.com/.

http://www.xmlrpc.com/
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Name:
image.load.fits

Semantics:
Loads a 2-d FITS image

Arguments:
url (string):

URL of the image to load
image-id (string, optional):

Identifier for use in subsequent messages
name (string, optional):

Name for labelling loaded image in UI
Return Values:

None.

The name is a short hierarchical string composed of atoms
separated by the ‘‘.’’ character. As well as identifying to a recipient
the type of an incoming message, it is used by clients to subscribe
to messages, that is to indicate to the Hub which messages they
are prepared to receive. For the purpose of subscription a limited
wildcarding syntax is available, so by using the MType patterns
image.load.fits, image.* or * a client may declare interest
in only the above message, or all image-related messages, or all
messages, respectively.

In general, a callable client will only subscribe to those MTypes
on which it can meaningfully act, so for instance an image analysis
tool typically would subscribe to image.load.fits, but not
to spectrum.load.ssa-generic. A client that has an image
FITS file to send can then either query the Hub for those clients
subscribed to the image load message and offer its user the choice
of which one to target, or request the Hub to broadcast the image
load message to all (and only) the image-capable clients.

4.4. Type system

Supporting the function list defined by the Abstract API and the
parameters and return values specified byMTypes is a type system
defining the types of value permitted, as well as rules for encoding
various structured objects using these types: message objects
themselves, success and failure message responses, application
metadata, and MType subscription lists.

This system contains only three types: string, list and map. A
string is a sequence of 7-bit ASCII printable characters, a list is an
ordered sequence of strings, lists or maps, and a map is an un-
ordered set of associations of string keys with values of type string,
list or map. Structured objects are specified by the use of well-
known keys in maps, there is no special representation for null
values, and non-string scalar types must be serialised as strings.
(Obvious) conventions are suggested for serialising integer, float-
ing point and boolean values into string form, but these sugges-
tions are provided for the convenience of MType definitions that
wish to exchange such values without reinventing the wheel, and
are not a normative part of the protocol.

This restricted type system has been deliberately chosen to
introduce minimal dependency of messaging behaviour on the
details of non-core parts of the delivery system, in particular
profile-specific transportmechanisms and language-specific client
libraries. This both reduces the restrictions on what languages and
transport layers may be used with SAMP, and ensures that values
transmitted will not be modified during processing by parts of the
messaging system outside of client control.

The type system is rich enough to represent complex structured
data where required, but note it is not intended for use with binary
data, and transmission of bulk data or large payloads in general
is discouraged within SAMP messages in favour of passing URLs
around instead, meaning that client and Hub implementations can
work on the assumption of short message payloads.
This convention of out-of-band bulk data transfer does place an
additional burden on sending clients however, since to transmit
a bulk data item (such as a table or image) not already available
from an existing URL it is necessary to make it so available, for in-
stance by writing bytes to a temporary file or serving them from
an embedded HTTP server. It can also present complications if the
sending and receiving client are not able to see the same URLs, for
instance due to different security contexts; in this case, additional
Hub services may be required to assist with data transfer between
domains (accordingly, the Web Profile provides services to assist
with cross-domain data exchange).

Note also that the string type does not natively accommodate
Unicode text, including XML. The restriction to 7-bit ASCII is driven
by the requirement for use from non-Unicode-capable environ-
ments such as Fortran, IDL and some shell scripting languages. This
has not caused known problems to date, but inability to handle
Unicode text without additional encoding could prove awkward
in some cases, and it may be necessary to revisit this restriction in
a future revision of the standard.

4.5. Extensible vocabularies

Extensibility is built into this system via the notion of an
extensible vocabulary used when representing structured objects.

