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Preface

This text covers the lectures for Part A of Mathematical Physics PHYS23020. If you notice
any errors please email me zoe.leinhardt@bristol.ac.uk.

4

mailto:zoe.leinhardt@bristol.ac.uk


Part I

Course Notes
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1 Introduction

Welcome to second year Mathematical Physics. This unit is divided into two sections Part A
- Vector Calculus and Part B - Linear Algebra and Fourier Series.

1.1 Course logistics

You should familiarize yourself with the blackboard page for this unit. This is the main source
of information for this unit. The lecture and problems/example class schedule should appear
in your personal timetable.

Lectures will be delivered in person three times a week along with one problems class a week
starting in week 2.

1.2 Textbooks

There are several textbooks that you may find useful. For the first week of lectures the
most relevant is the first chapter of Griffiths Introduction to Electrodynamics. For the next
four weeks Mathematical methods in the physical sciences by Mary Boas and Mathematical
methods for physics and engineering by Riley, Hobson, and Bence will be very helpful. All
of these texts are listed in the reading list and are available digitally and physically in the
University Library.
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2 Review of Vectors

Consider this situation: Walk 4 miles north and then 3 miles east (see Figure 2.1). How far
have you walked?

7 miles - but you are not 7 miles from your starting point.

Figure 2.1: Walking Path

These quantities do not add in the standard way that we think of as addition because the
displacements have direction as well as magnitude (length). Both the direction and the mag-
nitude need to be taken into account When the quantities are combined. We also need a word
for these quantities that have both magnitude and direction vectors.

Question

What are some examples of vector quantities that you often encounter in physics?

Answer

Velocity, acceleration, momentum, force…

However, not all quantities are vectors. Some quantities that we encounter in physics do not
have direction. These quantities are scalars.
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Question

What are some examples of scalar quantities that you often encounter in physics?

Answer

Mass, charge, density, temperature.

Vectors are identified in a number of ways - they can have a line under them or an arrow above
or they many be in bold face: 𝐴 or ⃗𝐴 or A.

Scalars are not bold or can be specifically identified as the magnitude of a vector: |𝐴| or 𝐴.

A negative sign in front of a vector, − ⃗𝐴, means that the vector points in a direction opposite
to ⃗𝐴 but has the same magnitude (see Figure 2.2).

Figure 2.2: Negative vector

2.1 Vector Operations

Vectors do not have location - a displacement of 10 mi north from Bristol is represented by
the same vector as a displacement 10 miles north from New York City. On a diagram you can
slide the arrow around as long as it has the same length and direction that it did originally.

1. Addition of two vectors:
𝐴 + 𝐵 = 𝐵 + 𝐴

3 miles east then 4 miles north gets you to the same place as 4 miles north and then 3
miles east.

• Vector addition is associative:

(𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶).
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• To subtract a vector you add its opposite:

𝐴 − 𝐵 = 𝐴 + (−𝐵)

Figure 2.3: Subtracting vectors

2. Multiplication of a vector by a scalar:

𝑎(𝐴 + 𝐵) = 𝑎𝐴 + 𝑎𝐵

Multiplication of a vector by a positive scalar multiplies the magnitude but leaves the
direction. If the scalar is negative the direction of the vector is reversed.

3. Dot product of two vectors:
𝐴 ⋅ 𝐵 = 𝐴𝐵 cos 𝜃,

where 𝜃 is the angle between 𝐴 and 𝐵 when they are placed tail to tail.

• The dot product is a scalar (also called the scalar product).

• The dot product is commutative,

𝐴 ⋅ 𝐵 = 𝐵 ⋅ 𝐴.

• The dot product is distributive,

𝐴 ⋅ (𝐵 + 𝐶) = 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐶.
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Question

What happens if 𝐴 is parallel to 𝐵?

Answer

𝐴 ⋅ 𝐵 = 𝐴𝐵 cos 𝜃
𝜃 = 0∘

cos 𝜃 = cos 0∘ = 1
∴ 𝐴 ⋅ 𝐵 = 𝐴𝐵.

Question

What happens to the dot product if 𝐴 is perpendicular to 𝐵?

Answer

𝐴 ⋅ 𝐵 = 𝐴𝐵 cos 𝜃
If 𝐴 ⟂ 𝐵 then 𝜃 = 90∘

cos 90∘ = 0
∴𝐴 ⋅ 𝐵 = 0.

Question

Let 𝐶 = 𝐴 − 𝐵. Calculate 𝐶 ⋅ 𝐶.

Answer

𝐶 ⋅ 𝐶 = (𝐴 − 𝐵) ⋅ (𝐴 − 𝐵)
= 𝐴 ⋅ 𝐴 − 𝐴 ⋅ 𝐵 − 𝐵 ⋅ 𝐴 + 𝐵 ⋅ 𝐵
= 𝐴2 + 𝐵2 − 2𝐴 ⋅ 𝐵

𝐶 − 𝐶 = 𝐴2 + 𝐵2 − 2𝐴𝐵 cos 𝜃
𝐶 ⋅ 𝐶 = 𝐴2 + 𝐵2 − 2𝐴𝐵 cos 𝜃

This is the Law of Cosines

4. Cross Product of two vectors
𝐴 × 𝐵 = 𝐴𝐵 sin 𝜃 �̂�,
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where �̂� is the unit vector (vector of length 1) pointing perpendicular to the plane
defined by vectors 𝐴 and 𝐵. Note - the direction of �̂� is ambiguous because there are
two directions for this plane. It is resolved using right hand rule. Fingers point in
direction of first vector and curl toward the second (smaller of two possible angles). The
thumb then pants in direction of �̂�.

Figure 2.4: Cross product directions

• 𝐴 × 𝐵 is a vector.

• The cross product is also called the vector product.

• The cross product is distributive:

𝐴 × (𝐵 + 𝐶) = 𝐴 × 𝐵 + 𝐴 × 𝐶.

• The cross produce is not commutative,

𝐵 × 𝐴 = −𝐴 × 𝐵.

• Geometrically 𝐴 × 𝐵 is the area of the parallelogram formed by 𝐴 and 𝐵.

Question

What is the cross product of two parallel vectors?

Answer

𝐴 × 𝐴 = 0.
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Figure 2.5: Cartesian coordinates

2.2 Vector Algebra

We have defined the vector function in abstract form but it is also possible to set up coordinates
and work with vector components. Lets consider Cartesian coordinates - set up unit vectors

̂𝑥, ̂𝑦, ̂𝑧 parallel to 𝑥, 𝑦, 𝑧 axes.

𝐴 = 𝐴𝑥 ̂𝑥 + 𝐴𝑦 ̂𝑦 + 𝐴𝑧 ̂𝑧

𝐴𝑥, 𝐴𝑦, 𝐴𝑧 are projections of 𝐴 along the respective coordinate axis.

Now lets return to the four vector functions that we covered earlier.

• Vector addition:

𝐴 + 𝐵 = (𝐴𝑥 ̂𝑥 + 𝐴𝑦 ̂𝑦 + 𝐴𝑧 ̂𝑧) + (𝐵𝑥 ̂𝑥 + 𝐵𝑦 ̂𝑦 + 𝐵𝑧 ̂𝑧)
= (𝐴𝑥 + 𝐵𝑥) ̂𝑥 + (𝐴𝑦 + 𝐵𝑦) ̂𝑦 + (𝐴𝑧 + 𝐵𝑧) ̂𝑧

To add vectors in this form add components.

• Scalar multiplication:
𝑎𝐴 = 𝑎𝐴𝑥 ̂𝑥 + 𝑎𝐴𝑦 ̂𝑦 + 𝑎𝑧 ̂𝑧

To multiply by a scalar multiply each component by the scalar.
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Figure 2.6: Vector A in components

• Dot product:
𝐴 ⋅ 𝐵 = (𝐴𝑥 ̂𝑥 + 𝐴𝑦 ̂𝑦 + 𝐴𝑧 ̂𝑧) ⋅ (𝐵𝑥 ̂𝑥 + 𝐵𝑦 ̂𝑦 + 𝐵𝑧 ̂𝑧) .

= 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧

Note that since ̂𝑥, ̂𝑦, ̂𝑧 are all mutually ⟂ ̂𝑥⋅ ̂𝑥 = ̂𝑦 ⋅ ̂𝑦 = ̂𝑧 ⋅ ̂𝑧 = 1 and ̂𝑥 ⋅ ̂𝑦 = ̂𝑥⋅ ̂𝑧 = ̂𝑦 ⋅ ̂𝑧 = 0.
Thus, to calculate dot product multiply like components and add.

Question

Calculate 𝐴 ⋅ 𝐴.

Answer

$$ A �A=A_{x}{2}+A_{y}{2}+A_{z}^{2}

𝐴 = √𝐴2𝑥 + 𝐴2𝑦 + 𝐴2𝑧

magnitude of 𝐴.

• Cross product:

𝐴 × 𝐵 = (𝐴𝑥 ̂𝑥 + 𝐴𝑦 ̂𝑦 + 𝐴𝑧 ̂𝑧) × (𝐵𝑥 ̂𝑥 + 𝐵𝑦 ̂𝑦 + 𝐵𝑧 ̂𝑧) .
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You can multiply it all out and it will give you:

= (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦) ̂𝑥 + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧) ̂𝑦 + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥) ̂𝑧.

Because ̂𝑥 × ̂𝑥 = ̂𝑦 × ̂𝑦 = ̂𝑧 × ̂𝑧 = 0 and

̂𝑥 × ̂𝑦 = − ̂𝑦 × ̂𝑥 = ̂𝑧
̂𝑦 × ̂𝑧 = − ̂𝑧 × ̂𝑦 = ̂𝑥
̂𝑧 × ̂𝑥 = − ̂𝑥 × ̂𝑧 = ̂𝑦

⎫}
⎬}⎭

using right hand rule

But there is an easier way to remember this:

𝐴 × 𝐵 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

∣ = ̂𝑥 (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦) − ̂𝑦 (𝐴𝑥𝐵𝑧 − 𝐴𝑧) + ̂𝑧 (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥)

Question

Find the angle between the face diagonals of a cube.

Answer

𝐴 = 1 ̂𝑥 + 0 ̂𝑦 + 1 ̂𝑧
𝐵 = 0 ̂𝑥 + 1 ̂𝑦 + 1 ̂𝑧
𝐴 ⋅ 𝐵 = 1 ⋅ 0 + 0 ⋅ 1 + 1 ⋅ 1 = 1

also
𝐴 ⋅ 𝐵 = 𝐴𝐵 cos 𝜃
𝐴 = √12 + 02 + 12 =

√
2

𝐵 = √𝑂2 + 12 + 12 =
√

2
𝐴 ⋅ 𝐵 =

√
2 ⋅

√
2 cos 𝜃

= 2 cos 𝜃
1 = 2 cos 𝜃
𝜃 = cos−1(1/2)
𝜃 = 60∘.
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3 Differential Calculus

Suppose that we have a function of one variable 𝑓(𝑥)

Question

Q. What does the derivative 𝑑𝑓
𝑑𝑥 tell us?

Answer

Answer: It tells us how rapidly 𝑓(𝑥) varies when we change 𝑥 by a small amount 𝑑𝑥.

𝑑𝑓 = (𝑑𝑓
𝑑𝑥) 𝑑𝑥

𝑑𝑓
𝑑𝑥 is the slope of the graph of 𝑓 versus 𝑥

𝑑𝑓
𝑑𝑥 increases as we move away from the origin.

So what happens when a function depends on more than one variable? Lets take temperature
in a room - 𝑇 (𝑥, 𝑦, 𝑧) ?

𝑑𝑇 = (𝜕𝑇
𝜕𝑥 ) 𝑑𝑥 + (𝜕𝑇

𝜕𝑦 ) 𝑑𝑦 + (𝜕𝑇
𝜕𝑧 ) 𝑑𝑧
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𝑑𝑇 describes mathematically how T varies when we chance all variables 𝑥, 𝑦, and 𝑧 a little bit
𝑑𝑥, 𝑑𝑦, 𝑑𝑧.

3.1 Gradient

We can rewrite the above as a dot product:

𝑑𝑇 = (𝜕𝑇
𝜕𝑥 ̂𝑥 + 𝜕𝑇

𝜕𝑦 ̂𝑦 + 𝜕𝑇
𝜕𝑧 ̂𝑧) ⋅ (𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧)

𝑑𝑇 = ∇𝑇 ⋅ 𝑑𝑙

∇𝑇 = 𝜕𝑇
𝜕𝑥 ̂𝑥 + 𝜕𝑇

𝜕𝑦 ̂𝑦 + 𝜕𝑇
𝜕𝑧 ̂𝑧

∇𝑇 is called the gradient of 𝑇 and is a vector quantity. Like any other vector ∇𝑇 has both
magnitude and direction.

𝑑𝑇 = ∇𝑇 ⋅ 𝑑𝑙 = |∇𝑇 ||𝑑𝑙| cos 𝜃
where 𝜃 is the angle between ∇ and 𝑑𝑙.

• ∇𝑇 points in the direction of maximum increase of the function 𝑇 .
• The magnitude of ∇𝑇 is the slope along the maximal increase.

Question

Find the gradient of 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 (the magnitude of the position vector).

Answer

∇𝑟 = 𝜕
𝜕𝑥𝑟 ̂𝑥 + 𝜕

𝜕𝑦𝑟 ̂𝑦 + 𝜕
𝜕𝑧𝑟 ̂𝑧

𝜕𝑟
𝜕𝑥 = 1

2 (𝑥2 + 𝑦2 + 𝑧2)−1/2 ⋅ 2𝑥
𝜕𝑟
𝜕𝑦 = 1

2 (𝑥2 + 𝑦2 + 𝑧2)−1/2 ⋅ 2𝑦
𝜕𝑟
𝜕𝑧 = 1

2 (𝑥2 + 𝑦2 + 𝑧3)−1/2 ⋅ 2𝑧

𝑟 = (𝑥2 + 𝑦2 + 𝑧2)1/2 ⇒ 1
𝑟 = (𝑥2 + 𝑦2 + 𝑧2)−1/2

∴∇𝑟 = 𝑥 ̂𝑥 + 𝑦 ̂𝑦 + 𝑧 ̂𝑧
(𝑥2 + 𝑦2 + 𝑧2)1/2 = ̂𝑟

|𝑟| = ̂𝑟
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We call ∇ del and it is a vector operator. Del acts somewhat like a normal vector and can
“act” in three ways

• it can multiply a scalar. ⇒ gradient ∇𝑇
• it can be dotted with a vector ∇ ⋅ 𝐴 ⇒ we call this divergence
• it can be “crossed” with a vector ∇ × 𝐴 ⇒ this is called curl.

3.2 Divergence

∇ ⋅ 𝑣 = ( 𝜕
𝜕𝑥 ̂𝑥 + 𝜕

𝜕𝑦 ̂𝑦 + 𝜕
𝜕𝑧 ̂𝑧) ⋅ (𝑣𝑥 ̂𝑥 + 𝑣𝑦 ̂𝑦 + 𝑣𝑧 ̂𝑧)

= 𝜕
𝜕𝑥𝑣𝑥 + 𝜕

𝜕𝑦𝑣𝑦 + 𝜕
𝜕𝑧𝑣𝑧

The divergence of a vector is a scalar. It represents the spreading out of a vector from the
point in question.

