
TOPCAT Plotting from STILTS
API and Command Line
Mark Taylor, University of Bristol, UK

Introduction
TOPCAT is a desktop GUI application for analysis of tabular data,
particularly source catalogues. Among other capabilities it provides
high-performance interactive visualisation for large (and small) datasets.

The plotting capabilities are focussed on representations of point clouds in
two or three dimensions, with special attention to large (many row) and
high-dimensional (many column) datasets. Many options are available.

The visualisation is supported by a custom Java plotting library. This library
is now bundled and documented as part of the STILTS package (v3.0) for
use outside of TOPCAT. All TOPCAT’s plotting capabilities can be used.

This poster describes how you can use the library to generate plots from
your own Java application code, or from the STILTS command-line
interface.

Plot Model
Each plot is specified as a plot surface giving the geometry and zero or
more plot layers. Different layers may use the same or different datasets,
allowing all kinds of overplotting.

Surfaces: plane, sky, cube, sphere, time

Layers: scatter plot, lines, contours, analytic function, error bars, ellipses,
pair links, text labels, vectors, sized markers, histogram, spectrogram,
colour coding by density or additional coordinates, ...

Features
Fast: interactive graphics works well for several million points

Scalable: plot arbitrarily large datasets in fixed memory

Configurable: many plot types and options

Extensible: pluggable architecture allows runtime extensions

Further Information
Downloads and full documentation:

TOPCAT: http://www.starlink.ac.uk/topcat/
STILTS: http://www.starlink.ac.uk/stilts/

Expect enhancements in future releases. STILTS plotting is working but
still somewhat experimental. Email m.b.taylor@bristol.ac.uk for assistance!

STILTS Invocation
The STILTS package provides access to TOPCAT functions from the
command line or a Jython front end. New commands plot2plane,
plot2sky, plot2cube etc produce interactive plots on the screen or
bitmapped/vector output files, also incorporating STILTS’s sophisticated
pipeline processing options. Animations can also be generated.

API Invocation
There are two ways to configure a plot: the low-level API or key-value pairs.

Low-Level API
Setting up a plot with the low-level API is fairly complex, but it provides
compile-time checking. Full javadocs are provided.

Key-Value API
Only a small number (∼4) of values must be supplied to draw a simple
scatter plot with default settings, but many more (∼100) parameters are
available for complex plots or fine tuning.

Options can always be set with string values, facilitating command-line and
inter-process control. Alternatively, from the API values can be given as
typed java Objects for convenience and extensibility.

Configuration keys are comprehensively documented in the STILTS user
document, but are also self-documenting objects, with methods to return
user documentation and GUI components. Application code can either use
hard-coded configuration keys, or build its own graphical/text UI by
interrogating the plotting API (TOPCAT and STILTS do the latter).

Data Input
Plot data is supplied as a StarTable object. This may be a file read from
disk in one of STIL’s supported formats (FITS, VOTable, CSV, ...) or a
custom iterable over user-supplied data rows. The data may be static or
may change with time for an animated plot.

Graphics Output
Plots can produce a live resizable and interactive graphics window
(JComponent) posted to the screen or under control of a host application.
This supports interactive user navigation: in 2 dimensions pan and isotropic
or anisotropic zoom; in 3 dimensions rotation, pan, isotropic or anisotropic
zoom, and recentering.

Alternatively, graphics can be exported to bitmapped (PNG, GIF, JPEG) or
publication quality vector (PDF, EPS) graphics files.

In
vo

ca
ti

on
E

xa
m

pl
es Command Line

stilts plot2plane yflip=true layer 1=mark

in 1=data.fits x 1=BMAG-RMAG y 1=BMAG

Key-Value API
public JComponent createPlot() throws Exception {

StarTable table = new StarTableFactory().makeStarTable("data.fits");

MapEnvironment env = new MapEnvironment();

env.setValue("yflip", true);

env.setValue("layer_1", "mark");

env.setValue("in_1", table);

env.setValue("x_1", "BMAG-RMAG");

env.setValue("y_1", "BMAG");

return new PlanePlot2Task().createPlotComponent(env, true);

}

Low-Level API
public JComponent createPlot() throws Exception {

/* Read the data from an external FITS file. We could alternatively

* supply it from in-memory arrays or dynamically-generated values. */

StarTable table = new StarTableFactory().makeStarTable("data.fits");

/* Create the Profile for the plot surface. This encapsulates

* those things about the geometry and appearance of the plot

* axes which will not change with window resizing, zooming etc. */

DataGeom geom = PlaneDataGeom.INSTANCE;

PlaneSurfaceFactory surfFact = new PlaneSurfaceFactory();

boolean xlog = false;

boolean ylog = false;

boolean xflip = false;

boolean yflip = false;

String xlabel = "X axis";

String ylabel = "Y axis";

Captioner captioner = new BasicCaptioner();

double xyfactor = Double.NaN;

boolean grid = false;

double xcrowd = 1;

double ycrowd = 1;

boolean minor = true;

Color gridColor = Color.BLACK;

Color axlabelColor = Color.BLACK;