Structured objects are represented as maps with well-known
keys, but the rule is that additional keys are always permitted,
and that hubs and clients must ignore any keys they do not
understand, propagating them to downstream consumers where
applicable (compare the NDF extension architecture described in
Jenness et al. (in press)). A corollary is that such non-well-known
keys must be defined in such a way that ignoring them will
result in reasonable behaviour. The Abstract API tends to prefer
maps (unordered name/value pairs) over ordered parameter value
lists, which makes this extensibility pervasive throughout the
messaging system, applying for instance to client metadata and
subscription declarations, message transmission information, and
MType-specified message parameter lists and return values.

For instance, a client sending a message must pass it to the Hub
as a map with two required keys: samp.mtype giving the MType
label and samp.params giving the MType-specified parameter
list (itself a map). But a client may optionally insert additional
non-standard key/value pairs into that map, for instance using
a non-standard key priority to associate a particular priority
level with the message. If the Hub happens to support this non-
standard feature, it is able to treat the message specially in view
of this declaration; in any case it will propagate the message to
recipient clients with the additional entry present, so if one of
those supports this feature then it may use the value in processing.
The same rule applies for instance to the MType-determined
message parameter list; an MType like image.load.fits has
a required parameter url, but a sending client may add a non-
standardparameter likecolormap (ords9.colormap) alongside
the well-known ones for the benefit of any client that happens
to support it. Clients can therefore piggy-back experimental or
application-specific instructions on top of generic messages to
achieve more detailed control where available, falling back to
the baseline functionality if it is not. Using this extensibility
pattern, new or enhanced features of particular MTypes or of the
protocol itself can be prototyped very easily, requiring no changes
to the SAMP standard or infrastructure implementation beyond
those components actually using the non-standard features, and
imposing no negative impact on existing messaging operations. If
they are found to be useful, they may be adopted in the future as
(most likely optional)well-knownkeys alongside the original ones.

Some associated namespacing rules apply. Well-known keys
defined by the SAMP standard are in the reserved samp names-
pace, meaning they begin with the string ‘‘samp.’’. When
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introducing non-standard keys it is not permitted to use this
namespace, but any other syntactically legal string is allowed. The
special namespace x-samp is available for keys proposed for fu-
ture incorporation into the standard, and hubs and clients should
treat keyswhich differ only in the substitution of samp for x-samp
as identical, to ease standardisation of prototype features. In the
case of MType parameters and return values, which are mostly not
defined by SAMP itself, there is no reserved namespace.

5. Use in practice

The protocol described above is capable of supporting a wide
range of different messaging patterns. For use in a particular sce-
nario, a number of practical considerations must also be worked
out. This section discusses how the framework has been applied to
date to support the original goal of helping to integrate data anal-
ysis tools used by astronomers.

Section 5.1 explains how hub provision is managed, Section 5.2
describes some common patterns of message semantics, and Sec-
tion 5.3 addresses the social mechanisms by which these are
agreed on by the SAMP community. Section 5.4 reviews the ex-
isting landscape of SAMP infrastructure software and SAMP-aware
tools, and Section 5.5 provides some concrete examples of it in ac-
tion.

5.1. Hub provision

SAMP’s star topology means that a Hub (in most cases, exactly
one Hub) must be running for anymessaging to take place. Ideally,
an independent Hub process would be started as part of user
session setup to ensure its constant availability. While this is quite
possible and appropriate in some scenarios, even the minimal
configuration required to establish it (a hub startup line in a session
startup file) requires the kind of explicit user action which cannot
always be relied upon. Simply put, if the functionality does not
show up in the user interface with zero user effort, most users will
never discover it.

It is common practice therefore, though by nomeans a require-
ment, for some SAMP-aware tools to comewith an embedded hub.
In this scenario, when a SAMP-aware tool starts up, it first checks
for a running hub. If one exists, it registers with it; if not, and if it
has the capability, it starts its own embedded Hub, and registers
with that. Note that a client running an embedded Hub communi-
cates with it in just the same way as with an independent one, it
has no privileged access. Non-hub-capable clients may choose to
check for a running Hub and connect on startup, on explicit user
request, or when periodic polling indicates that one has become
available. The effect is that usually when two ormore SAMP-aware
tools are running, a Hub will be present and those tools will find
themselves connected to it, enabling messaging. Sometimes the
application hosting the embedded hub will be shut down during
a session taking the Hub downwith it, and in that case another ap-
plicationmay notice the fact and start one up, at which point some
or all previously registered clients may notice the new hub and re-
register with it.

