
Astronomical Data Analysis Software and Systems XXII
ASP Conference Series, Vol. 475
Douglas N. Friedel, ed.
c©2013 Astronomical Society of the Pacific

Application Interoperability with SAMP

M. Fitzpatrick,1 O. Laurino,2 L. Paioro,3 and M. B. Taylor4

1National Optical Astronomy Observatory, Tucson AZ, U.S.A.

2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge,

MA 02138, U.S.A.

3National Institute for Astrophysics, IASF, Milano, Italy

4H. H. Wills Physics Laboratory, University of Bristol, U.K.

Abstract. The Simple Applications Messaging Protocol (SAMP) is a Virtual Ob-
servatory (VO) specification that enables astronomy software tools to exchange control
information and data, allowing desktop applications to work as an integrated suite of
tools rather than requiring complex functionality to be (redundantly) built into tools in-
dividually. In addition, SAMP allows new workflows to be created for the science user
that leverages the advantages of each tool (e.g. visualization of tables or images, anal-
ysis, etc.), greatly reducing the time needed to switch between applications and tasks.
We present here a short introduction to the protocol itself, a survey of some toolkits
for application authors who wish to introduce SAMP functionality into their tools, and
some examples of real-world usage.

1. Introduction

The Simple Applications Messaging Protocol provides platform-independent messag-
ing between tools based either on the desktop or the browser. The messaging architec-
ture is based on a free-standing hub process that provides message brokering to external
clients, providing the illusion of direct client-client interaction with the convenience of
a single communication point. Messaging is built around the publish/subscribe model
in which each client flags those message types (MTypes in the SAMP terminology),
if any, it is willing to receive. SAMP is defined by the SAMP standard (Taylor et al.
2012), and the design principles are discussed further in Taylor et al. (2011).

Section 2 below lists a number of language-specific libraries and toolkits available
that can help developers to work with SAMP and incorporate SAMP usage into their
applications. Section 3 gives some diverse examples of how these tools can be used to
deliver improved science workflows.

2. Toolkits and Implementations

A number of toolkits and libraries for use with SAMP are listed at http://www.ivoa.
net/samp; this section describes some of them.

395



396 Fitzpatrick et al.

2.1. JSAMP

JSAMP is a hub implementation, toolkit, and client library written in Java. As well as
a basic interface to the SAMP Hub and Client APIs, JSAMP provides easy-to-use GUI
components for integrating SAMP use into interactive Java applications. JSAMP also
incorporates a number of diagnostic tools, including extensive message logging capa-
bilities and a graphical hub view that shows the details of currently registered clients
and recently transmitted messages.

2.2. SAMPy

SAMPy is a Python toolkit and hub implementation. SAMPy will be part of astropy
(Tollerud et al. 2013). Astropy is a common effort to develop a single Python core
package for astronomy, involving about 100 developers from around the world, and is
available from PyPI1.

To start SAMPy’s hub implementation it is sufficient to start the sampy executable,
installed with the main distribution. As with other libraries, registering a client requires
the instantiation of the client itself, its connection to the hub, and the binding of a
Python function to specific MTypes. The function is used as a callback when a message
with a bound MType is sent to the client. SAMPy also offers means to discover clients
connected to the hub and send messages to them.

2.3. Libsamp

Libsamp is a library within the VOClient package (in development) that provides a C-
language interface to enable applications to send and receive SAMPmessages. The API
is designed to simplify and hide the details of the SAMP protocol from the application
writer, providing standard methods to initialize the interface, declare metadata, post
message callbacks, send specific message MTypes, and startup/shutdown messaging.
Details of the hub discovery and registration, as well as handling of specific messaging
patterns, are handled internally and are also fully accessible through low-level proce-
dures. These low-level procedures similarly allow application developers fine-grained
control over the formatting of outgoing messages or parsing of return values. Because
the interface is implemented in C, bindings for many other languages can be easily
generated automatically using SWIG,2 or custom interfaces can be hand-generated to
provide a more language-specific interface (e.g., one that uses idioms of the language
as in a Pythonic interface, or a binding for languages not supported by SWIG such as
SPP used in IRAF).

2.4. sampjs

Sampjs is a small JavaScript library for use by browser-based applications that performs
SAMPmessaging using theWeb Profile. Sampjs makes it easy to add SAMPmessaging
capabilities to web pages by adding a few lines of JavaScript, as well as allowing the
possibility of fully SAMP-integrated web applications.

