
Column-Oriented Table Access Using STIL:
fast analysis of very large tables

Authors:
Mark Taylor, Bristol University, UK
Clive Page, Leicester University, UK

Work supported by:
VOTech, PPARC, Astrogrid, Starlink

Abstract
By use of column-oriented storage and file mapping, great improvements in
efficiency over more conventional methods can be made for some important
kinds of access to large and very large tabular datasets. These techniques have
been implemented in the STIL library, enabling their use in TOPCAT (an
interactive graphical tool for table analysis) and STILTS (a command-line table
analysis suite). Benchmarks are presented which show certain common analysis
tasks running 10–40 times faster than their MySQL equivalents. Applied to
datasets in the range hundreds of Mbyte to hundreds of Gbyte this speedup can
be put to good use both on the desktop and at the data centre to bring new
regimes of data exploration within practical reach.

Introduction
When dealing with tabular data stored on disk, the most straightforward way to
operate is to read the entire file into memory and then to do the processing.
This approach works well for small datasets, but for large tables, especially when
the required memory begins to exceed available physical memory, it can become
inefficient or unworkable, and some kind of on-demand access to the data on
disk becomes necessary.

There is no shortage of datasets for which this is a genuine issue. On the
astronomer’s desktop it is true that one trend in Virtual Observatory-type
working is to retrieve small (i.e. small enough to fit in memory) subsets of large
server-based datasets for local analysis. However the opposite approach in
which a whole dataset, or a substantial part of one, is directly available to the
astronomer can sometimes be much more effective, especially for exploratory
analysis or revealing unexpected relationships. At the data centre the size of
survey catalogues continues to grow, and while relational databases are widely
seen as the only option for handling these, there are some common query types
for which RDBMS performance is poor.

For such on-demand access, whether sequential or random, the way the data is
arranged on disk and the way in which it is accessed can have a major impact
on performance. This paper describes approaches to these issues which provide
highly efficient data access, and presents library and related application software
which makes use of it to provide practical benefit for client- and server-side data
access to large scale data.

Techniques
The central problem of providing efficient disk I/O is to ensure that disk
accesses and system I/O calls are infrequent. It is much better to do one read
of 1000 values than 1000 reads of one value. The techniques explained here
have been employed to help attain this goal.

Column-Oriented Storage
There are two obvious arrangements for storing table data on disk: row-oriented
and column-oriented. Most common table storage formats (FITS, VOTable,
CSV, nearly all RDBMS) are basically row-oriented. This is good for reading all
the columns from a few rows, but poor for scanning the whole of one or a few
columns, especially for wide (many-columned) tables.

Many common analysis operations benefit from column-oriented access, e.g.:

• Scatter plot/density map/histogram plotting

• Row selection based on an unindexed column or a combination of columns

• Univariate or multivariate statistic calculations

File Mapping
Some operations require random access on a table, which means reading a few
bytes here and a few bytes there. Näıve implementations would result in very
poor performance. In principle it is possible to improve matters by reading and
caching larger blocks near each site, but it is difficult to decide on optimal
caching strategies (what size blocks to read, how long to keep them).

By using file mappping (Unix mmap(2) system call or Java FileChannel.map

method) rather than buffered or unbuffered seek/read operations you can get
the Operating System to take care of this for you. Highly optimised OS routines
for block caching are then used automatically which usually results in good
performance for a wide range of access patterns. As a bonus, file-mapped reads
are typically faster (× ∼ 2?) than normal reads. There are one or two
OS-dependent issues with this technique, but tests have found it working well.
One issue to note is the limitation of file size by available address space. In
practice this means that for multi-Gbyte datasets, a 64-bit OS is required.

Implementation
The Starlink Tables Infrastructure Library (STIL) is a general purpose
multi-format library for I/O and processing of astronomical tables. Its pluggable
architecture makes it suitable for testing out the ideas described here. STIL
table handlers were implemented which provide mapped access to
column-oriented data, and these could be used without changes to application
code.

A new column-oriented file format, dubbed “colfits” was introduced for this
purpose. It is a variant of FITS — a table is represented by a one-row
(NAXIS2=1) BINTABLE extension, in which each cell of the single row is a
vector containing all the values in the column. The resulting file is perfectly
legal FITS, though general purpose FITS handling software may or may not
make much sense of it.

It was easy using the STILTS tcopy command to convert between these
storage formats, including exchanging data with a MySQL database.