This somewhat haphazard model of hub provision does not
form a robust platform for high-reliability messaging, but, in ac-
cordance with SAMP’s pragmatic approach, operates well enough
most of the time, with a minimum of user effort; usually, it ‘‘just
works’’. Note that where explicit control of an independent hub
process can be arranged, for example as part of a managed user
environment, more robust connectivity will result; an example is
the Herschel Interactive Processing Environment (Balm, 2012).
5.2. MType semantics

A messaging framework only serves any purpose if there exists
a vocabulary ofmessages understood by the applicationswhich are
going to exchange them. In SAMP terms that means establishing
a collection of more or less well-known MTypes (Section 4.3).
Choosing the right semantics for this collection is crucial to the
utility and character of the messaging system in practice.

The most obvious approach for providing message-based con-
trol of an application is to identify (at least some of) the capabilities
it offers and define a messaging interface with parameters and re-
turn values exposing those capabilities. An image display applica-
tion might expose a set of MTypes allowing image load into a new
window, zoom configuration, colour map choice, WCS display and
so on. This allows other applications to control its behaviour in de-
tail and is suitable for tight integration of a known set of tools with
a good understanding of each other’s capabilities, for instance to
execute a pre-orchestrated sequence of processing steps.

However, this approach is less effective in less predictable en-
vironments. The controlling client needs to understand the capa-
bilities of its partner client in order to control it. But if the set of
tools in use at runtime is chosen by a user from an open-ended set
rather than mandated by a developer, the identity of the partner
client or clients is not known in advance. In general, different ap-
plications even of similar types have different capability sets and
internal data models, and these cannot readily be encompassed by
any single general abstraction. Different image display tools may
support different data formats, may or may not support multiple
loaded windows or images, may specify zooms in different ways,
may offer different selections of colour maps, may provide WCS
display with different options or not at all and so on, and the bur-
den on a client wishing to control a range of different recipients
quickly becomes large. Even if an application developer is prepared
to study the messaging APIs offered by existing available tools and
implement logic managing message dispatch for each case, the re-
sulting codewill not copewith applications unknown to the devel-
oper, for instance ones yet to be written.

For uncontrolled environments in which the user selects the
range of cooperating tools at runtime therefore, a ‘‘loose integra-
tion’’model has turned out to bemore successful. This approach fo-
cuses on a messaging interface consisting of a fairly small number
of MTypes with semantics that are non-client-specific and rather
vague. The semantics of the most-used messages generally boils
down to ‘‘Here is an X ’’, where X may be some resource type such
as a table, image, spectrum, sky position, coverage region, bibcode
etc., or sometimes a reference to an X from a previous message, for
instance a row selection relating to an earlier-sent table. The impli-
cation of such an MType is that the receiver should do something
appropriate with the X in question: load, display, highlight, or oth-
erwise performsomeactionwhichmakes sense given the receiving
application’s capabilities. Callable SAMP clients should therefore
advertise themselves (by subscribing to the appropriate MTypes)
as X-capable tools only if they are in a position to do something
sensible with an X should they be presented with one. Such an ad-
vertisement serves as a hint to potential X-senders, though it does
not constitute a guarantee of any particular behaviour. This frame-
work typically manifests itself in a client user interface as an op-
tion, for an X currently known by that client, either to broadcast it
to all X-capable clients, or to target it to an entry selected by the
user from a dynamically-discovered list of X-capable clients (see
Fig. 3 for an example). For this kind of usage, the presence of a hu-
man in the loop to directmessages between clients as required by a
particular workflow is an important part of the system, but the de-
cisions required from the user are generally simple ones, e.g. which
of a small list of clients to contact.