Figure 3.1: Possitive Divergence
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Figure 3.2: Zero divergence

Figure 3.3: What about this one?
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Question

𝑣𝑎 = 𝑥 ̂𝑥 + 𝑦 ̂𝑦 + 𝑧 ̂𝑧, 𝑣𝑏 = ̂𝑧, 𝑣𝑐 = 𝑧 ̂𝑧

Answer

a) ∇ ⋅ 𝑣𝑎 = 𝜕
𝜕𝑥𝑥 + 𝜕

𝜕𝑦𝑦 + 𝜕
𝜕𝑧𝑧 = 3 pos. divergence

b) ∇ ⋅ 𝑣𝑏 = 𝜕
𝜕𝑥(0) + 𝜕

𝜕𝑦(0) + 𝜕
𝜕𝑧(1) = 0

c) ∇ ⋅ 𝑣𝑐 = 𝜕(0)
𝜕𝑥 + 𝜕

𝜕𝑦(0) + 𝜕𝑧
𝜕𝑧 = 1 pos. divergence

3.3 The Curl

∇ × 𝑣 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧

∣

= ̂𝑥 [𝜕𝑣𝑧
𝜕𝑦 − 𝜕𝑣𝑦

𝜕𝑧 ] − ̂𝑦 [𝜕𝑣𝑧
𝜕𝑥 − 𝜕𝑣𝑥

𝜕𝑧 ]

+ ̂𝑧 [𝜕𝑣𝑦
𝜕𝑥 − 𝜕𝑣𝑥

𝜕𝑦 ]

• The curl of a vector is a vector

Geometric interpretation is how much a vector curls around the paint in question.

Previous figures → have 0 curl above have non-zero curl.

Question

v𝑎 = −𝑦 ̂𝑥 + 𝑥 ̂𝑦, v𝑏 = 𝑥 ̂𝑦
Calculate curl: ∇ × v𝑎

Answer

∇ × v𝑎 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
−𝑦 𝑥 0

∣
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= ̂𝑥 ( 𝜕
𝜕𝑦 (0) − 𝜕

𝜕𝑧 (𝑥)) − ̂𝑦 ( 𝜕
𝜕𝑥(0) − 𝜕

𝜕𝑧 (−𝑦))

+ ̂𝑧 ( 𝜕
𝜕𝑥𝑥 − 𝜕

𝜕𝑦 (−𝑦))

= 0 ̂𝑥 − 0 ̂𝑦 + 2 ̂𝑧

Question

Calculate curl: ∇ × v𝑏

Answer

∇ × v𝑏 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
0 𝑥 0

∣

= ̂𝑥(𝜕/𝜕𝑦(0) − 𝜕𝜕𝜕𝑧(𝑥)) − ̂𝑦(𝜕/𝜕𝑥(0) − 𝜕𝜕𝑧(0)) + ̂𝑧(𝜕𝜕𝑥(𝑥) − 𝜕/𝜕𝑦(0))
= 1 ̂𝑧.

3.4 The Laplacian

One can also take the divergence of a gradient of a scalar field: ∇ ⋅ ∇𝜙 or ∇2𝜙 (the Laplacian
of 𝜙).

∇2𝜙 = 𝜕
𝜕𝑥

𝜕𝜙
𝜕𝑥 + 𝜕

𝜕𝑦
𝜕𝜙
𝜕𝑦 + 𝜕

𝜕𝑧
𝜕𝜙
𝜕𝑧

= 𝜕2𝜙
𝜕𝑥2 + 𝜕2𝜙

𝜕𝑦2 + 𝜕2𝜙
𝜕𝑧2
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4 Line, Surface, and Volume Integrals

In electrodynamics you will encounter several different kinds of integrals such as line (path),
surface (flux), and volume.

4.1 Line integrals

∫
𝑏

𝑎
𝑣 ⋅ 𝑑𝑙

where 𝑣 is a vector function, 𝑑𝑙 is an infinitesimal displacement vector and the integral is
calculated a long a specific path 𝑃 from a point 𝑎 to a point 𝑏.

If the path forms a closed loop meaning the end point is the same as the starting point 𝑎 = 𝑏
this is shown as a circle on the integral:

∮
𝑏

𝑎
𝑣 ⋅ 𝑑𝑙.

In order to calculate the path integral take the dot product of 𝑣 evaluated at that point with
displacement 𝑑 d to the next point on the path.

Question

Think of an example of a path integral in physics?

Answer

Work: 𝑊 = ∫ 𝐸 ⋅ 𝑑𝑙 Work done by a force 𝐸.

Note: A conservative force is a force that is independent of path.

Question

Calculate the line integral of the function v = 𝑦2 ̂𝑥 + 2𝑥(𝑦 + 1) ̂𝑦 form point 𝑎 = (1, 1, 0)
to point 𝑏 = (2, 2, 0) along paths (1) and (2).
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Answer

𝑑ℓ = 𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧
Path (1)

• first part 𝑑𝑦 = 𝑑𝑧 = 0, 𝑑𝑙 = 𝑑𝑥 ̂𝑥 and 𝑦 = 1.

𝑣 ⋅ 𝑑𝑙 = 𝑦2𝑑𝑥 @ 𝑦 = 1
= 𝑑𝑥

∫ 𝑣 ⋅ 𝑑𝑙 = ∫
2

1
𝑑𝑥 = 1
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• second part of Path 1 (the vertical part 𝑑𝑙 = 𝑑𝑦 ̂𝑦 and 𝑥 = 2.)

∫ 𝑣 ⋅ 𝑑𝑙 = ∫
2

1
2𝑥(𝑦 + 1)𝑑𝑦

𝑥 = 2

= ∫
2

1
4(𝑦 + 1)𝑑𝑦

= (2𝑦2 + 4𝑦)∣21
= (8 + 8) − 6 = 10.

So all together path 1: ∫ 𝑣 ⋅ 𝑑𝑙 = 11.
Path 2 ∶ 𝑥 = 𝑦 𝑑𝑥 = 𝑑𝑦 and 𝑑𝑧 = 0.

𝑑𝑙 = 𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦
𝑣 ⋅ 𝑑𝑙 = 𝑦2𝑑𝑥 + 2𝑥(𝑦 + 1)𝑑𝑦

but 𝑑𝑥 = 𝑑𝑦 and 𝑥 = 𝑦
= 𝑦2𝑑𝑥 + 2𝑥(𝑦 + 1)𝑑𝑥
= 𝑥2𝑑𝑥 + 2𝑥(𝑥 + 1)𝑑𝑥
= (𝑥2 + 2𝑥2 + 2𝑥) 𝑑𝑥
= (3𝑥2 + 2𝑥) 𝑑𝑥

∫ 𝑣 ⋅ 𝑑𝑙 = ∫
2

1
(3𝑥2 + 2𝑥) 𝑑𝑥 = 3𝑥3

3 + 2𝑥2

2 ∣
2

1

= 𝑥3 + 𝑥2∣21
= (8 + 4) − 2 = 10

Path 2 = 10

Question

What is ∮ 𝑣 ⋅ 𝑑1 for the loop that goes from 𝑎 to 𝑏 out on path (1) and back on path (2)?

Answer

∮ 𝑣 ⋅ 𝑑𝑙 = 11 − 10 = 1
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4.2 Surface Integrals

∫
𝑆

𝑣 ⋅ 𝑑𝑎

where 𝑣 is a vector function and 𝑑𝑎 is a little bit of area with direction perpendicular to the
surface.

Similarly to the path integral ∮ 𝑣 ⋅ 𝑑𝑎 indicates a closed surface.

Generally outward is positive for a surface but if the surface is open this is arbitrary. If 𝑣
describes flow then ∫ 𝑣 ⋅ 𝑑𝑎 is the total mas through the surface per unit time (or flux).

Question

Calculate the surface integral of

𝑣 = 2𝑥𝑧 ̂𝑥 + (𝑥 + 2) ̂𝑦 + 𝑦(𝑧2 − 3) ̂𝑧

over five sides of a cubical box (excluding the bottom).
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Answer

Let do one side at a time:
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For side (i) 𝑥 = 2 and 𝑑𝑎 = 𝑑𝑦𝑑𝑧 ̂𝑥

∫
side 1

𝑣 ⋅ 𝑑𝑎 = ∫
2

0
∫

2

0
2𝑥𝑧 𝑑𝑦 𝑑𝑧

= ∫
2

0
𝑑𝑦 ∫

2

0
4𝑧𝑑𝑧

= 𝑦|20 ⋅ 2𝑧2∣
2

0
= 2 ⋅ 8 = 16

Side 2 𝑥 = 0 𝑑𝑎 = −𝑑𝑦 𝑑𝑧 ̂𝑥

∫
side 2

𝑣 ⋅ 𝑑𝑎 = ∫ −2𝑥𝑧 𝑑𝑦 𝑑𝑧 = 0

Side 3 𝑦 = 2 𝑑𝑎 = 𝑑𝑥 𝑑𝑧 ̂𝑦

∫
side 3

(𝑥 + 2) 𝑑𝑥 𝑑𝑧 = ∫
2

0
𝑑𝑧 ∫

2

0
(𝑥 + 2)𝑑𝑥

= 𝑧|20 ⋅ (𝑥2

2 + 2𝑥)∣
2

0
= 2 ⋅ 6 = 12

Side 4 𝑦 = 0 𝑑𝑎 = −𝑑𝑥 𝑑𝑧 ̂𝑦

∫
side 4

−(𝑥 + 2)𝑑𝑥𝑑𝑧 = − ∫
2

0
𝑑𝑧 ∫

2

0
(𝑥 + 2)𝑑𝑥

= −12

Side 5 𝑧 = 2 𝑑𝑎 = 𝑑𝑥 𝑑𝑦 ̂𝑧

∫
Side 5

𝑦 (𝑧2 − 3) 𝑑𝑥𝑑𝑦 = ∫
2

0
𝑑𝑥 ∫

2

0
𝑦 𝑑𝑦

= 2 ⋅ 𝑦2

2 ∣
2

0
= 4

∴ ∫
𝑆

𝑣 ⋅ 𝑑𝑎 = 16 + 0 + 12 − 12 + 4 = 20.
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4.3 Volume Intugrals

∫
𝑉

𝑇 𝑑𝜏

Where 𝑇 is a scalar function and 𝑑𝜏 is a small volume element.
𝑑𝜏 = 𝑑𝑥𝑑𝑦𝑑𝑧

If 𝑇 is the density of something that might vary from point to point the volume integral would
give the total mass.

Question

Calculate the volume integral of 𝑇 = 𝑥𝑦𝑧2 over the prism
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Answer

∫
𝑉

𝑇 𝑑𝜏 = ∫
0

𝑥𝑦𝑧2𝑑𝑥𝑑𝑦𝑑𝑧

= ∫
3

0
∫

1

0
∫

1−𝑦

0
𝑥𝑦𝑧2𝑑𝑥𝑑𝑦𝑑𝑧

= ∫
3

0
∫

1

0

𝑥2

2 𝑦𝑧2∣
1−𝑦

0
𝑑𝑦𝑑𝑧

= ∫
3

0
𝑧2𝑑𝑧 ∫

1

0

(1 − 𝑦)2

2 𝑦 𝑑𝑦

= 𝑧3

3 ∣
3

0
⋅ ∫

1

0
𝑦 (1 − 2𝑦 + 𝑦2)

2 𝑑𝑦

= 9
2 ∫

1

0
(𝑦 − 2𝑦2 + 𝑦3) 𝑑𝑦

= 9
2 (𝑦2

2 + 2
3𝑦3 + 𝑦4

4 )∣
1

0

= 9
2 (1

2 − 2
3 + 1

4)

= 9
2 (6 − 8 + 3

12 )

= 9
2 ⋅ 1

12 = 3
8
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5 Fundamental Theorems

5.1 Fundamental Theorem of Calculus

𝑓(𝑥) is a function of one variable

∫
𝑏

𝑎

𝑑𝑓
𝑑𝑥𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎)

or

∫
𝑏

𝑎
𝐹(𝑥)𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎),

where 𝐹(𝑥) = 𝑑𝑓
𝑑𝑥 . This tells you how to integrate 𝐹(𝑥) - find a function 𝑓(𝑥) with a derivate

equal to 𝐹(𝑥).

5.2 Fundamental Theorem of Gradients

For 𝑇 (𝑥, 𝑦, 𝑧) a scalar function and 𝑑𝑇 = ∇𝑇 ⋅ 𝑑𝑙

∫
𝑏

𝑎
∇𝑇 ⋅ 𝑑ℓ = 𝑇 (𝑏) − 𝑇 (𝑎).

In other words the line integral of the gradient is given by the value of the function at its
boundaries.

Note: Gradients are special - the line integrals associated with them are path independent.

Question

Lets check the Fundamental Theorem of Gradients assuming 𝑇 = 𝑥𝑦2 point 𝑎 = (0, 0, 0)
and 𝑏 = (2, 1, 0).
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Answer

We need to pick a path even though gradients are special and path independent. So lets
take the path from point𝑎 to point 𝑏 in two parts first horizonally along the x-axis (from
(0, 0, 0) → (2, 0, 0)) and then vertically up to point 𝑏 (→ (2, 1, 0)).

(1) Out along 𝑥-axis, 𝑑𝑙 = 𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧

∫
𝑖
∇𝑇 ⋅ 𝑑𝑙

𝑑𝑙 = 𝑑𝑥 ̂𝑥
∇𝑇 = 𝑦2 ̂𝑥 + 2𝑥𝑦 ̂𝑦, 𝑦 = 0
∇𝑇 ⋅ 𝑑𝑙 = 0

∫
𝑖
∇𝑇 ⋅ 𝑑𝑙 = 0

(2) Now lets calculate the left hand side of the theorem for the second half of the path:

∫
𝑖𝑖

∇𝑇 ⋅ 𝑑𝑙, 𝑥 = 2

∇𝑇 ⋅ 𝑑𝑙 = 4𝑦𝑑𝑦

∫
1

0
4𝑦𝑑𝑦 = 2𝑦2∣10 = 2

Thus the entire integral is ∫𝑏
𝑎 ∇𝑇 ⋅𝑑𝑙 = 2. Is this consistent with the fundamental theorem

of gradients? Yes’ be cave 𝑇 (𝑏) − 𝑇 (𝑎) = 2 − 0 = 2.
Can check with another path.

(3) Lets take another path - the straight line from the origin to (1, 2, 0)

𝑦 = 1/2 𝑥, 𝑑𝑦 = 1/2 𝑑𝑥 ∇𝑇 ⋅ 𝑑𝑙 = 𝑦2𝑑𝑥 + 2𝑥𝑦𝑑𝑦

= 1
4𝑥2𝑑𝑥 + 𝑥2

2 𝑑𝑥

= 3
4𝑥2𝑑𝑥

∫
2

iii
∇ ⋅ 𝑑𝑙 = ∫

2

0

3
4𝑥2𝑑𝑥 = 1

4𝑥3∣
2

0
= 2
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5.3 Fundamental Theorem of Divergence

∫
𝑉

(∇ ⋅ 𝑣)𝑑𝑇 = ∮
𝑆

𝑣 ⋅ 𝑑𝑎

This is saying that the integral of the derivative (divergence) over a region (volume) is equal
to the value at of the function at the boundary (at the bounding surface of the volume). This
is also called Gauss’s Theorem ⇒ super useful in electrodynamics.

