
TOPCAT’s TAP Client
Mark Taylor, University of Bristol, UK

Introduction
TAP, the Table Access Protocol, is a Virtual Observatory (VO) protocol for
executing queries in remote relational databases using ADQL, an SQL-like
query language. It is one of the most powerful VO components, but also one of
the most complex to use, with an extensive stack of associated standards.

This poster presents significant improvements to the GUI TAP client in the
recent release of TOPCAT, a desktop table analysis tool. It attempts to give
the user as much help as possible in locating services, understanding service
metadata and capabilities, and submitting correct and useful ADQL queries.
The implementation is both usable and performant for very large TAP services.

This GUI client is also available for standalone or embedded use.

General Considerations
One window: Because of its position within the, already complex, TOPCAT

application, the GUI is constrained to fit within a single screen window.

Scalability: Many TAP services have only a few tables, but some have many
(∼900 in HEASARC, ∼30 000 in TAPVizieR). Both user interface and data
access have to be designed with this in mind.

Fault tolerance: TAP services are of variable quality. An attempt is made to
provide best-efforts behaviour when interacting with non-compliant or
partially implemented services.

Standards Evolution: TAP and its associated standards continue to evolve.
Some attempt is made to provide forward, as well as backward, compatibility.

Service Discovery
Science users typically know the data sets they
want to query (CALIFA, WISE) rather than the
names or locations of the services hosting them
(GAVO DC, HEASARC). So when selecting a TAP
service to query, it’s important to be able to
locate services by searching against table metadata
(table name, table description) not only service
metadata (organisation name, service title).

The IVOA Registry does not currently have
sufficient detail to support these searches. So we
cheat. GAVO at ARI Heidelberg maintains a
database called Global TAP Schema (GloTS),
which contains the table-level information we need.
This is queried (using TAP, since it is itself a TAP
service) to locate services of interest.

The implementation is pluggable, so if the registry
acquires sufficient content for these searches in the
future, the client can be switched to use that
instead.

Job Submission Mode
TAP allows you to submit queries in Synchronous
or Asynchronous mode; sync is more
straightforward but async is suitable for
long-running jobs. You can choose which you want,
and the result is loaded into TOPCAT for further
analysis.

Alternatively you can choose Quick Look, which
makes a synchronous query but just displays the
result in a window, and does not load it into the
application. It’s useful for experimental queries,
e.g. counting the rows in a table.

ADQL Editor
The editor panel is where you enter the ADQL to
be executed. It has several features:

Query Validation: The ADQL is checked as you
type, and errors are highlighted. As well as
standard ADQL syntax, the validator is aware of
the tables, columns, and user-defined functions
available from the service.

Tabs: You can have multiple queries on the go in
different tabs. Tabs can be given names and
content copied to new ones.

Undo/Redo: Full undo/redo functionality for text
edits is provided from the keyboard or toolbar
buttons.

Metadata Paste: There is limited support for
selecting table and column names in the
metadata GUI and pasting them into the text
window, to cut down on typing.

Acknowlegements
This work has benefitted from many members of
the TAP/IVOA community; special thanks are due
to Markus Demleitner (GloTS & expert on all
things TAP) and Grégory Mantelet (ADQL
parser library), both at ARI Heidelberg.

ADQL Examples
Most astronomers are not, at least initially, fluent in
ADQL or SQL, so need some help with the syntax.
One possible approach is to provide a graphical query
builder that constructs a SELECT statement from a
series of GUI interactions (e.g. selecting tables,
columns and comparison operations from drop-down
menus). That can be effective for simple queries, but
it’s difficult to generalise to sophisticated operations.

Instead we concentrate here on providing a library of
example ADQL queries that a user can use, edit,
adapt and learn from. These fall into three categories:

Standard: Standard examples use standard TAP
features, though some, for instance upload-based
ones, may not be applicable to services that lack
certain capabilities. These examples use table
metadata declared by the service, so can be used
as-is to make working (though not necessarily
useful) queries on the database at hand.