For clients to interoperate as reliably as possible in this sce-
nario, it is not sufficient just to agree on the notion of a table or
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an image for exchange, it is also necessary to specify the exact data
exchange format. In the case of tabular data, a variety of possible
exchange formats is in common use: FITS binary and ASCII tables,
VOTable, Comma-Separated Values and a host of others including
many ASCII-based variants. Different choices are convenient in dif-
ferent usage contexts, suggesting the need for a variety of distinct
format-specificMTypes. However, a proliferation of alternative ex-
change formats, though superficially convenient, erodes interoper-
ability. Ifmultiple exchange formats capable of serialising the same
thing are available, the sender has to choose which to send, and
the receiver may or may not be able to receive it. Well-behaved
recipients should include conversion code for as many formats as
possible, and well-behaved senders should send data in a format
dependent on what is supported by the intended recipient. For ap-
plications willing to expend a lot of effort on interoperability the
work required at both ends increases rapidly with the number of
available formats, while less conscientious implementations may
find themselves unable to exchange data of essentially compati-
ble types, or the community of SAMP clients may fragment into
format-specific sub-communities unable to communicate globally.
As much as possible therefore, it is desirable to restrict the options
to a single well-defined exchange format for each basic data type.

This can be a difficult balance to get right. In the case of im-
ages, astronomy is fortunate that FITS serves as the lingua franca,
and the only commonly-used MType is image.load.fits.
For tabular data, clients are strongly encouraged to use
table.load.votable even if it means translating to/from some
other format; however other table.load.* variants are in use
for specialist purposes, for instance for the CDF format,5 which
though tabular is not readily translated to VOTable without loss of
information, andwhich tends to be used in communities not famil-
iar with VOTable. In the case of spectra, for various reasons related
to the form inwhich spectral data is typically obtained and the typ-
ical capabilities of spectrum-capable clients, the relevant MType is
spectrum.load.ssa-generic, whichpermits any format to be
used for the spectral data, with additional parameters specifying
the format actually in use.

SAMP is capable of supporting both tight and loose integration,
and both are in use, but for coupling interactive data analysis tools
the loose integration model has proven the most productive, and
able to support ways of working that have not been possible using
other available messaging systems.

5.3. MType definition process

A suitable collection of MTypes must not only exist but be
known by potentialmessage senders –whichmeans the authors of
the relevant software – in order for useful messaging to take place.

In the case of application-specific MTypes, the documentation
of available MTypes and their definitions is clearly best handled
as part of the documentation of the application itself. These
typically provide functionality that only makes sense for a given
tool, and make use of a suitably specific namespace, for instance
script.aladin.send, which allows external applications to
control Aladin by sending commands in its scripting language.

Developers are also free to define their own MTypes for use
privately or in some closed group with locally agreed conventions
for documentation, perhaps to support some tight-coupling-like
usage.

However, for well-known MTypes intended for unrestricted
use, for instance of the loose-coupling variety described above,
some public process is required to establish and publicise their

5 http://cdf.gsfc.nasa.gov/.
definitions, so that client developers can both become aware of the
conventions currently in use by other tools, and contribute their
requirements for new or modified functionality.

One possibility is to decide on a fixed list to form part
of the SAMP standard. A small number of ‘‘administrative’’
MTypes, concernedwith themessaging infrastructure, for instance
samp.hub.event.register which informs existing clients
when a new client has registered, have beenwritten in to the stan-
dard in this way. All of these are in the reserved samp. namespace.
However, for astronomy-specific MTypes this option was rejected,
partly in order to avoid the introduction of astronomy-specific de-
tails into a standard which is otherwise not tied to a particular do-
main, and partly because the rather heavyweight IVOA process for
standard review (Hanisch et al., 2010), inwhich draft to acceptance
rarely takes less than 12 months, would impede introduction and
updating ofMTypes as required by implementation experience and
new application demands. Another option is periodic publication
of MType definitions in an IVOA Note. Such Notes may be issued at
willwithout formal review, but no straightforwardupdatingmech-
anism is in use, and this optionwas still felt to be undesirably cum-
bersome.