The divergence represents the “spreading out” so if 𝑣 represents the flow of incompressible
fluid then the right hand side is the flux through the surface

∫ faucets within the volume = ∮ flow out through
the surface

Question

Check the divergence theorem

𝑣 = 𝑦2 ̂𝑥 + (2𝑥𝑦 + 𝑧2) ̂𝑦 + 2𝑦𝑧 ̂𝑧
and a unit cube placed at the origin
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Answer

∇ ⋅ 𝑣 = 0 + 2𝑥 + 2𝑦

∫
𝑉

2(𝑥 + 𝑦)𝑑𝜏 = ∫
1

0
∫

1

0
∫

1

0
2(𝑥 + 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧

= 2 ∫
1

0
∫

1

0
(𝑥2

2 + 𝑦𝑥)∣
1

0
𝑑𝑦𝑑𝑧

= 2 ∫
1

0
∫

1

0
(1/2 + 𝑦)𝑑𝑦𝑑𝑧

= 2 ∫
1

0
𝑑𝑧 (1/2𝑦 + 1/2𝑦2)∣

1

0
= 2(1/2 + 1/2) = 2.

Left side of the divergence theorem. ∮𝑆 𝑣 ⋅ 𝑑𝑎 (right side) ⇒ consider each side:
Side 1: 𝑥 = 1 and 𝑑𝑎 = 𝑑𝑦𝑑𝑧 ̂𝑥

𝑣 ⋅ 𝑑𝑎 = 𝑦2𝑑𝑦𝑑𝑧

∫
side 1

𝑣 ⋅ 𝑑𝑎 = ∫
1

0
∫

1

0
𝑦2𝑑𝑦𝑑𝑧 = ∫

1

0

𝑦3

3 ∣
1

0
𝑑𝑧

= 1
3

Side 2: 𝑥 = 0 𝑑𝑎 = −𝑑𝑦𝑑𝑧 ̂𝑥

∫
side 2

𝑦 ⋅ 𝑑𝑎 = − ∫
1

0
∫

1

0
𝑦2𝑑𝑦𝑑𝑧 = −1

3.
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Side 3: 𝑦 = 1 𝑑𝑎 = 𝑑𝑥𝑑𝑧 ̂𝑦

∫
side 3

𝑣 ⋅ 𝑑𝑎 = ∫
1

0
∫

1

0
2𝑥𝑦 + 𝑧2𝑑𝑥𝑑𝑧

= ∫
1

0
∫

1

0
(2𝑥 + 𝑧2) 𝑑𝑥𝑑𝑧

= ∫
1

0
(𝑥2 + 𝑥𝑧2)∣

1

0
𝑑𝑧

= ∫
1

0
1 + 𝑧2𝑑𝑧

= 𝑧 + 𝑧3

3 ∣
1

0

= 4
3.

Side 4: 𝑦 = 0 𝑑𝑎 = −𝑑𝑥𝑑𝑧 ̂𝑦

∫
side 4

𝑣 ⋅ 𝑑𝑎 = − ∫
1

0
∫

1

0
𝑧2𝑑𝑦𝑑𝑧

= − ∫
1

0
𝑧2𝑑𝑧

= −1
3⋅

Side 5: 𝑧 = 1 𝑑𝑎 = 𝑑𝑥𝑑𝑦 ̂𝑧

∫
𝑠𝑖𝑑𝑒5

𝑣 ⋅ 𝑑𝑎 = ∫
1

0
∫

1

0
2𝑦𝑑𝑥𝑑𝑦

= ∫
1

0
2𝑦𝑑𝑦 = 1.

side 6: 𝑧 = 0 𝑑𝑎 = −𝑑𝑥𝑑𝑦 ̂𝑧

∫
𝑠𝑖𝑑𝑒6

𝑣 ⋅ 𝑑𝑎 = − ∫
1

0
∫

1

0
0𝑑𝑥𝑑𝑦 = 0

∴ ∮
𝑆

𝑣 ⋅ 𝑑𝑎 = 1
3 − 1

3 + 4
3 − 1

3 + 1 + 0

= 2
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5.4 Fundamental Theorem of Curls

∫
𝑆

(∇ × 𝑣) ⋅ 𝑑𝑎 = ∮
𝑃

𝑣 ⋅ 𝑑𝑙

The integral of a derivative (curl) over a region (patch of surface) equals the value at the
boundary (path). This is also called Stokes Theorem.

The left side depends only on the boundary line not the surface used.

Note: For a closed surface

∮
𝑆

(∇ × 𝑣) ⋅ 𝑑𝑎 = 0.

Question

Check Stokes theorem - 𝑣 = (2𝑥𝑧 + 𝑦2) ̂𝑦 + (4𝑦𝑧2) ̂𝑧.
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Answer

∇ × 𝑣 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
0 2𝑥𝑧 + 3𝑦2 4𝑦𝑧2

∣

= ̂𝑥 (𝜕4𝑦𝑧2

𝜕𝑦 − 𝜕
𝜕𝑧 (2𝑥𝑧 + 3𝑦2))

− ̂𝑦 ( 𝜕
𝜕𝑥4𝑦𝑧2 − 𝜕0

𝜕𝑧 )

+ ̂𝑧 ( 𝜕
𝜕𝑥 (2𝑥𝑧 + 3𝑦2) − 𝜕

𝜕𝑦 (0))

= ̂𝑥 (4𝑧2 − 2𝑥) − ̂𝑦(0) + ̂𝑧(2𝑥)
= (4𝑧2 − 2𝑥) ̂𝑥 + 2𝑥 ̂𝑧
𝑑𝑎 = 𝑑𝑦𝑑𝑧 ̂𝑥, 𝑥 = 0, (∇ × 𝑣) ⋅ 𝑑𝑎 = (4𝑧2 − 2𝑥) ̂𝑥 ⋅ 𝑑𝑦𝑑𝑧 ̂𝑥
= (4𝑧2 − 2𝑥) 𝑑𝑦𝑑𝑧

∫ ∇ × 𝑣 ⋅ 𝑑𝑎 = ∫
1

0
∫

1

0
(4𝑧2 − 2𝑥) 𝑑𝑦𝑑𝑧

= ∫
1

0
∫

1

0
4𝑧2𝑑𝑦𝑑𝑧

= ∫
1

0
4𝑧2𝑑𝑧 = 4/3.

Ok so now lets try the path side
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Part i
𝑥 = 0, 𝑧 = 0, 𝑑𝑙 = 𝑑𝑦 ̂𝑦

𝑣 ⋅ 𝑑𝑙 = 3𝑦2𝑑𝑦 ∫
𝑖
𝑣 ⋅ 𝑑𝑙 = ∫

1

0
3𝑦2𝑑𝑦 = 1

Part ii
𝑦 = 1, 𝑥 = 0, 𝑑𝑙 = 𝑑𝑧 ̂𝑧
𝑣 ⋅ 𝑑𝑙 = 4𝑦𝑧2𝑑𝑧 = 4𝑧2𝑑𝑧

∫
𝑖𝑖

𝑣 ⋅ 𝑑𝑙 = ∫
1

0
4𝑧2𝑑𝑧 = 4

3.

Part iii
𝑥 = 0, 𝑧 = 1, 𝑑𝑙 = −𝑑𝑦 ̂𝑦
𝑣 ⋅ 𝑑𝑙 = − (2𝑥𝑧 + 3𝑦2) 𝑑𝑦 = −3𝑦2𝑑𝑦

∫
𝑖𝑖𝑖

𝑣 ⋅ 𝑑𝑙 = ∫
0

1
3𝑦2𝑑𝑦 = 𝑦3∣01 = −1

Part iv
𝑥 = 0, 𝑦 = 0 𝑑𝑙 = −𝑑𝑧 ̂𝑧
𝑣 ⋅ 𝑑𝑙 = −4𝑦𝑧2𝑑𝑧 = 0.

∫
𝑖𝑣

𝑣 ⋅ 𝑑𝑙 = ∫
0

1
0𝑑𝑧 = 0

∮ 𝑣 ⋅ 𝑑𝑙 = 1 + 4/3 − 1 + 0 = 4/3
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6 Differentiation of vectors

Lets consider the derivative of a(𝑢) with respect to 𝑢. The derivative of a vector is defined in
a similar way to the derivative of a scaler.

Δa = a(𝑢 + Δ𝑢) − a(𝑢)

𝑑a
𝑑𝑢 = lim

Δ𝑢→0
a(𝑢 + Δ𝑢) − a(𝑢)

Δ𝑢
𝑑a
𝑑𝑢 is a vector. In Cartesian coordinates

if a = 𝑎𝑥 ̂𝚤 + 𝑎𝑦 ̂𝚥 + 𝑎𝑧�̂�

𝑑a
𝑑𝑢 = 𝑑𝑎𝑥

𝑑𝑢 ̂𝚤 + 𝑑𝑎𝑦
𝑑𝑢 ̂𝚥 + 𝑑𝑎𝑧

𝑑𝑢 �̂�.

Lets find the velocity of a particle

r(𝑡) = 𝑥(𝑡) ̂𝚤 + 𝑦(𝑡) ̂𝚥 + 𝑧(𝑡)�̂�

v(𝑡) = 𝑑r
𝑑𝑡 = 𝑑𝑥

𝑑𝑡 ̂𝚤 + 𝑑𝑦
𝑑𝑡 ̂𝚥 + 𝑑𝑧

𝑑𝑡 �̂�

The direction of v(𝑡) is tangent to the path r(𝑡) and |v(𝑡)| is the speed of the particle.

a(𝑡) = 𝑑v
𝑑𝑡 = 𝑑2𝑥

𝑑𝑡2 ̂𝚤 + 𝑑2𝑦
𝑑 ̂𝑡2

̂𝑗 + 𝑑2𝑧
𝑑𝑡2 �̂�

Question

r(𝑡) = 2𝑡2 ̂𝚤 + (3𝑡 − 2) ̂𝚥 + (3𝑡2 − 1) �̂� Find the speed of the particle at 𝑡 = 1 and the
component of its acceleration in the direction s = ̂𝚤 + 2 ̂𝑗 + �̂�.
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Answer

𝑑r
𝑑𝑡 = 4𝑡 ̂𝚤 + 3 ̂𝚥 + 6𝑡�̂�

𝑣(1) = √42 + 9 + 36
=

√
61

Now lets find the acceleration: a = 4 ̂𝚤 + 6�̂� a is independent of time.
To find the component of a in the direction of s we need to find the unit vector ̂𝑠 and
project a in that direction:

a ⋅ ̂𝑠 = (4 ̂𝚤 + 6�̂�) ⋅ ( ̂𝚤 + 2 ̂𝚤 + �̂�)/
√

6 = (4 + 0 + 6)/
√

6 = 10/
√

6

6.1 Plane Polar Coordinates

What if another coordinate system is more appropriate?

Figure 6.1: Plane Polar Coordinates
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Lets start by writing the polar coordinates in terms of Cartesian ̂𝑖 + ̂𝚥

̂𝑒𝜌 = cos 𝜙 ̂𝚤 + sin 𝜙 ̂𝚥
̂𝑒𝜙 = − sin 𝜙 ̂𝚤 + cos 𝜙 ̂𝚥

𝑑 ̂𝑒𝜌
𝑑𝑡 = − sin 𝜙𝑑𝜙

𝑑𝑡 ̂𝚤 + cos 𝜙𝑑𝜙
𝑑𝑡 ̂𝚥

= ̇𝜙 ̂𝑒𝜙
𝑑 ̂𝑒𝜌
𝑑𝑡 = − cos 𝜙𝑑𝜙

𝑑𝑡 ̂𝚤 − sin 𝜙𝑑𝜙
𝑑𝑡 ̂𝚥

𝑑 ̂𝑒𝜌
𝑑𝑡 = − ̇𝜙 ̂𝑒𝜌

The overdot is standard notation for a time derivative.

Question

r(𝑡) = 𝜌(𝑡) ̂𝑒𝜌. Find v(𝑡) and a(𝑡) in these coordinates.

Answer

v(𝑡) = ̇r(𝑡) = ̇𝜌 ̂𝑒𝜌 + 𝜌 ̇̂𝑒𝜌 = ̇𝜌 ̂𝑒𝜌 + 𝜌 ̇𝜙 ̂𝑒𝜙

a(𝑡) = 𝑑
𝑑𝑡 ( ̇𝜌 ̂𝑒𝜌 + 𝜌 ̇𝜙 ̂𝑒𝜙)

= ̈𝜌 ̂𝑒𝜌 + ̇𝜌 ̇̂𝑒𝜌 + ̇𝜌 ̇𝜙 ̂𝑒𝜙 + 𝜌 ̈𝜙 ̂𝑒𝜙 + 𝜌 ̇𝜙 ̇̂𝑒𝜙

= ̈𝜌 ̂𝑒𝜌 + ̇𝜌 ̇𝜙 ̂𝑒𝜙 + ̇𝜌 ̇𝜙 ̂𝑒𝜙 + 𝜌 ̈𝜙 ̂𝑒𝜙 − 𝜌 ̇𝜙2 ̂𝑒𝜌

= ( ̈𝜌 − 𝜌 ̇𝜙2) ̂𝑒𝜌 + (2 ̇𝜌 ̇𝜙 + 𝜌 ̈𝜙) ̂𝑒𝜙

6.2 Differentiation of composite vector expressions

Lets consider a scalar 𝜙 and a vectors a and b.

𝑑
𝑑𝑢(𝜙a) = 𝜙𝑑a

𝑑𝑢 + 𝑑𝜙
𝑑𝑢a

𝑑
𝑑𝑢(a ⋅ b) = a ⋅ 𝑑b

𝑑𝑢 + 𝑑a
𝑑𝑢 ⋅ b

𝑑
𝑑𝑢(a × b) = a × 𝑑b

𝑑𝑢 + 𝑑a
𝑑𝑢 × b

𝑑𝑢
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Question

A particle of mass 𝑚 with position vector r relative to some origin 𝑂 experiences a force
F which produces a torque (moment) T = v × F about 𝑂. The angular momentum is
given by L = r × 𝑚v. Show that the time rate of change angular momentum 𝑑L

𝑑𝑡 = T

Answer

𝑑𝐿
𝑑𝑡 = 𝑑

𝑑𝑡(𝑟 × 𝑚𝑣)

= (𝑟 × 𝑚𝑑𝑣
𝑑𝑡 + 𝑑𝑟

𝑑𝑡 × 𝑚𝑣)

= 𝑣 × 𝑚𝑣 + 𝑟 × 𝑚𝑑𝑣
𝑑𝑡

= 0 + 𝑟 × 𝐸

′𝑟
𝑑𝐿
𝑑𝑡 = 𝐼
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7 Integration of vectors

The integral has the same nature as the integrand (vector or scalar)

∫ a(𝑢)𝑑𝑢 = A(𝑢) + (b) − where b is a constant vector

∫
𝑢2

𝑢1

𝑎(𝑢)𝑑𝑢 = A (𝑢2) − A (𝑢1)

Question

A small particle mass 𝑚 orbits a much bigger mas 𝑀 located at the origin.

𝑚𝑑2r
𝑑𝑡2 = −𝐺𝑀𝑚

𝑟2 ̂𝑟

Show that r × 𝑑r
𝑑𝑡 is a constant of motion.