PlaneSurfaceFactory.Profile profile =

new PlaneSurfaceFactory

.Profile(xlog, ylog, xflip, yflip, xlabel, ylabel, captioner,

xyfactor, grid, xcrowd, ycrowd, minor, gridColor, axlabelColor);

/* Set up a plot Aspect. This is the initial data range,

* and is subject to change by user navigation. */

double[] xlimits = new double[] { 0, 30 };

double[] ylimits = new double[] { 0, 24 };

PlaneAspect aspect = new PlaneAspect(xlimits, ylimits);

/* Set up a Navigator which determines what mouse gestures are

* available to the user for plot pan/zoom etc. */

double zoomFactor = StyleKeys.ZOOM_FACTOR.getDefaultValue();

boolean xZoom = true;

boolean yZoom = true;

boolean xPan = true;

boolean yPan = true;

double xAnchor = Double.NaN;

double yAnchor = Double.NaN;

Navigator<PlaneAspect> navigator =

new PlaneNavigator(zoomFactor, xZoom, yZoom, xPan, yPan, xAnchor, yAnchor);

/* We will not use optional decorations for this plot. */

Icon legend = null;

float[] legPos = null;

ShadeAxisFactory shadeFact = null;

Range shadeFixRange = null;

boolean surfaceAuxRange = false;

/* Prepare the data for the scatter plot layer:

* use the first two columns of the supplied table as X and Y.*/

int[][] coordIndices = { {0}, {1} };

DataSpec dataSpec = new ColumnDataSpec(table, geom.getPosCoords(), coordIndices);

/* Prepare the graphical style of the scatter plot layer:

* it’s a scatter plot with single-position markers, plotted in a single fixed colour. */

ShapePlotter plotter = ShapePlotter.createFlat2dPlotter(MarkForm.SINGLE);

MarkShape shape = MarkShape.FILLED_CIRCLE;

int size = 2;

Outliner outliner = MarkForm.createMarkOutliner(shape, size);

Stamper stamper = new ShapeMode.FlatStamper(Color.RED);

ShapeStyle style = new ShapeStyle(outliner, stamper);

/* Prepare the list of plot layers; in this case there is only one. */

PlotLayer[] layers = { plotter.createLayer(geom, dataSpec, style), };

/* Prepare the data cache. */

int nl = layers.length;

DataSpec[] dataSpecs = new DataSpec[nl];

for (int il = 0; il < nl; il++) {

dataSpecs[il] = layers[il].getDataSpec();

}

DataStoreFactory storeFact = new SimpleDataStoreFactory();

DataStore dataStore = storeFact.readDataStore(dataSpecs, null);

boolean dataMayChange = false;

boolean caching = ! dataMayChange;

/* Finally construct, size and return the plot component. */

Compositor compositor = Compositor.SATURATION;

PaperTypeSelector ptSel = PlanePlotType.getInstance().getPaperTypeSelector();

JComponent comp =

new PlotDisplay<PlaneSurfaceFactory.Profile,PlaneAspect>(

layers, surfFact, profile, aspect, legend, legPos, shadeFact, shadeFixRange,

ptSel, compositor, dataStore, surfaceAuxRange, navigator, caching);

comp.setPreferredSize(new Dimension(500, 400));

return comp;

}

Plot output may be to
either interactive window (user can resize/pan/zoom)

or output file (bitmapped or vector)

Real-time observing band spectrum,
8 thousand points refreshed at 1 Hz (easily)

(P. Harrison, Jodrell Bank)
Spectrogram and samples on scrollable time axis

0
h

0
0

3
h

0
0

6
h

0
0

9
h

0
0

1
2

h
0

01
2

h
0

0 1
5

h
0

0

1
8

h
0

0

2
1

h
0

0

- 7 5 - 7 5

- 6 0 - 6 0

- 4 5 - 4 5

- 3 0 - 3 0

- 1 5

0

1 5 1 5

3 0 3 0

4 5 4 5

6 0 6 0

7 5 7 5

9 0

Sky source density map (GUMS-10), 2.1 billion rows, ∼30 minutes to plot

0:01 0:1 1
EW11:2¹m

¡4

¡3

¡2

¡1

0

S
si
l[I

R
S
]

Obscured
Unobscured

1e7

1e8

1e9

1e10

1e11

1e12

1e13

1e14

L
7¹

m
[L
¯
]

Points coded by marker shape, size and colour
(E. Hatziminaoglou, ESO)

¡250 ¡200 ¡150 ¡100 ¡50 0 50 100 150 200 250

z=pc

0:1

1

10

100

1000

1e4

1e5

½
=c

m
¡

3
SPH simulation data, 14 million points, 8 seconds to plot

(R. Smilgys, St. Andrews)

12.8 13.0 13.2 13.4 13.6 13.8

y
6.5

7.0
7.5

2
4

.0
2

4
.5

2
5

.0

z

Millennium simulation data, positions and velocities

ADASS XXIV, Calgary, October 2014 $Id: poster.tex,v 1.17 2014/09/30 09:35:30 mbt Exp $