Instead, awiki page6 was set up on the IVOAweb site listing cur-
rently agreed MTypes. An informal understanding was adopted in
which application developers are encouraged to discuss require-
ments for new MTypes or modifications to existing ones either
privately or on the associated mailing list,7 and if consensus is
reached, to edit the wiki page accordingly. This was intended as a
provisional measure to be reviewed and modified as required, but,
six years later, the need for amore formal process has not been ap-
parent, and there are no current plans to modify this arrangement.

At time of writing, a dozen MTypes are listed on the wiki,
concerned with exchanging tables, row selections, FITS images,
spectra, sky coordinates, VO Resource identifiers (Demleitner et al.,
2014), MOC sky coverage maps (Boch et al., 2014), bibcodes and
one or two other items. The list has been fairly stable, though
new entries and new optional parameters are sometimes added as
required.

5.4. Existing software

Since its first version in 2008, a wide range of SAMP-enabled
infrastructure and application software has become available.

Of infrastructure software that is actively maintained at the
time ofwriting, interchangeableHub implementations exist in Java
and Python, and client toolkits in Java, Python, C and Javascript.
Validation, debugging and development support tools are also
available. Historical, partial or experimental SAMP functionality
has also appeared in other languages including Perl, C Sharp and
IDL.

Applications using SAMP number in the dozens, and include
GUI analysis tools for images, catalogues, spectra, SEDs, time series
and interferometry data, observation tools, outreach applications,
command-line and graphical data access and manipulation suites,
interactive processing environments,web archives either exposing
simple results pages or offering sophisticated browser functional-
ity, throwaway user scripts, and more.

SAMP infrastructure libraries are surveyed in Fitzpatrick et al.
(2013), though a notablemore recent development is the inclusion
of the Python hub and client implementation in the Astropy
package (Astropy Collaboration et al., 2013) since its version 0.4.

6 At time ofwriting, thiswiki page can be found near http://www.ivoa.net/samp/.
If the process for MType publication changes in the future, that URL should still
indicate where to look for a list.
7 apps-samp@ivoa.net.

http://cdf.gsfc.nasa.gov/
http://www.ivoa.net/samp/
mailto:apps-samp@ivoa.net
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Fig. 2. Transmission of data items from one SAMP client to another. (a) A table has been acquired using Simple Spectral Access Protocol by the TOPCAT table analysis tool, in
which each row references an external spectrum by URL.When the user selects a row of this table, the spectrum is sent to the CASSIS spectrum tool. (b) The source catalogue
resulting from a VizieR query, displayed in aweb page, is sent to the VOPlot application. (c) A local FITS image is loaded into the ds9 image viewer from the AstroPy command
line.
A partial list of some other tools with SAMP functionality may also
be found near http://www.ivoa.net/samp.

While initially developed and used mostly within stellar and
galactic astronomy, use is now becoming common in related
fields such as planetary science (Erard et al., 2014) and space
physics (Génot et al., 2014). It is probably now the case that most
astronomical applications that can benefit from interaction with
other such tools include at least a basic SAMP capability. It is harder
to ascertain to what extent this functionality is used in practice,
but the enthusiasm of application developers to incorporate SAMP
is presumably indicative of its utility.

5.5. Examples of use
Current SAMP usage is most prevalent along the lines of the

scenario outlined in the Introduction, allowing desktop and web-
based clients to cooperate as a loosely integrated suite by employ-
ing the small number of data-exchange MTypes in common use.
Fig. 2 shows some examples of the basic case where one client
transmits a data item (spectrum, table or image) to another. Fig. 3
illustrates a more sophisticated interaction in which two appli-
cations exchange data and control in both directions to provide
linked views exploiting the capabilities of each.