Answer

First step lets take the vector product of force equation

r × 𝑚𝑑2r
𝑑𝑡2 = r × (−𝐺𝑀𝑚

𝑟2 ) ̂𝑟

𝑚 is a constant divide both sides

r × 𝑑2r
𝑑𝑡2 = r × (−𝐺𝑀

𝑟2 ) ̂𝑟

- 𝐺𝑀
𝑟2 is a constant

r × 𝑑2r
𝑑𝑡2 = −𝐺𝑚

𝑟2 (r × ̂𝑟)
r × ̂𝑟 = 0

which means
r × 𝑑2r

𝑑𝑡2 = 0.
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Ok but have not gotten to what we need quite yet - we have a 𝑑2r
𝑑𝑡2 which is one derivative

higher

𝑑
𝑑𝑡 (r × 𝑑r

𝑑𝑡 ) = 𝑑r
𝑑𝑡 × 𝑑r

𝑑𝑡 + r × 𝑑2r
𝑑𝑡2

∴ 𝑑
𝑑𝑡 (𝑟 × 𝑑𝑟

𝑑𝑡 ) = 0

a vector crossed with itself is 0 and we already showed that the second term is zero.

integrate the above and we find r × 𝑑r
𝑑𝑡 = constant.
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8 Gradient of a scalar field

Lets consider the problem of calculating the rate of change of a scalar 𝜙 in some particular
direction. For an infinitesimal vector displacement 𝑑r forming its scalar product we get

∇𝜙 ⋅ 𝑑r = (𝜕𝜙
𝜕𝑥 ̂𝚤 + 𝜕𝜙

𝜕𝑦 ̂𝚥 + 𝜕𝜙
𝜕𝑧 �̂�) ⋅ ( ̂𝚤𝑑𝑥 + ̂𝚥𝑑𝑦 + �̂�𝑑𝑧)

= 𝜕𝜙
𝜕𝑥𝑑𝑥 + 𝜕𝜙

𝜕𝑦 𝑑𝑦 + 𝜕𝜙
𝜕𝑧 𝑑𝑧

8.1 Partial Derivative

Ok lets pause for a second and look at exactly what a partial derivative is.

Lets take a function of two variables 𝑓(𝑥, 𝑦) We can define a derivative for 𝑓(𝑥, 𝑦) in 𝑥 by
saying that it is the derisive of 𝑓(𝑥, 𝑦) when holding 𝑦 constant (we could do the same with
respect to 𝑦 holding 𝑥 constant). We write this 𝜕𝑓

𝜕𝑥 the partial derivative of 𝑓(𝑥, 𝑦) with respect
to 𝑥. Similarly 𝜕𝑓

𝜕𝑦 . Formally this is

𝜕𝑓
𝜕𝑥 = lim

Δ𝑥→0
𝑓(𝑥 + Δ𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

Δ𝑥

and similarly for 𝜕𝑓
𝜕𝑦 . You may also see partials written as (𝜕𝑓

𝜕𝑥)
𝑦

would indicate 𝑦 is held
constant.

8.2 Total differential and total derivative

Suppose we make small changes in 𝑥 and 𝑦

Δ𝑓 = 𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) − 𝑓(𝑥, 𝑦)

= [𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) − 𝑓(𝑥, 𝑦 + Δ𝑦)
Δ𝑥 ] Δ𝑥 + [𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) − 𝑓(𝑥 + Δ𝑥, 𝑦)

Δ𝑦 ] Δ𝑦

Δ𝑓 ≈ 𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 Δ𝑥 + 𝜕𝑓(𝑥, 𝑦)

𝜕𝑦 Δ𝑦

43



Δ𝑥 + Δ𝑦 → 0 we get the ‘total differential’

𝑑𝑓 = 𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 𝑑𝑥 + 𝜕𝑓(𝑥, 𝑦)

𝜕𝑦 𝑑𝑦

this can he extended to

𝑑𝑓 = 𝜕𝑓
𝜕𝑥1

𝑑𝑥1 + 𝜕𝑓
𝜕𝑥2

𝑑𝑥2 + 𝜕𝑓
𝜕𝑥3

𝑑𝑥3 + ⋯ 𝜕𝑓
𝜕𝑥𝑛

𝑑𝑥𝑛

Returning back to our original work

∇𝜙 ⋅ 𝑑r = 𝜕𝜙
𝜕𝑥𝑑𝑥 + 𝜕𝜙

𝜕𝑦 𝑑𝑦 + 𝜕𝜙
𝜕𝑧 𝑑𝑧

the right hand side is the total differential in 𝜙.

Now lets consider 𝑥 and 𝑦 are functions of 𝑢

𝑑𝑓 = 𝜕𝑓
𝜕𝑥𝑑𝑥 + 𝜕𝑓

𝜕𝑦 𝑑𝑦
𝑑𝑓
𝑑𝑢 = 𝜕𝑓

𝜕𝑥
𝑑𝑥
𝑑𝑢 + 𝜕𝑓

𝜕𝑦
𝑑𝑦
𝑑𝑦

𝑑𝑓
𝑑𝑢 =

𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

𝑑𝑥𝑖
𝑑𝑢

Chain Rule for partial differentiation.
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9 Multiple Integrals

9.1 Double Integrals

∫𝑏
𝑎 𝑦𝑑𝑥 = ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥 ⇒ area “under the curve”

Define ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 as the limit of the sum of the areas of rectangles.

What about three dimensional regions?

Create columns and add them up to find the volume. The column shown above has a cross
section of Δ𝐴 = Δ𝑥Δ𝑦.
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Question

Find volume of the solid bounded by the coordinate planes (𝑥𝑧, 𝑦𝑧, 𝑥𝑦) and the planes
𝑧 = 1 + 𝑦 and −2𝑥 + 𝑦 = 2. (Example from Boas book - section on multiple integrals)

Answer

volume is integration (adding up) columns of height 𝑧 and cros-sectional area Δ𝐴 =
Δ𝑥Δ𝑦

𝑉 = ∬ 𝑧𝑑𝑥𝑑𝑦 = ∬(1 + 𝑦)𝑑𝑥𝑑𝑦

Now decide which way to integrate first - integrate over y first holding x constant or
integrate over x first and hold y constant (we could do either). I have chosen the former
- in the xy plane build up a slice at a specific x value. So integrage over y first creating a
slice of thickness dx. Now we need the limits for y. We start at y=0 and then reach the
line y=2x+2. The value of the max y depends on the x value so the upper limit must be
in terms of x.

𝑉 = ∫
𝑥=1

𝑥=0
∫

𝑦=2𝑥+2

𝑦=0
(1 + 𝑦)𝑑𝑦𝑑𝑥

= ∫
𝑥=1

𝑥=0
(𝑦 + 𝑦2

2 ∣
2−2𝑥

0
) 𝑑𝑥

= ∫
1

0
2 − 2𝑥 + (2 − 2𝑥)2

2 𝑑𝑥

= ∫
1

0
2 − 2𝑥 + 4 − 8𝑥 + 4𝑥2

2 𝑑𝑥

= ∫
1

0
4 − 6𝑥 + 2𝑥2𝑑𝑥

= 4𝑥 − 3𝑥2 + 2
3𝑥3∣

1

0

= 4 − 3 + 2
3 = 5

3
Alternatively we could have added up the columns into slices keeping 𝑦 constant and we
would have gotten the same answer.

46



∫
𝑦=2

𝑦=0
∫

𝑥=2−𝑦/2

𝑥=0
(1 + 𝑦)𝑑𝑥𝑑𝑦

∫
2

0
(1 + 𝑦)𝑥∣

𝑥=1−𝑦/2

𝑥=0
𝑑𝑦

∫
2

0
(1 + 𝑦) ⋅ (1 − 𝑦/2)𝑑𝑦

∫
2

0
1 − 𝑦

2 + 𝑦 − 𝑦2

2 𝑑𝑦

∫
2

0
1 + 𝑦

2 − 𝑦2

2 𝑑𝑦

2 + 𝑦2

4 − 𝑦3

6 ∣
2

0

3 − 4
3 = 5

3

The volume calculation above is an example of an iterated integral - holding a variable constant
calculating one integral (inner most) then integrating over the variable that you just held
constant. We did that example in both options x then y and y then x but often one way is
easier than the other.

In the special case of rectangle (both 𝑥 and 𝑦 are constant)

𝑓(𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦)

then ∫𝑏
𝑥=1 ∫𝑑

𝑦=𝑐 𝑔(𝑥)ℎ(𝑦)𝑑𝑦𝑑𝑥

(∫
𝑏

0
𝑔(𝑥)𝑑𝑥) (∫

𝑑

𝑐
ℎ(𝑦)𝑑𝑦)

Can use double integral to find more than just volume.

Question

Find mass of rectangular plate bounded by 𝑥 + 0, 𝑥 = 2 𝑦 = 0, 𝑦 = 1 if its density
(mass/area), is 𝑓(𝑥, 𝑦) = 𝑥𝑦.
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Answer

Δ𝐴 = Δ𝑥𝐴Δ𝑦
Δ𝑀 = 𝑓(𝑥, 𝑦)Δ𝑥Δ𝑦

𝑀 = ∬
𝐴

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∫
𝑦=2

𝑦=0
∫

𝑥=1

𝑥=0
𝑥𝑦𝑑𝑥𝑑𝑦

∫
1

0
𝑦𝑑𝑦 ∫

2

0
𝑥𝑑𝑥

𝑦2

2 ∣
1

0
⋅ 𝑥2

2 ∣
2

0
= 1

9.2 Triple Integrals

We could have used a triple integral in the first problem - to create the column in the 𝑧
direction.

Question

Find 𝑉 of solid in previous problem using a triple integral.

Answer

𝑉 = ∭ 𝑑𝑥𝑑𝑦𝑑𝑧

Now figure out order - we want to create column in z first so integrate in z first holding
both x and y constant then lets hold x constant and integrate over y.

𝑉 = ∭ 𝑑𝑥𝑑𝑦𝑑𝑧

= ∫
1

0
(∫

2−2𝑥

0
[∫

1+𝑦

0
𝑑𝑧] 𝑑𝑦) 𝑑𝑧

= ∫
1

𝑥=0
∫

2−2𝑥

𝑦=0
(1 + 𝑦)𝑑𝑦𝑑𝑥 = 5/3
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10 Directional Derivative

Lets say you are on a hillside and you want to know in what direction does the hill slope
downward most steeply from this point? (This would be the direction you would slide if you
lost your footing) - this would be the direction straight down.

Lets say we move a small distance Δ𝑠 the vertical change will be Δ𝑧 (positive, negative, or
zero) meaning 𝑑𝑧

𝑑𝑠 depends upon duration (it is a directional derivative).

The direction of steepest slope is the direction in which 𝑑𝑧
𝑑𝑠 has its largest value.

Lets take a scalar field 𝜙(𝑥, 𝑦, 𝑧). To find the directional derivative of 𝜙 at a particular point
in a particular direction we need to find 𝑑𝜙

𝑑𝑠 the rate of change of 𝜙 with distance at a given
point 𝑥0, 𝑦0, 𝑧0 and in a given direction (s).

Lets define u = ̂𝚤𝑎 + ̂𝑗𝑏 + �̂�𝑐 as a unit vector in a given direction (s in this case).

(𝑥, 𝑦, 𝑧) − (𝑥0, 𝑦0, 𝑧0) = u𝑠 = ( ̂𝑖𝑎 + ̂𝑗𝑏 + �̂�𝑐)𝑠
𝑥 = 𝑥0 + 𝑎𝑠
𝑦 = 𝑦0 + 𝑏𝑠
𝑧 = 𝑧0 + 𝑐𝑠

parametric equations - 𝑥, 𝑦, 𝑧 are equations of a single variable.

Lets write the full derivative:

𝑑𝜙
𝑑𝑠 = 𝜕𝜙

𝜕𝑥 ⋅ 𝑑𝑥
𝑑𝑠 + 𝜕𝜙

𝜕𝑦 ⋅ 𝑑𝑦
𝑑𝑠 + 𝜕𝜙

𝜕𝑧 ⋅ 𝑑𝑧
𝑑𝑠

𝑑𝜙
𝑑𝑠 = 𝜕𝜙

𝜕𝑥 ⋅ 𝑎 + 𝜕𝜙
𝜕𝑦 ⋅ 𝑏 + 𝜕𝜙

𝜕𝑧 ⋅ 𝑐

∇𝜙 = 𝜕𝜙
𝜕𝑥

̂𝑖 + 𝜕𝜙
𝜕𝑦

̂𝑗 + 𝜕𝜙
𝜕𝑧 �̂�

∇𝜙 ⋅ u = 𝜕𝜙
𝜕𝑥𝑎 + 𝜕𝜙

𝜕𝑦 𝑏 + 𝜕𝜙
𝜕𝑧 𝑐

Thus the directional derivative is 𝑑𝜙
𝑑𝑠 = ∇𝜙 ⋅ u.
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Question

Find the directional derivative of 𝜙 = 𝑥2𝑦+𝑥 at (1, 2, −1) in the direction A = 2 ̂𝑖+2 ̂𝚥+�̂�

Answer

u = A
|A|

|A| =
√

4 + 4 + 1 = 3

u = 1
3(2 ̂𝚤 − 2 ̂𝚥 + �̂�)

∇𝜙 = (2𝑥𝑦 + 𝑧) ̂𝚤 + 𝑥2 ̂𝚥 + 𝑥�̂�
at point (1, 2, −1)

∇𝜙(1, 2, −1) = (2 ⋅ 1 ⋅ 2 − 1) ̂𝚤 + 1 ̂𝚥 + 1�̂�
= 3 ̂𝚤 + ̂𝚥 + �̂�

𝑑𝜙
𝑑𝑠 = ∇𝜙 ⋅ u = 2 − 2/3 + 1/3 = 5/3

𝑑𝜙
𝑑𝑠 = |∇𝜙||𝑢| cos 𝜃 = |∇𝜙| cos 𝜃 where 𝜃 is angle between ∇𝜙 and u.

Maximum 𝑑𝜙
𝑑𝑠 or |∇𝜙| is if 𝜃 = 0 largest decrease occurs at 𝜃 = 180 or −|∇𝜙|.

Question

Lets consider the temperature in a room. The temperature follows 𝑇 = 𝑥2−𝑦2+𝑥𝑦𝑧+273.
In which direction is the temp increasing most rapidly at (−1, 2, 3)?

Answer

∇𝑇 = (2𝑥 + 𝑦𝑧) ̂𝑖 + (−2𝑦 + 𝑥𝑧) ̂𝚥 + 𝑥𝑦�̂�
∇𝑇 (−1, 2, 3) = (−2 + 6) ̂𝑖 + (−4 − 3) ̂𝚥 + (−2)�̂�
= 4 ̂𝑖 − 7 ̂𝚥 − 2�̂�

and max rate of Δ in direction of this vectors. 𝑑𝑇
𝑑𝑠 = |Δ𝑇 | =

√
69. −∇𝑇 is rate of max

decrease 𝑑𝑇
𝑑𝑠 = −

√
69. Heat flows in −Δ𝑇 direction.
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10.1 Normal Derivative

Now say 𝜙 is constant at a point 𝑃 (𝑥0, 𝑦0, 𝑧0) and the direction vector u is tangent to 𝑑𝜙
𝑑𝑠 . If

𝜙 is constant then 𝑑𝜙
𝑑𝑠 = 0. This also means ∇𝜙 ⋅ u = 0.

|∇𝜙||u| cos 𝜃 = 0
|∇𝜙| cos 𝜃 = 0

𝜃 = 90∘

In this case, ∇𝜙 is perpendicular to the surface. Since |∇𝜙| is the value of the directional
derivative in the direction normal often called the normal derivative

|∇𝜙| = 𝑑𝜙
𝑑𝑛.
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11 Line Integrals

Lets say we have a charged particle in an electric field and we need to calculate the work
needed for it to move from point 𝐴 to 𝐵 along a particular path. The coordinates 𝑥, 𝑦, +𝑧 are
constrained by the equation of the path. The path is one dimensional and can be written in
terms of one variable. The total work is the integral over the path and can be written in terms
of the one independent variable either by writing two of the coordinates in terms of the other
or by writing parametric equations.