Data Model-Specific: TAP services may declare
that they support certain standard data models, for
instance ObsTAP, which stores astronomical
observation metadata in a standard format for
querying. Standard queries based on such common
data models (currently: RegTAP, ObsTAP and
TAP SCHEMA) are available for services that
support the relevant models.

Service-Provided: TAP services may provide their
own lists of data-specific examples from the
standard /examples endpoint. These can be
extremely useful to guide users in making best use
of the available data holdings. The examples
document is XHTML marked up with RDFa; the
details of the format are currently under discussion,
but if you’re a TAP service provider not already
providing examples in this way, please consider it!

Metadata Acquisition
The client has to know information about the tables
provided by the service, (1) to present to the user
and (2) to be able to validate ADQL queries (check
existence of the referenced tables and columns).

There are a couple of ways to get this information
from the service; from the /tables endpoint as a
flat XML document or by querying the standard
TAP SCHEMA tables in the database itself.

For small databases (a few tables) it makes sense to
read all the metadata at once. For large databases
(e.g. VizieR has 30k tables, 430k columns,
100Mbyte? table metadata, nearly all of which the
user won’t need) it’s a bad idea. So metadata
acquisition is done in a pluggable way; different
backends exist for different acquisition strategies.
By default an adaptive strategy is used (<5 000
columns, read all metadata up-front; more than
that read just table names up front and defer
reading column content until it is required). But the
expert user is able to choose a strategy to taste.

In the deferred case care has to be taken to acquire
column metadata in a way that appears responsive
from the GUI without overloading the service. A
bounded LIFO queue of asynchronous metadata
requests is maintained to achieve this.

ADQL Hints
A Hints tab shows a very basic ADQL Cheat Sheet,
with reminders about SELECT statement syntax
and pointers to a few other resources on the web.

Metadata Display
The user has to be able to see metadata describing
the TAP service to be able to formulate queries.
This metadata is rich and potentially large.

A standard combination of a tree and tabbed pane
is used for presentation. the user selects a table of
interest in the tree, and the tabs on the right are
populated with different information about it:

Service: Service metadata including that gathered
from the IVOA Registry (name, description,
organisation, curation, external links, ...)
and from its /capabilities endpoint
(supported data models, query languages, and
user-defined functions).

Schema: Name and description of the
schema-level grouping of tables (only useful for
services that use this grouping structure).

Table: Table name and (perhaps detailed)
description.

Columns: List of all columns in the selected table,
including name, data type, units and description,
presented in tabular form. Tables can be wide
(∼500 columns for SDSS Photo*), so browsing
this can be challenging. Currently you can’t
search (should this be added?) but you can sort
the list, e.g. by column name (useful if you know
or guess the name of the column you want) or
units (useful to group e.g. magnitudes, positions
or proper motions).

Foreign Keys: Lists relationships between tables.

For large services, browsing the tree of thousands of
tables is not useful, especially if the tables have
unintuitive names. The Find box allows you to
enter search terms that instantly restrict the visible
tables by table name and/or description. Thanks to
the authors of Seleste (CfA), from which I stole this
idea.

Communications between TOPCAT and Services

GloTS

IVOA
Registry

TAP
Service

TAP
Service

TAP
Service

List all services

GloTS TAP

Find services by table metadata
GloTS TAP

Service metadata RegTAP

Initial table/column metadata

VOSI 1.0/TAP SCHEMA

Per-table column metadata
VOSI 1.1/TAP SCHEMA

Service-specific examples
DALI/TAPNote

Service capabilities
VOSI, TAPRegExt

Submit job synchronously
TAPSubmit job asynchronously

TAP, UWS
Poll service for job completion

UWS

Retrieve job result

TAP, VOTable

ADASS XXV, Sydney, October 2015, Poster P107 $Id: poster.tex,v 1.14 2015/10/16 09:52:31 mbt Exp $

TAP
into

Australia!