1http://pypi.python.org/pypi/sampy/

2http://www.swig.org/



Application Interoperability with SAMP 397

3. Usage Examples

3.1. Integration of GUI Tools

A common usage scenario for SAMP is integrated use of multiple interactive desktop
applications specialised for different data types. SAMP’s data exchange enables them
to work together as a single integrated suite with the union of the capabilities of the
component tools. An example workflow involving TOPCAT (a table analysis tool) and
Aladin (a sky image analysis tool) might be:

1. display an image of a region of sky in Aladin

2. acquire a catalogue in Aladin with multi-band photometry corresponding to
sources visible in the region

3. overplot the catalogue positions on the sky imagery

4. send the catalogue to TOPCAT using SAMP

5. plot a color-magnitude diagram in TOPCAT

6. identify a sub-population in TOPCAT from the color-magnitude plot

7. send the sub-population referencing the original catalogue back to Aladin using
SAMP

8. Aladin displays the sub-population sources in a way which distinguishes them
visually from the others

The SAMP send operations are typically initiated by the user simply hitting an
appropriate “Send” button in the GUI. The loose semantics of the messages typically
exchanged by SAMP applications mean that this workflow could work in just the same
way if different image- and/or table-analysis tools were used.

3.2. SAMP as a Lightweight Remote Procedure Call Protocol

Some projects have used SAMP as a lightweight protocol for remote procedure calls.
The advantage of this approach is that robust off the shelf SAMP libraries can be used
to build a thin layer on top of existing applications in different programming languages
in order to make them communicate. Such a private interface can also be exercised by
different clients than those that were targeted originally.

Iris (Doe et al. 2012), the Virtual Astronomical Observatory tool for the analysis of
Spectral Energy Distributions, for example, employed SAMP to make the connection
between a Java application for spectral analysis (Specview, by STScI, Busko 2000) and
a Python fitting engine (Sherpa, by SAO, Doe et al. 2007). The design is straightforward
and requires the specification of methods, identified by MTypes; arguments, in the
form of SAMP dictionaries; and exceptions, serialized as SAMP messages and as such
propagated from one programming language to the other.

While Python offers natural means for deserializing dictionaries in the form of
instances, a specific library was developed in Java for (de)serializing Java interfaces as
SAMP messages. This makes the implementation of a simple inter-language remote
API very straightforward and lightweight.

3.3. SAMP from the Command Line

The Libsamp library was used to fully SAMP-enable the IRAF Command Language
(CL) as well as to build a command-line tool (called vosamp) to allow scripts to send
(and optionally receive) messages. In both cases, a simplified command interface fur-
ther hides the details of the SAMP protocol from the user. For example, a load com-



398 Fitzpatrick et al.

mand takes as a single argument the name of a local file or a URL. The IRAF CL
or vosamp task determine whether this file is a FITS image or a VOTable and format
the appropriate message type or supply additional arguments as needed. Options exist
to send directed messages to specific applications or send messages using a particular
message pattern.

For the vosamp command-line tool, the overhead of connecting to the Hub with
each command in scripts is avoided by having the task run in the background as a
persistent proxy. On the first invocation the task registers with the Hub and then forks
itself to run in the background while remaining connected to the messaging session.
Subsequent commands from the terminal or script are sent to this background proxy
via IPC for execution, allowing a script to process many commands using a single
application registration. This capability means that any scripting language (e.g. Python,
Perl, IDL, Bourne or C-shell, etc.) that can execute a host command can send SAMP
messages without requiring detailed knowledge of the protocol by the script writer. In
cases where tighter integration with the language is required, bindings can be generated
as needed.

3.4. SAMP from Archive Query Web Pages

Many data centers provide web-based access to their data holdings along the lines of
a form which a user fills in, resulting in a web page listing one or more data products
such as images, spectra, or catalogues, with the expectation that users will download
these files to disk and then load them into a suitable viewer application.

Using the Web Profile introduced in SAMP 1.3 and a JavaScript library like sam-
pjs, it is very easy (10–20 lines of JavaScript) to associate a button with each such link
that sends the relevant file (in fact, its URL) directly to whatever suitable SAMP-aware
viewer the user happens to be running, if any. It is straightforward to arrange for such
buttons to be hidden in the absence of a SAMP hub, so non-SAMP-aware users do not
experience unavailable functionality as increased clutter.

References

Busko, I. 2000, in ADASS IX, edited by N. Manset, C. Veillet, & D. Crabtree, vol. 216 of ASP
Conf. Ser., 79

Doe, S., et al. 2007, in ADASS XVI, edited by R. A. Shaw, F. Hill, & D. J. Bell, vol. 376 of
ASP Conf. Ser., 543

— 2012, in ADASS XXI, edited by P. Ballester, D. Egret, & N. P. F. Lorente, vol. 461 of ASP
Conf. Ser., 893

Taylor, M. B., et al. 2011, in ADASS XXI, edited by P. Ballester, D. Egret, & N. P. F. Lorente
(San Francisco: ASP), vol. 461 of ASP Conf. Ser., 279

— 2012, Simple Application Messaging Protocol, Version 1.3, Tech. rep., IVOA Recommen-
dation

Tollerud, E., Greenfield, P., & Robitaille, T. 2013, in ADASS XXII, edited by D. Friedel (San
Francisco: ASP), vol. 475 of ASP Conf. Ser., 241