𝑥 = 𝑥0 + 𝑎𝑠
𝑦 = 𝑦0 + 𝑏𝑠
𝑧 = 𝑧0 + 𝑐𝑠

Question

F = 𝑥𝑦 ̂𝚤 − 𝑦2 ̂𝚥
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Answer

Find work done along the path

𝑑r = ̂𝚤𝑑𝑥 + ̂𝚥𝑑𝑦
F ⋅ 𝑑r = 𝑥𝑦𝑑𝑥 − 𝑦2𝑑𝑦

𝑊 = ∫
Path

𝑥𝑦𝑑𝑥 − 𝑦2𝑑𝑦

Write integrand interns of one variable

Lets start by taking path 1 a straight line

𝑦 = 1/2𝑥
𝑑𝑦 = 1/2𝑑𝑥

𝑊 = ∫
2

0
(𝑥 ⋅ 1

2𝑥 − 1
4𝑥2 ⋅ 1

2) 𝑑𝑥

= ∫
2

0
(1

2𝑥2 − 1
8𝑥2) 𝑑𝑥

= ∫
2

0

3
8𝑥2𝑑𝑥

= 1
8 ⋅ 𝑥3∣

2

0
= 1

Now lets consider another path - a parabola
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𝑦 = 1
4𝑥2 𝑑𝑦 = 1

2𝑥𝑑𝑥

𝑊2 = ∫
2

0
𝑥 ⋅ 1

4𝑥2 − 1
16𝑥4 ⋅ 1

2𝑥𝑑𝑥

= ∫
2

0
(1

4𝑥3 − 1
32𝑥5) 𝑑𝑥

= 𝑥4

16 − 1
192𝑥6∣

2

0

= 1 = 64
192 − 2

3

The work calculated in the two paths is not the same. But there are several examples when it
is (gravitational field for example). If the force field is path dependent it is a non-conservative
force if it is path independent it is a conservative force.

A conservative force field means that ∫ F ⋅ 𝑑r is the same no matter what path is taken.

Suppose
F = ∇𝑊 ⋅ 𝑑r = ̂𝚤𝜕𝑊

𝜕𝑥 + ̂𝚥𝜕𝑊
𝜕𝑦 + �̂�𝜕𝑊

𝜕𝑧
𝐹𝑥 = 𝜕𝑊

𝜕𝑥 , 𝐹𝑦 = 𝜕𝑊
𝜕𝑦 , 𝐹𝑧 = 𝜕𝑊

𝜕𝑧
𝜕𝐹𝑥
𝜕𝑦 = 𝜕2𝑊

𝜕𝑥𝜕𝑦 = 𝜕2𝑊
𝜕𝑦𝜕𝑥 = 𝜕𝐹𝑦

𝜕𝑥
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similarly
𝜕𝐹𝑧
𝜕𝑦 = 𝜕𝐹𝑦

𝜕𝑧 and 𝜕𝐹𝑥
𝜕𝑧 = 𝜕𝐹𝑧

𝜕𝑥
∴∇ × 𝐹 = 0

Thus if F = ∇𝑊 then ∇ × F = 0 and it also turns out that the reverse is true as well – if
∇ × F = 0 than there is a function 𝑊 for which F = ∇𝑊 .

Now if
F ⋅ 𝑑r = ∇𝑊 ⋅ 𝑑𝑟 = 𝜕𝑊

𝜕𝑥 𝑑𝑥 + 𝜕𝑊
𝜕𝑦 𝑑𝑦 + 𝜕𝑊

𝜕𝑧 𝑑𝑧

= 𝑑𝑊
and

∫
𝐵

𝐴
F ⋅ 𝑑r = ∫

𝐵

𝐴
𝑑𝑊 = 𝑊(𝐵) − 𝑊(𝐴)

Where 𝑊(𝐵) and 𝑊(𝐴) mean the values of the function 𝑊 at the end points 𝐴&𝐵 of the
path. Since the integral only depends on the end pants the integration is path independent
and F is a conservative field.

Just as we saw in problem 7 of week 3 problems the curl of the grad is always zero.
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12 General derivation of ∇ operator

Define a point in space 𝑢, 𝑣, 𝑤 in Cartesian it would be (𝑥, 𝑦, 𝑧) in cylindrical it is (𝑠, 𝜙, 𝑧) and
in spherical (𝑟, 𝜃, 𝜙). The general coordinate system must be mutually orthogonal call it �̂�, ̂𝑣, �̂�.
An infinitesimal displacement: 𝑑l = 𝑓𝑑𝑢�̂� + 𝑔𝑑𝑣 ̂𝑣 + ℎ𝑑𝑤�̂�. 𝑓 , 𝑔, ℎ are functions of position
characteristic of the particular coordinate system in Cartesian 𝑓 = 𝑔 = ℎ = 1. In cylindrical
𝑓 = ℎ = 1 and 𝑔 = 𝑠.

12.1 Gradient

If you move from point 𝑢, 𝑣, 𝑤 to 𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣, 𝑤 + 𝑑𝑤 a scalar function 𝑡(𝑢, 𝑣, 𝑤) varies by
(partial differential)

𝑑𝑡 = 𝜕𝑡
𝜕𝑢𝑑𝑢 + 𝜕𝑡

𝜕𝑣𝑑𝑣 + 𝜕𝑡
𝜕𝑤𝑑𝑤

We can write this as a dot product:

𝑑𝑡 = ∇𝑡 ⋅ 𝑑l = ∇𝑡𝑢𝑓𝑑𝑢 + ∇𝑡𝑣𝑔𝑑𝑣 + ∇𝑡𝑤ℎ𝑑𝑤

if ∇𝑡𝑢 = 1
𝑓

𝜕𝑡
𝜕𝑢, ∇𝑡𝑣 = 1

𝑔
𝜕𝑡
𝜕𝑣 , ∇𝑡𝑤 = 1

ℎ
𝜕𝑡
𝜕𝑤

This would mean the gradient would be

∇𝑡 = 1
𝑓

𝜕𝑡
𝜕𝑢�̂� + 1

𝑔
𝜕𝑡
𝜕𝑣 ̂𝑣 + 1

ℎ
𝜕𝑡
𝜕𝑤�̂�

Now what would that mean for our coordinate systems? For cartesian 𝑓 = 𝑔 = ℎ = 1 so

∇𝑡 = 𝜕𝑡
𝜕𝑥 ̂𝑥 + 𝜕𝑡

𝜕𝑦 ̂𝑦 + 𝜕𝑡
𝜕𝑧 ̂𝑧

for cylindrical 𝑓 = ℎ = 1 and 𝑔 = 𝑠

∇𝑡 = 𝜕𝑡
𝜕𝑠 ̂𝑠 + 1

𝑠
𝜕𝑡
𝜕𝜙

̂𝜙 + 𝜕𝑡
𝜕𝑧 ̂𝑧
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Lets just check that this general definition satisfies the theorem ot gradients. The total change
in 𝑡 as you go from point 𝑎 to 𝑏

∫
𝑏

𝑎
𝑑𝑡 = ∫

𝑏

𝑎
(∇𝑡) ⋅ 𝑑l

= 𝑡(𝑏) − 𝑡(𝑎)
and is by definition path independent.

12.2 Divergence

Lets define a vector:
A(𝑢, 𝑣, 𝑤) = 𝐴𝑢�̂� + 𝐴𝑣 ̂𝑣 + 𝐴𝑤�̂�

We need to evaluate ∮ A⋅𝑑a over a surface of infinitesimal volume generated at a point 𝑢, 𝑣, 𝑤

back has opposite sign and is evaluated at 𝑢 + 𝑑𝑢

57



𝐹(𝑢 + 𝑑𝑢) − 𝐹(𝑢) = 𝑑𝐹
𝑑𝑢 𝑑𝑢

𝜕
𝜕𝑢 (𝑔ℎ𝐴𝑢) 𝑑𝑢𝑑𝑣𝑑𝑤 = 1

𝑓𝑔ℎ
𝜕

𝜕𝑢 (𝑔ℎ𝐴𝑢) 𝑑𝜏

left and right hand sides yield

𝜕
𝜕𝑣 (𝑓ℎ𝐴𝑣) 𝑑𝑢𝑑𝑣𝑑𝑤 = 1

𝑓𝑔ℎ
𝜕
𝜕𝑣 (𝑓ℎ𝐴𝑣) 𝑑𝜏

and top and bottom
𝜕

𝜕𝑤 (𝑓𝑔𝐴𝑤) 𝑑𝑢𝑑𝑣𝑑𝑤 = 1
𝑓𝑔ℎ

𝜕
𝜕𝑤 (𝑓𝑔𝐴𝑤) 𝑑𝑇

Then all together

∮ A ⋅ 𝑑a = 1
𝑓𝑔ℎ [ 𝜕

𝜕𝑢 (𝑔ℎ𝐴𝑢) + 𝜕
𝜕𝑣 (𝑓ℎ𝐴𝑣) + 𝜕

𝜕𝑤 (𝑓𝑔𝐴𝑤)] 𝑑𝜏

∇ ⋅ A = 1
𝑓𝑔ℎ [ 𝜕

𝜕𝑢 (𝑔ℎ𝐴𝑢) + 𝜕
𝜕𝑣 (𝑓ℎ𝐴𝑣) + 𝜕

𝜕𝑤 (𝑓𝑔𝐴𝑤)]]

Over finite ∮ A ⋅ 𝑑a = ∫(∇ ⋅ A)𝑑𝜏
For cylindrical coordinates the divergence is:

∇ ⋅ A = 1
𝑠 ( 𝜕

𝜕𝑠𝑠𝐴𝑠 + 𝜕
𝜕𝜙𝐴𝜙 + 𝜕

𝜕𝑧𝑠𝐴𝑧)

∇ ⋅ A = 1
𝑠

𝜕 (𝑠𝐴𝑠)
𝜕𝑠 + 1

𝑠
𝜕

𝜕𝜙𝐴𝜙 + 𝜕
𝜕𝑧 𝐴𝑧

12.3 Curl

Remember the fundamental theorem of curls:

∫
𝑆

(∇ × v) ⋅ 𝑑a = ∮
𝑃

v ⋅ 𝑑l.

So if we start with the right hand side the line integral ∮ A ⋅ 𝑑�
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�̂� out of page
𝑑a = 𝑓𝑔 dudv �̂�

along bottom segment 𝑑l = 𝑓𝑑𝑢�̂�
A ⋅ 𝑑l = (𝑓𝐴𝑢) 𝑑𝑢

along top leg A is evaluated at 𝑣 + 𝑑𝑣

(|− (𝑓𝐴𝑢)|𝑣+𝑑𝑣 + (𝑓𝐴𝑢)|𝑣) 𝑑𝑢 = − [ 𝜕
𝜕𝑣 (𝑓𝐴𝑢)] 𝑑𝑢𝑑𝑣

right and left hand sides give
[ 𝜕

𝜕𝑢 (𝑔𝐴𝑣)] 𝑑𝑢𝑑𝑣

total is
∮ 𝐴 ⋅ 𝑑a = [ 𝜕

𝜕𝑢 (𝑔𝐴𝑣) − 𝜕
𝜕𝑣 (𝑓𝐴𝑢)] 𝑑𝑢𝑑𝑣

= 1
𝑓𝑔 [ 𝜕

𝜕𝑢 (𝑔𝐴𝑣) − 𝜕
𝜕𝑣 (𝑓𝐴𝑢)] �̂� ⋅ 𝑑a

This provides the 𝑤 component of curl.

If we then do the other directions (a general patch not just in the u-v plane) we will get:

∇ × A = 1
𝑔ℎ [ 𝜕

𝜕𝑣 (ℎ𝐴𝑤) − 𝜕
𝜕𝑤 (𝑔𝐴𝑣)] �̂� + 1

𝑓ℎ [ 𝜕
𝜕𝑤(𝑓𝐴𝑢) − 𝜕

𝜕𝑢 (ℎ𝐴𝑤)] ̂𝑣

+ 1
𝑓𝑔 [ 𝜕

𝜕𝑢(𝑔𝐴𝑣) − 𝜕
𝜕𝑣 (𝑓𝐴𝑢)] �̂�
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12.4 Laplacian

Derive by using divergence and gradient in general form.

∇2𝑡 = 1
𝑓𝑔ℎ [ 𝜕

𝜕𝑢 (𝑔ℎ
𝑓 ) 𝜕𝑡

𝜕𝑢 + 𝜕
𝜕𝑣 (𝑓ℎ

𝑔 ) 𝜕𝑡
𝜕𝑣 + 𝜕

𝜕𝑤 (𝑓𝑔
ℎ ) 𝜕𝑡

𝜕𝑤]
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13 Cylindrical Coordinates

𝜙 - angle around 𝑥-axis ‘azimithal’ angle 𝑧 - height in 𝑧-axis 𝑠 - distance from 𝑧-axis

The relation to Cartesian coordinates

𝑥 = 𝑠 cos 𝜙 𝑦 = 𝑠 sin 𝜙 𝑧 = 𝑧
̂𝑠 = cos 𝜙 ̂𝑥 + sin 𝜙 ̂𝑦
̂𝜙 = − sin 𝜙 ̂𝑥 + cos 𝜙 ̂𝑦
̂𝑧 = ̂𝑧

𝑑𝑙𝑠 = 𝑑𝑠 𝑑𝑙𝜙 = 𝑠𝑑𝜙 𝑑𝑙𝑧 = 𝑑𝑧
𝑑l = 𝑑𝑠 ̂𝑠 + 𝑠𝑑𝜙 ̂𝜙 + 𝑑𝑧 ̂𝑧

volume element 𝑑𝜏 = 𝑠𝑑𝑠𝑑𝜙𝑑𝑧. The range of 𝑠 is 0 to ∞, 𝜙 is 0 the 2𝜋, 𝑧 is −∞ to ∞
Vector operations in cylindrical coordinates (𝑓 = ℎ = 1 𝑔 = 𝑠):

Gradient:
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∇𝑡𝑢 = 1
𝑓

𝜕𝑡
𝜕𝑢, ∇𝑡𝑣 = 1

𝑔
𝜕𝑡
𝜕𝑣 , ∇𝑡𝑤 = 1

ℎ
𝜕𝑡
𝜕𝑤

∇𝑡 = 𝜕𝑡
𝜕𝑠 ̂𝑠 + 1

𝑠
𝜕𝑡
𝜕𝜙

̂𝜙 + 𝜕𝑡
𝜕𝑧 ̂𝑧

Divergence:
∇ ⋅ A = 1

𝑓𝑔ℎ [ 𝜕
𝜕𝑢(𝑔ℎ𝐴𝑢) + 𝜕

𝜕𝑣 + (𝑓ℎ𝐴𝑣) 𝜕
𝜕𝑤(𝑓𝑔𝐴𝑤)]