Benchmarks
Some full column queries were performed on datasets in various forms to assess
performance. Two datasets were used:

XSC: 2MASS Extended Source Catalogue (1,647,599 rows × 391 cols ≈ 2.2 Gb)

PSC: 2MASS Point Source Catalogue (470,992,970 rows × 61 cols ≈ 111 Gb)

Two types of query were run on each dataset:

STAT1: calculation of mean, variance etc on a single column

SEL2: row selection based on difference of two columns

and three data storage systems were tested:

MySQL: MySQL 4.1.20 using unindexed MyISAM tables

colfits: STILTS using column-oriented file-mapped FITS

fits: STILTS using row-oriented file-mapped FITS

Some representative results are as follows:

Data Test MySQL colfits fits
XSC STAT1 65 2.0 51
XSC SEL2 66 4.7 89
PSC STAT1 3390 105 2321
PSC SEL2 3422 397 2417

(Timings in seconds)

The STILTS/colfits results are 10–40 times faster than the MySQL ones for
these queries. Reducing XSC queries to a few seconds and PSC queries to a few
minutes qualitatively changes the kinds of work that an astronomer can do with
these datasets, bringing interactive modes of data investigation within reach.

Comparison with RDBMS
In most cases very large astronomical tables are stored in relational database
management systems (RDBMS). These are general purpose packages highly
optimised for large datasets and for many purposes they perform very well.
Some column-based queries can be handled very fast, where they can take
advantage of precomputed indexes. But unindexed queries are typically slowa.

RDBMS have some other disadvantages for use in data analysis. In some
contexts their complexity is a barrier to use: the administrative overhead of
installation and configuration is appropriate for data centres, but less so for
personal or read-only access on local disk. Integration with application code,
based as it is on SQL, tends to be somewhat unwieldy making interactive
applications hard to build. Metadata handling is also poor.

Much of the sophistication of RDBMS, for instance data updates and access
controls, is not required for exploratory analysis of astronomical catalogues.
STIL provides a simpler alternative for storage of tabular datasets which is truly
scalable, faster for some tasks, and amenable for use in application packages. It
in no way however claims to supplant use of RDBMS altogether for catalogues,
lacking for instance persistent precomputed indexes.

aAt least one RDBMS, Sybase-IQ, uses column-oriented organisation of data on disk. However, the licence for

this is currently very expensive, which makes it unsuitable for most astronomical applications.

Software
The software discussed here is written in Java (hence highly portable and easy
to install), fully documented, well supported, and available under the GNU
Public Licence. For more modest sized tables it works equally well with other
formats including normal FITS and VOTable.

STIL: Starlink Tables Infrastructure Library
http://www.starlink.ac.uk/stil/

STILTS: STIL Tool Set
http://www.starlink.ac.uk/stilts/

TOPCAT: Tool for OPerations on Catalogues And Tables
http://www.starlink.ac.uk/topcat/

Applications

Desktop TOPCAT
TOPCAT is a powerful and easy to use interactive graphical tool for
astronomical table analysis. It is based on STIL. Many of the features it
provides, such as various kinds of plots, crossmatching, row selections etc
necessarily require full-column scans of tables. Using the techniques described
here, large datasets (up to about 107 rows and any number of columns) can be
investigated interactively — plots, row selections etc take only a matter of
seconds.

TOPCAT screenshot showing a three-way colour-magnitude plot from a colfits-format copy of

the entire 2MASS extended source catalogue (1.6 Mrow × 400 col ≈ 2 Gb). 4.5 million points

are visible. Plots like this can be drawn, zoomed, modified, exported etc in a very few seconds

on platforms with modest resources.

Desktop STILTS
STILTS is a command-line table analysis package based on STIL. It offers many
of the same features as TOPCAT (crossmatching, selection and general table
manipulation), and a number of others, but using a scriptable and non-graphical
interface. Unlike TOPCAT, many operations run in streaming mode, so that
there is no limit to the size of tables which can be processed.

Converting very large tables from other forms (e.g. RDBMS, normal FITS, CVS,
VOTable, . . . ) into colfits format can itself be done using the STILTS tcopy

command. Once this is done, STILTS analysis operations can easily be run in
column-oriented mode.

FITS file representing a density map (2-d histogram) of all point sources in the 2MASS Point

Source Catalogue (470Mrow × 60 col ≈ 111 Gb) in the galactic plane. It was generated using

the STILTS tcube command in about 10 minutes. Note the striped features corresponding to

survey frame-edge artifacts, not obvious except from a plot like this. This kind of graphic would

be both slow and difficult to obtain using other software.

Data centre STIL/TS
Datasets of the size of the 2MASS PSC are not often found on the desktop, but
are common at data centres, usually stored in relational databases. Some client
requests for this data will be of the kind which can be serviced efficiently using
usual RDBMS facilities (SQL SELECTs), but others, requiring full column
scans, will not. Very often this latter kind, even if small in number, can
dominate the I/O and computational load on the server. A server could keep
two replicated copies of the data, one in RDMBS format and the other in a
column-oriented format such as colfits, using the more efficient form for each
incoming request as appropriate. This arrangement is not currently in place at
any data centre (as far as the author knows), but some interest has been shown.

Your code here. . .
Feel free to come up with your own scenarios for usage of the STIL library or
STILTS application suite.