SAMP has also been employed in other ways however, for in-
stance to provide a private layer for RPC functionality required
internally by Iris (Laurino et al., 2014) and to experiment with
visualisationusing on-demanddata generation inAstro-WISE (Bud-
delmeijer and Valentijn, 2013).

6. Conclusions

SAMP provides a flexible and easy to usemessaging framework,
deployed in much current astronomical software, which supports
various models of inter-tool communication.

The most productive of these models to date has been loose
coupling between a user-selected set of independently developed
interactive data acquisition and analysis applications, to deliver
functionality approaching that of an integrated suite. This model
is built on SAMP’s combination of publish–subscribe messaging,

http://www.ivoa.net/samp
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Fig. 3. Linked view of data in TOPCAT and Aladin showing red objects in the vicinity of V⋆ V410 Tau. A full list of sources in the region has been loaded into Aladin
(right), then transferred to TOPCAT (left), using SAMP MType table.load.votable. The user plots a colour–colour diagram in TOPCAT and selects the reddest objects
graphically, causing them to be displayed as red circles, then passes the selection back to Aladin (MType table.select.rowList) where they are shown as green squares;
the inset menu shows TOPCAT’s user interface for this step. Clicking on one of the points in either application can then highlight the corresponding point in the other
(MType table.highlight.row). This example illustrates how SAMP enables seamless exploration of data using a combination of parameter space and physical space.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
vaguemessage semantics, and ease of adoption by both developers
and users leading to widespread uptake.

SAMP’s flexibility means that it is capable of supporting other
communicationmodels, some inmoremarginal use now and some
which may be explored further in the future. Introducing new
Profiles, different MType libraries or alternative hub provision
arrangements could render the same infrastructure suitable for
contexts with different requirements for reliability, security or
scalability. Another possible scenario is inter-host messaging to
support collaborative work; this option has been under considera-
tion throughout SAMP’s history and is possible using existing pro-
files, though in current configurations it is somewhat cumbersome
to set up and has so far not received much user attention. Despite
its development history, there is nothing in the protocol specific to
either the Virtual Observatory or astronomy, so use in other prob-
lem domains is quite feasible, though the authors are not aware of
effort currently being deployed in this direction.

SAMP’s design has been informed by the requirements and ex-
perimentation of the SAMP developer community, largely within
the context of the Virtual Observatory, including positive and neg-
ative lessons learned from its predecessor PLASTIC. Someaspects of
this design that have proved particularly successful include the de-
coupling of architectural concerns into API, transport mechanism
and semantics, the lightweight, bottom-up process for agreement
of semantics, and the built-in extensibility provided by pervasive
use of extensible vocabularies.

Together, these fall under the heading of standardising only
those things which need to be defined at a given stage, and leaving
the option of filling in the details until a time and in a context
when the requirements will be clearer. The need for the Web
Profile was not foreseen when the first version of the standard
was published, but the transport/API decoupling meant it could be
retrofitted with no disruption to existing client code. The fact that
MType semantics are excluded from the standard itself means that
these can be defined and iteratively adjusted with experience of a
working transport infrastructure, rather than specifying them up
front by committee decision as part of the protocol design, only to
find them ill-adapted to tool deployment in practice.

Other factors important to its success have been the small num-
ber of MTypes actually in common use, enabled by the convention
of vague message semantics and standardisation on data formats,
and the unobtrusive embedding of SAMP into existing applications
meaning that the functionality is available without requiring any
special setup or understanding from the user. The IVOA and other
cross-institutional forums associated with the Virtual Observatory
movement have also been of considerable importance in enabling
and encouraging the necessary communication between applica-
tion developers, though much software from outside the VO com-
munity is now also involved.

SAMP is not a magic bullet. In typical current use the level of
integration it offers between independently developed tools falls
short of what would be available from a monolithic application,
its pragmatic approach to communications can lead to patchy re-
liability, and its security model would not be appropriate for use
with commercially sensitive data. However its ease of use and
widespread uptake have delivered in practice an improved envi-
ronment for desktop data analysis, allowing working astronomers
to get more done.
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