∇ ⋅ v = 1
𝑠

𝜕
𝜕𝑠 (𝑠𝑣𝑠) + 1

𝑠
𝜕𝑣𝜙
𝜕𝜙 + 𝜕𝑣𝑧

𝜕𝑧

Curl:
∇ × A = 1

𝑔ℎ [ 𝜕
𝜕𝑣 (ℎ𝐴𝑤) − 𝜕

𝜕𝑤 (𝑔𝐴𝑣)] �̂�

+ 1
𝑓ℎ [ 𝜕

𝜕𝑤(𝑓𝐴𝑢) − 𝜕
𝜕𝑢(ℎ𝐴𝑤)] ̂𝑣

+ 1
𝑓𝑔 [ 𝜕

𝜕𝑢(𝑔𝐴𝑣) − 𝜕
𝜕𝑣 (𝑓𝐴𝑢)] �̂�

∇ × v = [1
𝑠

𝜕𝑣𝑧
𝜕𝜙 − 𝜕𝑣𝜙

𝜕𝑧 ] ̂𝑠 + [𝜕𝑣𝑠
𝜕𝑧 − 𝜕𝑣𝑧

𝜕𝑠 ] ̂𝜙

+ 1
𝑠 [ 𝜕

𝜕𝑠(𝑠𝑣𝜙) − 𝜕𝑣𝑠
𝜕𝜙 ] ̂𝑧

Laplacian:
∇2𝑡 = 1

𝑓𝑔ℎ [ 𝜕
𝜕𝑢 (𝑔ℎ

𝑓 ) 𝜕𝑡
𝜕𝑢 + 𝜕

𝜕𝑣 (𝑓ℎ
𝑔 ) 𝜕𝑡

𝜕𝑣 + 𝜕
𝜕𝑤 (𝑓𝑔

ℎ ) 𝜕𝑡
𝜕𝑤]

∇2𝑡 = 1
𝑠

𝜕
𝜕𝑠 (𝑠 𝜕𝑡

𝜕𝑠) + 1
𝑠2

𝜕2𝑡
𝜕𝜙2 + 𝜕2𝑡

𝜕𝑧2

Question

Find the divergence of the function

v = 𝑠 (2 + sin2 𝜙) ̂𝑠 + 𝑠 sin 𝜙 cos 𝜙 ̂𝜙 + 3𝑧 ̂𝑧
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Answer

∇ ⋅ v = 1
𝑠

𝜕
𝜕𝑠 (𝑠𝑣𝑠) + 1

𝑠
𝜕𝑣𝜙
𝜕𝜙 + 𝜕𝑣𝑧

𝜕𝑧
= 1

𝑠
𝜕
𝜕𝑠 [𝑠 (2𝑠 + 𝑠 sin2 𝜙)] + 1

𝑠
𝜕

𝜕𝜙(𝑠 sin 𝜙 cos 𝜙) + 𝜕
𝜕𝑧3𝑧

= 1
𝑠

𝜕
𝜕𝑠 (2𝑠2 + 𝑠2 sin2 𝜙) + 1

𝑠 ⋅ 𝑠 𝜕
𝜕𝜙(sin 𝜙 cos 𝜙) + 3

= 2
𝑠 ⋅ 2𝑠 + 2𝑠 sin2 𝜙 + cos 𝜙 cos 𝜙 − sin 𝜙 sin 𝜙 + 3

= 4 + 2 sin2 𝜙 + cos2 𝜙 − sin2 𝜙 + 3
= 7 + sin2 𝜙 + cos2 𝜙 = 8.

Question

Test the divergence theorem for this function using a quarter-cylinder (𝑟 = 2, ℎ = 5).

Answer

∫
𝑉

(∇ ⋅ v)𝑑𝜏 = ∮
𝑆

v ⋅ 𝑑a
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Left side - we have already calculated the div

𝑑𝜏 = 𝑠 𝑑𝑠𝑑𝜙𝑑𝑧

∫ 8𝑠 𝑑𝑠𝑑𝜙𝑑𝑧 = ∫
5

0
∫

𝜋/2

0
∫

2

0
8𝑠 𝑑𝑠𝑑𝜙𝑑𝑧

All constants so can be split up

∫
𝑣
(∇ ⋅ v) 𝑑𝜏 = 8 ∫

5

0
𝑑𝑧 ∫

𝜋/2

0
𝑑𝜙 ∫

2

0
𝑠𝑑𝑠

= 8 ( 𝑧|50 ⋅ 𝜙∣
𝜋/2

0
𝑠2

2 ∣
2

0
)

= 8(5 ⋅ 𝜋/2 ⋅ 2)

∫(∇ ⋅ v)𝑑𝜏 = 40𝜋

Right hand side

∮
𝑆

v ⋅ 𝑑a = ∫
𝑡𝑜𝑝

v ⋅ 𝑑a + ∫
𝑏𝑜𝑡𝑡𝑜𝑚

v ⋅ 𝑑a + ∫
𝑓𝑟𝑜𝑛𝑡

v ⋅ 𝑑a + ∫
𝑏𝑎𝑐𝑘

v ⋅ 𝑑a

+ ∫
𝑙𝑒𝑓𝑡

v ⋅ 𝑑a

Top:
𝑑a = 𝑠𝑑𝜙𝑑𝑠 ̂𝑧, 𝑧 = 5

v ⋅ 𝑑a = 3𝑧 ⋅ 𝑠𝑑𝜙𝑑𝑠 = 15𝑠𝑑𝜙𝑑𝑠

∫
2

0
∫

𝜋/2

0
15𝑠𝑠𝑑𝜙𝑑𝑠 = 𝜋/ 2 ⋅ 15𝑠2

2 ∣
2

0
= 15𝜋

Bottom:
𝑑a = −𝑠𝑑𝜙𝑑𝑠 ̂𝑧, 𝑧 = 0

∬ 0𝑑𝜙𝑑𝑠 = 0.

Back:
𝑑𝑎 = 𝑑𝑧𝑑𝑠 ̂𝜙, 𝜙 = 𝜋/2
v ⋅ 𝑑a = 𝑠 sin 𝜙 cos 𝜙𝑑𝑠𝑑𝑧

∫
𝑠

0
∫

2

0
𝑠 sin 𝜙 cos 𝜙𝑑𝑠𝑑𝑧 = 0.
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Left:
𝑑a = −𝑑𝑠𝑑𝑧 ̂𝜙 𝜙 = 0

∫
5

0
∫

2

0
𝑠 sin 𝜙 cos 𝜙𝑑𝑠𝑑𝑧 = 0

Front:
𝑑a = 𝑠𝑑𝜙𝑑𝑧 ̂𝑠 𝑠 = 2
v ⋅ 𝑑a = 𝑠2 (𝑧 + sin2 𝜙) 𝑑𝜙𝑑𝑧

∫ v ⋅ 𝑑a = ∫
5

0
∫

𝜋/2

0
𝑠2 (2 + sin2 𝜙) 𝑑𝜙𝑑𝑧

= ∫
5

0
𝑑𝑧 ∫

𝜋/2

0
4 (2 + sin2 𝜙) 𝑑𝜙

= 5 ⋅ 5𝜋 = 25𝜋
Total = 40𝜋

65



14 Spherical Coordinates

𝑃 is defined by 𝑟, 𝜃, 𝜙 in spherical coordinates. 𝑟 is the distance from the origin

𝜃 is the angle down from 𝑧-axis

𝜙 is the angle around 𝑧 - axis (same as cylindrical coords)

𝑥 = 𝑟 sin 𝜃 cos 𝜙, 𝑦 = 𝑟 sin 𝜃 sin 𝜙, 𝑧 = 𝑟 cos 𝜃

the unit vectors ̂𝑟, ̂𝜃, ̂𝜙 are mutually orthogonal

A = 𝐴𝑟 ̂𝑟 + 𝐴𝜃 ̂𝜃 + 𝐴𝜙 ̂𝜙

𝑑𝑙𝑟 = 𝑑𝑟
𝑑𝑙𝜃 = 𝑟𝑑𝜃
𝑑𝑙𝜙 = 𝑟 sin 𝜃𝑑𝜙

arc lengths for angles must be converted into lengths

𝑑l = 𝑑𝑟 ̂𝑟 + 𝑟𝑑𝜃 ̂𝜃 + 𝑟 sin 𝜃𝑑𝜙 ̂𝜙
𝑑𝜏 = 𝑑𝑙𝑟𝑑𝑙𝜃𝑑𝑙𝜙 = 𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜙
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r ranges from 0 to ∞, 𝜃 from 0 to 𝜋, 𝜙 from 0 to 2𝜋
Lets just think a bit about area

Question

Find volume of a sphere of radius 𝑅.

Answer

𝑉 = ∫ 𝑑𝜏 = ∫
𝑅

𝑟=0
∫

𝜋

𝜃=0
∫

2𝜋

𝜙=0
𝑟2 sin 𝜃𝑑𝜙𝑑𝜃𝑑𝑟

= ∫
𝑅

0
𝑟2𝑑𝑟 ∫

𝜋

0
sin 𝜃𝑑𝜃 ∫

2𝜋

0
𝑑𝜙

= 𝑟3

3 ∣
𝑅

0
⋅ − cos 𝜃∣

𝜋

0
⋅ 𝜙∣

2𝜋

0

= 𝑅3

3 2 ⋅ 2𝜋

𝑉 = 4
3𝜋𝑅3
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Now lets use the general expressions to find the ∇ operators for spherical coordinates.

∇𝑡𝑢 = 1
𝑓

𝜕𝑡
𝜕𝑢, ∇𝑡𝑣 = 1

𝑔
𝜕𝑡
𝜕𝑣 , ∇𝑡𝑤 = 1

ℎ
𝜕𝑡
𝜕𝑤

𝑑𝑙 = 𝑓𝑑𝑢�̂� + 𝑔𝑑𝑣 ̂𝑣 + ℎ𝑑𝑤�̂�
𝑓 = 1, 𝑔 = 𝑟, ℎ = 𝑟 sin 𝜃

∇𝑇 = 𝜕𝑇
𝜕𝑟 ̂𝑟 + 1

𝑟
𝜕𝑇
𝜕𝜃

̂𝜃 + 1
𝑟 sin 𝜃

𝜕𝑇
𝜕𝜙

̂𝜙

Divergence:
∇ ⋅ A = 1

𝑓𝑔ℎ [ 𝜕
𝜕𝑢(𝑔ℎ𝐴𝑢) + 𝜕

𝜕𝑣 + (𝑓ℎ𝐴𝑣) 𝜕
𝜕𝑤(𝑓𝑔𝐴𝑤)]

= 1
𝑟2 sin 𝜃 [ 𝜕

𝜕𝑟(𝑟2 sin 𝜃𝐴𝑟) + 𝜕
𝜕𝜃(𝑟 sin 𝜃𝐴𝜃) + 𝜕

𝜕𝜙(𝑟𝐴𝜙)]

∇ ⋅ A = 1
𝑟2

𝜕
𝜕𝑟(𝑟2𝐴𝑟) + 1

𝑟 sin 𝜃
𝜕
𝜕𝜃(𝑟 sin 𝜃𝐴𝜃) + 1

𝑟 sin 𝜃
𝜕

𝜕𝜙(𝑟𝐴𝜙)

Curl:
∇ × A = 1

𝑔ℎ [ 𝜕
𝜕𝑣 (ℎ𝐴𝑤) − 𝜕

𝜕𝑤 (𝑔𝐴𝑣)] �̂�

+ 1
𝑓ℎ [ 𝜕

𝜕𝑤(𝑓𝐴𝑢) − 𝜕
𝜕𝑢(ℎ𝐴𝑤)] ̂𝑣

+ 1
𝑓𝑔 [ 𝜕

𝜕𝑢(𝑔𝐴𝑣) − 𝜕
𝜕𝑣 (𝑓𝐴𝑢)] �̂�

= 1
𝑟2 sin 𝜃 [ 𝜕

𝜕𝜃(𝑟 sin 𝜃𝐴𝜙) − 𝜕
𝜕𝜙(𝑟𝐴𝜃)] ̂𝑟

+ 1
𝑟 sin 𝜃 [ 𝜕

𝜕𝜙𝐴𝑟 − 𝜕
𝜕𝑟(sin 𝜃𝐴𝜙)] ̂𝜃

+ 1
𝑟 [ 𝜕

𝜕𝑟 (𝑟𝐴𝜃) − 𝜕
𝜕𝜃𝐴𝑟] ̂𝜙

= 1
𝑟 sin 𝜃 [ 𝜕

𝜕𝜃(sin 𝜃𝐴𝜙) − 𝜕
𝜕𝜙(𝐴𝜃)] ̂𝑟

+ 1
𝑟 [ 1

sin 𝜃
𝜕

𝜕𝜙𝐴𝑟 − 𝜕
𝜕𝑟(𝐴𝜙)] ̂𝜃

+ 1
𝑟 [ 𝜕

𝜕𝑟 (𝑟𝐴𝜃) − 𝜕
𝜕𝜃𝐴𝑟] ̂𝜙

Laplacian:
∇2𝑡 = 1

𝑓𝑔ℎ [ 𝜕
𝜕𝑢 (𝑔ℎ

𝑓 ) 𝜕𝑡
𝜕𝑢 + 𝜕

𝜕𝑣 (𝑓ℎ
𝑔 ) 𝜕𝑡

𝜕𝑣 + 𝜕
𝜕𝑤 (𝑓𝑔

ℎ ) 𝜕𝑡
𝜕𝑤]

∇2𝑡 = 1
𝑟2

𝜕
𝜕𝑟 (𝑟2 𝜕𝑡

𝜕𝑟) + 1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃 𝜕𝑡

𝜕𝜃) + 1
𝑟2 sin2 𝜃

( 𝜕2𝑡
𝜕𝜙2 )
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Question

Compute div of
𝑣 = (𝑟 cos 𝜃) ̂𝑟 + (𝑟 sin 𝜃) ̂𝜃 + (𝑟 sin 𝜃 cos 𝜙) ̂𝜙

Answer

∇ ⋅ 𝑣 = 1
𝑟2

𝜕
𝜕𝑟 (𝑟2𝑣𝑟) + 1

𝑟 sin 𝜃
𝜕
𝜕𝜃 (sin 𝜃𝑣𝜃) + 1

𝑟 sin 𝜃
𝜕𝑣𝜙
𝜕𝜙

= 1
𝑟2

𝜕
𝜕𝑟𝑟3 cos 𝜃 + 1

𝑟 sin 𝜃
𝜕
𝜕𝜃(sin 𝜃 ⋅ 𝑟 sin 𝜃)

+ 1
𝑟 sin 𝜃

𝜕
𝜕𝜙(𝑟 sin 𝜃 cos 𝜙)

= 1
𝑟2 3𝑟2 cos 𝜃 + 𝑟

𝑟 sin 𝜃2 sin 𝜃 ⋅ cos 𝜃

+ 1
𝑟 sin 𝜃𝑟 sin 𝜃 ⋅ − sin 𝜙

=3 cos 𝜃 + 2 cos 𝜃 − sin 𝜙
=5 cos 𝜃 − sin 𝜙

Question

Now check divergence theorem for this function using an inverted hemisphere of radius
𝑅 as the volume and surface

Answer

Div theorem
∫

𝑉
(∇ ⋅ 𝑣)𝑑𝜏 = ∮

𝑆
𝑣 ⋅ 𝑑𝑎
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Left side first:

∫
2𝜋

0
∫

𝜋/2

0
∫

𝑅

0
(5 cos 𝜃 − sin 𝜙)𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜙

∫
𝑅

0
𝑟2𝑑𝑟 ∫

𝜋/2

0
∫

2𝜋

0
(5 cos 𝜃 − sin 𝜙) sin 𝜃𝑑𝜙𝑑𝜃

∫
𝑅

0

𝑟3

3 ∣
𝑅

0
∫

𝜋/2

0
5𝜙 cos 𝜃 + cos 𝜙|2𝜋

𝜙=0 sin 𝜃𝑑𝜃

𝑅3

3 ∫
𝜋/2

0
[5 ⋅ 2𝜋 cos 𝜃 + (1 − 1)] sin 𝜃𝑑𝜃

𝑅3

3 ∫
𝜋/2

0
10𝜋 cos 𝜃 sin 𝜃𝑑𝜃

let 𝑢 = sin 𝜃
𝑑𝑢 = cos 𝜃𝑑𝜃
𝑅3

3 ∫ 10𝜋𝑢𝑑𝑢

𝑅3

3 ⋅ 10𝜋𝑢2

2 ∣
𝜃=𝜋/2

𝜃=0

𝑅3

3 ⋅ 10𝜋 sin2 𝜃
2 ∣

𝜋/2

0
𝑅3

3 ⋅ 10𝜋 ⋅ 1
2 = 5𝜋𝑅3

3 .

Right side: Two surfaces - hemisphere and bottom
Start with hemisphere
̂𝑟 component from 𝑣 𝑟 = 𝑅

∫ 𝑣 ⋅ 𝑑𝑎 = ∬ 𝑅 cos 𝜃 ⋅ 𝑅2 sin 𝜃𝑑𝜃𝑑𝜙

= 𝑅3 ∫
2𝜋

0
𝑑𝜙 ∫

𝜋/2

0
cos 𝜃 sin 𝜃𝑑𝜃
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𝑢 = sin 𝜃
𝑑𝑢 = cos 𝜃𝑑𝜃

= 𝑅3 ⋅ 2𝜋 ⋅ 𝑢2

2 ∣
𝜃=𝜋/2

𝜃=0

= 2𝜋𝑅3 ⋅ sin2 𝜃
2 ∣

𝜋/2

0
= 𝜋𝑅3

Flat bottom
𝑑𝑎 = 𝑟 sin 𝜃𝑑𝑟𝑑𝜙 ̂𝜃 𝜃 = 𝜋/2

∫ 𝑣 ⋅ 𝑑𝑎 = ∫
2𝜋

0
∫

𝑅

0
𝑟 sin 𝜃 ⋅ 𝑟 sin 𝜃𝑑𝑟𝑑𝜙

= 2𝜋 ⋅ ∫
𝑅

0
𝑟2𝑑𝑟 = 2𝜋 ⋅ 𝑟3

3 ∣
𝑅

0

= 2𝜋
3 𝑅3 ∴ Total = 5𝜋

3 𝑅3
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15 Problems

15.1 Week 2

Question

1. Find the gradients of:
𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦3 + 𝑧4

𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦3𝑧4

𝑓(𝑥, 𝑦, 𝑧) = 𝑒𝑥 sin(𝑦) 𝑙𝑛(𝑧)

Answer

2𝑥 ̂𝑥 + 3𝑦2 ̂𝑦 + 4𝑧3 ̂𝑧
2𝑥𝑦3𝑧4 ̂𝑥 + 3𝑥2𝑦2𝑧4 ̂𝑦 + 4𝑥2𝑦3𝑧3 ̂𝑧

𝑒𝑥 sin(𝑦) 𝑙𝑛(𝑧) ̂𝑥 + 𝑒𝑥 cos(𝑦) 𝑙𝑛(𝑧) ̂𝑦 + 𝑒𝑥 sin(𝑦)
𝑧 ̂𝑧

Question

2. The height of a hill (in feet) is given by the function: ℎ(𝑥, 𝑦) = 10(2𝑥𝑦 − 3𝑥2 −
4𝑦2 − 18𝑥 + 28𝑦 + 12) where 𝑦 is the distance (in miles) north, 𝑥 is the distance
east of the town of Trout.

(a) Where is the top of the hill located?

(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point one mile north and one mile
east of Trout? In what direction is the slope steepest, at that point?
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Answer

Part (a)
∇ℎ = 0 at summit
∇ℎ = 10(2𝑦 − 6𝑥 − 18) ̂𝑥 + 10(2𝑥 − 8𝑦 + 28) ̂𝑦

Both ̂𝑥 component and the ̂𝑦 component are equal to 0 at the summit.

x component: 2𝑦 − 6𝑥 − 18 = 0
y component: 2𝑥 − 8𝑦 + 28 = 0

𝑦 = 3 𝑥 = −2
three miles north, two miles west of Trout.

Part (b)

ℎ(−2, 3) = 720 ft

Part (c)

∇ℎ(1, 1) = −220 ̂𝑥 + 220 ̂𝑦
|∇ℎ| = 220

√
2 northwest

Question

3. Calculate the divergence of the following vector functions:

va = 𝑥2 ̂𝑥 + 3𝑥𝑧2 ̂𝑦 − 2𝑥𝑧 ̂𝑧
vb = 𝑥𝑦 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 3𝑧𝑥 ̂𝑧
vc = 𝑦2 ̂𝑥 + (2𝑥𝑦 + 𝑧2) ̂𝑦 + 2𝑦𝑧 ̂𝑧
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Answer

∇ ⋅ va = ( 𝜕
𝜕𝑥 ̂𝑥 + 𝜕

𝜕𝑦 ̂𝑦 + 𝜕
𝜕𝑧 ̂𝑧) ⋅ (𝑥2 ̂𝑥 + 3𝑥𝑧 ̂𝑦 − 2𝑥𝑧 ̂𝑧)

= 2𝑥 − 2𝑥
= 0.

∇ ⋅ vb = 𝑦 + 2𝑧 + 3𝑥

∇ ⋅ vc = 2𝑥 + 2𝑦

Question

4. Calculate the curls of the vector functions in problem 3.

Answer

𝑣𝑎 = 𝑥2 ̂𝑥 + 3𝑥𝑧2 ̂𝑦 − 2𝑥𝑧 ̂𝑧

∇ × 𝑣𝑎 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝑥2 3𝑥𝑧2 −2𝑥𝑧

∣

= ̂𝑥 (𝜕/𝜕𝑦(−2𝑥𝑧) − 𝜕/𝜕𝑧 (3𝑥𝑧2))
− ̂𝑦 (𝜕/𝜕𝑥(−2𝑥𝑧) − 𝜕/𝜕𝑧 (𝑥2))
+ ̂𝑧 (𝜕/𝜕𝑥 (3𝑥𝑧2) − 𝜕/𝜕𝑦 (𝑥2))
= ̂𝑥(−6𝑥𝑧) − ̂𝑦(−2𝑧) + ̂𝑧 (3𝑧2)
= −6𝑥 ̂𝑥 + 2𝑧 ̂𝑦 + 3𝑧2 ̂𝑧

𝑣𝑏 = 𝑥𝑦 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 3𝑧𝑥 ̂𝑧

∇ × 𝑣𝑏 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝑥𝑦 2𝑦𝑧 3𝑧𝑥

∣

= ̂𝑥(𝜕/𝜕𝑦(3𝑧𝑥) − 𝜕/𝜕𝑧(2𝑦𝑧))
− ̂𝑦(𝜕/𝜕𝑥(3𝑧𝑥) − 𝜕/𝜕𝑧(𝑥𝑦))
+ ̂𝑧(𝜕/𝜕𝑥(𝑧𝑦𝑧) − 𝜕/𝜕𝑦(𝑥𝑦))
= ̂𝑥(−2𝑦) − ̂𝑦(3𝑧) + ̂𝑧(−𝑥)
= −2𝑦 ̂𝑥 − 3𝑧 ̂𝑦 − 𝑥 ̂𝑧
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𝑣𝑐 = 𝑦2 ̂𝑥 + (2𝑥𝑦 + 𝑧2) ̂𝑦 + 2𝑦𝑧 ̂𝑧

∇ × 𝑣𝑐 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝑦2 2𝑥𝑦 + 𝑧2 2𝑦𝑧

∣

= ̂𝑥 (𝜕/𝜕𝑦(2𝑦𝑧) − 𝜕/𝜕𝑧 (2𝑥𝑦 + 𝑧2))
− ̂𝑦 (𝜕/𝜕𝑥(2𝑦𝑧) − 𝜕/𝜕𝑧 (𝑦2))
+ ̂𝑧 (𝜕/𝜕𝑥 (2𝑥𝑦 + 𝑧2) − 𝜕/𝜕𝑦 (𝑦2))

=(2𝑧 − 2𝑧) ̂𝑥 − 0 ̂𝑦 + (2𝑦 − 2𝑦) ̂𝑧
=0

Question

5. Calculate the line integral of the function v = 𝑥2 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 𝑦2 ̂𝑧 from the origin to
the point (1,1,1) by three different routes:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1)
(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1)
(c) the straight line.
(d) What is the line integral around the closed loop that goes out along path (a) and

back along path (b)?

Answer

𝑣 = 𝑥2 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 𝑦2 ̂𝑧

∫
𝑃

𝑣 ⋅ 𝑑𝑙

𝑑ℓ = 𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧
a) three sections of path to integrate: (0, 0, 0) → (1, 0, 0) → ((, 1, 0) → (1, 1, 1)
Part i: 𝑑𝑙 = 𝑑𝑥 ̂𝑥 𝑦 = 0, 𝑧 = 0

∫
path

𝑥2 ̂𝑥 ⋅ 𝑑𝑥 ̂𝑥 = ∫
1

0
𝑥2𝑑𝑥

= 𝑥3

3 ∣
1

0
= 1

3.
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Part ii: 𝑑𝑙 = 𝑑𝑦 ̂𝑦 𝑥 = 1, 𝑧 = 0

∫
path ii

2𝑦𝑧 ̂𝑦 ⋅ 𝑑𝑦 ̂𝑦 = ∫
1

0
2𝑦𝑧𝑑𝑦

= 0

Part iii: 𝑑𝑙 = 𝑑𝑧 ̂𝑧 𝑥 = 1, 𝑦 = 1

∫
path 𝑖𝑖𝑖

𝑦2 ̂𝑧 ⋅ 𝑑𝑧 ̂𝑧 = ∫
1

0
𝑦2𝑑𝑧 = ∫

1

0
𝑑𝑧

Total path = ∫
𝑝

𝑣 ⋅ 𝑑𝑙 = 4/3

b) Path (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1)

Path i 𝑦 = 0, 𝑥 = 0 𝑑ℓ = 𝑑𝑧 ̂𝑧

∫
Path

𝑦2 ̂𝑧 ⋅ 𝑑𝑧 ̂𝑧 = ∫
1

0
0𝑑𝑧 = 0

path_ii 𝑧 = 1, 𝑥 = 0 𝑑ℓ = 𝑑𝑦 ̂𝑦

∫
path ii

2𝑦𝑧 ̂𝑦 ⋅ 𝑑𝑦 ̂𝑦 = ∫
1

0
2𝑦𝑑𝑦 = 𝑦2∣10

= 1

Path iii: 𝑧 = 1, 𝑦 = 1 𝑑𝑙 = 𝑑𝑥 ̂𝑥

∫
path iii

𝑥2 ̂𝑥 ⋅ 𝑑𝑥 ̂𝑥 = ∫
1

0
𝑥2𝑑𝑥 = 𝑥3

3 ∣
1

0

= 1
3

Total path = ∫
𝑝

𝑣 ⋅ 𝑑𝑙 = 4/3.

c)
𝑥 = 𝑦 = 𝑧 , 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧

∫
𝑝

𝑣 ⋅ 𝑑ℓ

= ∫ (𝑥2 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 𝑦2 ̂𝑧) ⋅ (𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧)

= ∫ 𝑥2𝑑𝑥 + 2𝑦𝑧𝑑𝑦 + 𝑦2𝑑𝑧
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now write all in terms of one variable.

= ∫ 𝑥2𝑑𝑥 + 2𝑥2𝑑𝑥 + 𝑥2𝑑𝑥

= ∫
1

0
4𝑥2𝑑𝑥

= 4
3𝑥3∣

1

0
= 4

3

d) ∮ 𝑣 ⋅ 𝑑𝑙 = 4/3 − 4/3 = 0.

Question

6. Calculate the volume integral of the function 𝑇 = 𝑧2 over the tetrahedron with
corners at (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

Answer

∫
𝑉

𝑇 𝑑𝜏 = ∫
𝑉

𝑧2𝑑𝑥𝑑𝑦𝑑𝑧

= ∭ 𝑧2𝑑𝑥𝑑𝑦𝑑𝑧

If we integrate 𝑥 first minimum is 0 max is at surface which is defined by 𝑥 + 𝑦 + 𝑧 = 1.
Thus, 𝑥 = 1 − 𝑦 − 𝑧. Once 𝑥 has been integrated 𝑦 also has minimum of 𝑂 and now max
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at line 𝑦 + 𝑧 = 1. Finally we have just 𝑧 to consider which runs from 0 to 1 .

∫
1

0
∫

1−𝑧

0
∫

1−𝑧−𝑦

0
𝑧2𝑑𝑥𝑑𝑦𝑑𝑧

∫
1

0
∫

1−𝑧

0
𝑧2𝑥∣

𝑥=1−𝑧−𝑦

𝑥=0
𝑑𝑦𝑑𝑧

= ∫
1

0
𝑧2 ∫

1−𝑧

0
1 − 𝑧 − 𝑦𝑑𝑦𝑑𝑧

= ∫
1

0
𝑧2 (𝑦 − 𝑧𝑦 − 𝑦2

2 )∣
𝑦=1−𝑧

0
𝑑𝑧

= ∫
1

0
𝑧2 (1 − 𝑧 − 𝑧(1 − 𝑧) − 1

2(1 − 𝑧)2) 𝑑𝑧

= ∫
1

0
𝑧2 (1 − 𝑧 − 2 + 𝑧2 − 1

2 (1 − 2𝑧 + 𝑧2)) 𝑑𝑧

= ∫
1

0
𝑧2 (1 − 2𝑧 + 𝑧2 − 1

2 + 𝑧 − 𝑧2

2 ) 𝑑𝑧

= ∫
1

0
𝑧2 (1

2 − 𝑧 + 𝑧2

2 ) 𝑑𝑧

= ∫
1

0

𝑧2

2 − 𝑧3 + 𝑧4

2 𝑑𝑧

= 𝑧3

6 − 𝑧4

4 + 𝑧5

10∣
1

0

= 1
6 − 1

4 + 1
10 = 1

60

15.2 Week 3

Question

1. Check the fundamental theorem of gradients with the scalar function 𝑇 = 𝑥2 +
4𝑥𝑦 + 2𝑦𝑧3. Assume point a is at the origin and point 𝑏 = (1, 1, 1). Check the
theorem for three paths:

a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1)
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b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1)
c) the parabolic path 𝑧 = 𝑥2 and 𝑦 = 𝑥

Answer

Part a) Path i) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1)

𝑑𝑙 = 𝑑𝑥 ̂𝑥 𝑦 = 0, 𝑧 = 0

∫
path i

∇𝑇 ⋅ 𝑑𝑙 = ∫
1

0
2𝑥𝑑𝑥 = 𝑥2∣10 = 1

Path ii) 𝑑𝑙 = 𝑑𝑦 ̂𝑦 𝑥 = 1, 𝑧 = 0

∫
path 𝑖𝑖

∇𝑇 ⋅ 𝑑𝑙 = ∫
1

0
4𝑑𝑦 = 4𝑦|10 = 4.

Path iii) 𝑑ℓ = 𝑑𝑧 ̂𝑧 𝑥 = 1, 𝑦 = 1

∫
path iii

∇𝑇 ⋅ 𝑑𝑙 = ∫
1

0
6𝑧2𝑑𝑧 = 2𝑧3∣10 = 2

Total path 1 + 4 + 2 = 7
Part b)

(0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1)
Path i 𝑑𝑙 = 𝑑𝑧 ̂𝑧 𝑦 = 0, 𝑥 = 0

∫ ∇𝑇 ⋅ 𝑑𝑙 = ∫
1

0
0𝑑𝑧 = 0

Path ii) 𝑑𝑙 = 𝑑𝑦 ̂𝑦 𝑥 = 0, 𝑧 = 1

∫ ∇𝑇 ⋅ 𝑑𝑙 = ∫
1

0
2𝑑𝑦 = 2𝑦|10 = 2

Path iii) 𝑑𝑙 = 𝑑𝑥 ̂𝑥 𝑦 = 1, 𝑧 = 1

∫ ∇𝑇 ⋅ 𝑑𝑙 = ∫
𝑇

0
(2𝑥 + 4)𝑑𝑥 = 𝑥2 + 4𝑥|10 = 5

Total path 7.
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Part c) parabolic path 𝑧 = 𝑥2, 𝑦 = 𝑥 𝑑𝑥 = 𝑑𝑦 𝑑𝑧 = 2𝑥𝑑𝑥

𝑑𝑙 = 𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧
∇𝑇 ⋅ 𝑑𝑙 =(2𝑥 + 4𝑦)𝑑𝑥 + (4𝑥 + 2𝑧3) 𝑑𝑦 + 6𝑦𝑧2𝑑𝑧

= (2𝑥 + 4𝑥)𝑑𝑥 + (4𝑥 + 2𝑥6) 𝑑𝑥 + 6𝑥𝑥4 ⋅ 2𝑥𝑑𝑥
= (6𝑥 + 4𝑥 + 2𝑥6 + 12𝑥6)𝑑𝑥.

∫ ∇𝑇 ⋅ 𝑑𝑙 = ∫
1

0
(10𝑥 + 14𝑥6) 𝑑𝑥

5𝑥2 + 2𝑥7∣10 = 7

Question

2. Compute the line integral of v = 6 ̂𝑥 + 𝑦𝑧2 ̂𝑦 + (3𝑦 + 𝑧) ̂𝑧 along the triangular path
(0, 0, 0) → (0, 1, 0) → (0, 0, 2) → (0, 0, 0). Check your answer using Stokes theorem.

Answer

v = 6 ̂𝑥 + 𝑦2 ̂𝑦 + (3𝑦 + 𝑧) ̂𝑧

(0, 0, 0) → (0, 1, 0) → (0, 0, 2)
𝑑𝑙 = 𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧
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Path i 𝑥 = 0, 𝑧 = 0 𝑑𝑙 = 𝑑𝑦 ̂𝑦

∫ 𝑣 ⋅ 𝑑𝑙 = ∫ 𝑦𝑧2𝑑𝑦 ∫
path i

v ⋅ 𝑑𝑙 = ∫
1

0
0 = 0

path ii 𝑥 = 0 𝑑𝑙 = 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧
𝑧 = 𝑚𝑦 + 𝑏
𝑧 = −2𝑦 + 2 𝑑𝑧 = −2𝑑𝑦

∫
path ii

𝑣 ⋅ 𝑑𝑙 = ∫ 𝑦𝑧2𝑑𝑦 + ∫ 3𝑦 + 𝑧𝑑𝑧

= ∫ 𝑦(−2𝑦 + 2)2𝑑𝑦 + ∫(3𝑦 + −2𝑦 + 2) ⋅ −2𝑑𝑦

= ∫
0

1
4𝑦3 − 8𝑦2 + 4𝑦 − 2𝑦 − 4𝑑𝑦

= ∫
0

1
4𝑦3 − 8𝑦2 + 2𝑦 − 4𝑑𝑦

= −2
3 𝑦4 − 8

3𝑦3 + 𝑦2 − 4𝑦∣
0

1

= 2
3 + 4 = 14

3
part iii) 𝑑𝑙 = 𝑑𝑧 ̂𝑧 𝑦 = 0, 𝑥 = 0

𝑣 ⋅ 𝑑𝑙 = 3𝑦 + 𝑧𝑑𝑧
= 𝑧𝑑𝑧

∫
0

2
𝑧𝑑𝑧 = 𝑧2

2 ∣
0

2
= −2

Total path
∮ v ⋅ 𝑑𝑙 = 14

3 − 6
3 = 8

3
Check with Stokes Theorem:
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∫
𝑠
(∇ × 𝑣) ⋅ 𝑑𝑎

∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
6 𝑦𝑧2 3𝑦 + 𝑧

∣

= ̂𝑥(3 − 2𝑦𝑧) − ̂𝑦(0 − 0) + ̂𝑧(0 − 0)
= (3 − 2𝑦2) ̂𝑥

∬(3 − 2𝑦𝑧)𝑑𝑦𝑑𝑧 𝑧 = −2𝑦 + 2

∫
1

0
[∫

−2𝑦+2

0
3 − 2𝑦𝑧𝑑𝑧] 𝑑𝑦

∫
1

0
[3𝑧 − 𝑦𝑧2∣𝑧=2−2𝑦

𝑧=0 ] 𝑑𝑦

∫
1

0
6 − 6𝑦 − 𝑦(2 − 2𝑦)2𝑑𝑦

6𝑦 − 5𝑦2 + 8
3𝑦3 − 𝑦4∣10

6 − 6𝑦 − 𝑦 (4 − 8𝑦 + 4𝑦2) 𝑑𝑦

∫
1

0
6 − 6𝑦 − 4𝑦 + 8𝑦2 − 4𝑦3𝑑𝑦

6 − 5 + 8
3 − 1

= 8
3

Question

3.

a) If A and B are vector functions what does (A ⋅ ∇)B mean? (What are the x, y,
and z components?)

b) Compute ( ̂𝑟 ⋅ ∇) ̂𝑟.
c) For the functions from problem 3 in week 2 evaluate (va ⋅ ∇)vb

Question

4. Test the divergence theorem for the function v = 𝑥𝑦 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 3𝑧𝑥 ̂𝑧. Take for the
volume a cube placed ath the origin with sides of length 2.
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Answer

𝑣 = 𝑥𝑦 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 3𝑧𝑥 ̂𝑧

∫
𝑉

(∇ ⋅ 𝑣)𝑑𝜏 = ∮
𝑠

𝑣 ⋅ 𝑑𝑎

∇ ⋅ 𝑣 = 𝑦 + 2𝑧 + 3𝑥
𝑑𝜏 = 𝑑𝑥𝑑𝑦𝑑𝑧

∫
2

0
∫

2

0
∫

2

0
(𝑦 + 2𝑧 + 3𝑥)𝑑𝑥𝑑𝑦𝑑𝑧

∫
2

0
∫

2

0
𝑦𝑥 + 2𝑧𝑥 + 3𝑥2

2 ∣
𝑥=2

𝑥=0
𝑑𝑦𝑑𝑧

∬
2

0
(2𝑦 + 4𝑧 + 6)𝑑𝑦𝑑𝑧

∫
2

0
𝑦2 + 4𝑧𝑦 + 6𝑦|𝑦=𝑧

𝑦=0 𝑑𝑧

∫
2

0
4 + 8𝑧 + 12𝑑𝑧

16𝑧 + 4𝑧2∣20
3𝑧 + 16 = 48
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i) 𝑑𝑎 = 𝑑𝑦𝑑𝑧 ̂𝑥
𝑣 ⋅ 𝑎 = 𝑥𝑦𝑑𝑦𝑑𝑧

∫
2

0
∫

2

0
𝑥𝑦𝑑𝑦𝑑𝑧

= ∫
2

0

𝑥𝑦2

2 ∣
𝑦=2

𝑦=0
𝑑𝑧

∫
2

0
2𝑥𝑑𝑧

= 2𝑥𝑧|20 𝑥 = 2
= 8.

(ii) 𝑑𝑎 = −𝑑𝑦𝑑𝑧 ̂𝑥 𝑥 = 0
∫

2

0
∫

2

0
𝑥𝑦𝑑𝑦𝑑𝑧 = 0.

iii) 𝑑𝑎 = 𝑑𝑥𝑑𝑧 ̂𝑦 𝑦 = 2.
𝑣 ⋅ 𝑑𝑎 = 2 ⋅ 2𝑧𝑑𝑥𝑑𝑧

∫
2

0
∫

2

0
4𝑧𝑑𝑥𝑑𝑧

∫
2

0
4𝑧𝑥∣

𝑥=2

𝑥=0
𝑑𝑧

∫
2

0
8𝑧𝑑𝑧

4𝑧2∣20 = 16
(iv) 𝑑𝑎 = −𝑑𝑥𝑑𝑧 ̂𝑦 𝑦 = 0

∫
2

0
∫

2

0
0𝑑𝑥𝑑𝑧 = 0

v) 𝑑𝑎 = 𝑑𝑥𝑑𝑦 ̂𝑧 𝑧 = 2
∫

2

0
∫

2

0
6𝑥𝑑𝑥𝑑𝑦

∫
2

0
3𝑥2∣

𝑥=2

𝑥=0
𝑑𝑦

= 12𝑦|20 = 24.

84



vi) 𝑑𝑎 = −𝑑𝑥𝑑𝑦 ̂𝑧𝑧 = 0

∫
𝛿

0𝑑𝑥𝑑𝑦 = 0

∴ ∮
𝑆

𝑣 ⋅ 𝑑𝑎 = 48⋅

Question

5. Test Stokes theorem for the v in problem 4. Take the path to be three segments
that make a triangular loop: (0, 0, 0) → (0, 2, 0) → (0, 0, 2) → (0, 0, 0).

Answer

∫
𝑆

(∇ × 𝑣) ⋅ 𝑑𝑎 = ∮
𝑃

𝑣 ⋅ 𝑑𝑙
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Right hand side first:
𝑣 = 𝑥𝑦 ̂𝑥 + 2𝑦𝑧 ̂𝑦 + 3𝑧𝑥 ̂𝑧

∇ × 𝑣 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑥𝑦 2𝑦𝑧 3𝑥𝑧
∣

= ̂𝑥(0 − 2𝑦) − ̂𝑦(3𝑧 − 0) + ̂𝑧(0 − 𝑥)
= −2𝑦 ̂𝑥 − 3𝑧 ̂𝑦 − 𝑥 ̂𝑧
𝑚𝑦 + 𝑏 = 𝑧
𝑑𝑎 = 𝑑𝑦𝑑𝑧 ̂𝑥
𝑧 = −𝑦 + 2

∬(−2𝑦 ̂𝑥 − 3𝑧 ̂𝑦 − 𝑥 ̂𝑧) ⋅ 𝑑𝑦𝑑𝑧 ̂𝑥

= ∫
𝑦=2

𝑦=0
∫

𝑧=2−𝑦

𝑧=0
−2𝑦𝑑𝑧𝑑𝑦

∫
2

0
− 2𝑦𝑧|𝑧=2−𝑦

𝑧=0 𝑑𝑦

∫
2

0
−2𝑦(2 − 𝑦)𝑑𝑦

− ∫
2

0
4𝑦 − 2𝑦2𝑑𝑦

− (2𝑦2 − 2𝑦3

3 ∣
2

0
)

− (8 − 16
3 )

− 24 − 16
3 = −8

3
Now for the path side …
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Section 1 of the path:

𝑑𝑙 = 𝑑𝑦 ̂𝑦 𝑥 = 0, 𝑧 = 0
𝑣 ⋅ 𝑑𝑙 = 2𝑦𝑧 = 0

∫
2

0
2𝑦𝑧𝑑𝑦 = ∫

2

0
0 = 0

Part 2 of path:
𝑥 = 0, 𝑑𝑙 = 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧 𝑧 = −𝑦 + 2 𝑑𝑧 = −𝑑𝑦

∫ 2𝑦𝑧𝑑𝑦 + ∫
3𝑥𝑧𝑑𝑧

∫
0

2
2𝑦(−𝑦 + 2)𝑑𝑦

∫
0

2
−2𝑦2 + 4𝑦𝑑𝑦

− 2
3𝑦3 + 2𝑦2∣02

2
3 ⋅ 8 − 8
16
3 − 24

3 = −8
3
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Part 3 of path:
𝑑𝑙 = 𝑑𝑧 ̂𝑧 𝑥 = 0, 𝑦 = 0

∫ 𝑣 ⋅ 𝑑𝑙 = ∫
0

2
3𝑧𝑥𝑑𝑧 = 0

So total path
∮

𝑝
𝑣 ⋅ 𝑑𝑙 = −8

3.

Question

6. Prove that the divergence of the curl is always zero. Check it for the function va
of problem 3 in week 2.

Answer

∇ ⋅ (∇ × v)

∇ × v = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧

∣

= ̂𝑥 (𝜕𝑣𝑧/𝜕𝑦 − 𝜕𝑣𝑦/𝜕𝑧)
− ̂𝑦 (𝜕𝑣𝑧/𝜕𝑥 − 𝜕𝑣𝑥/𝜕𝑧)
+ ̂𝑧 (𝜕𝑣𝑦/𝜕𝑥 − 𝜕𝑣𝑥/𝜕𝑦)

= ̂𝑥 (𝜕𝑣𝑧
𝜕𝑦 − 𝜕𝑣𝑦

𝜕𝑧 ) + ̂𝑦 (𝜕𝑣𝑥
𝜕𝑧 − 𝜕𝑣𝑧

𝜕𝑥 ) + ̂𝑧 (𝜕𝑣𝑦
𝜕𝑥 − 𝜕𝑣𝑦

𝜕𝑦 )

∇ ⋅ (∇ × v)

= 𝜕
𝜕𝑥 (𝜕𝑣𝑧

𝜕𝑦 − 𝜕𝑣𝑦
𝜕𝑧 ) + 𝜕

𝜕𝑦 (𝜕𝑣𝑥
𝜕𝑧 − 𝜕𝑣𝑧

𝜕𝑥 ) + 𝜕
𝜕𝑧 (𝜕𝑣𝑦

𝜕𝑧 − 𝜕𝑣𝑥
𝜕𝑦 )

𝜕2𝑣𝑧
𝜕𝑥𝜕𝑦 − 𝜕2𝑣𝑦

𝜕𝑥𝜕𝑧 + 𝜕2𝑣𝑥
𝜕𝑦𝜕𝑧 − 𝜕2𝑣𝑧

𝜕𝑥𝜕𝑦 + 𝜕2𝑣𝑦
𝜕𝑥𝜕𝑧 − 𝜕2𝑣𝑥

𝜕𝑧𝜕𝑦
= 0.

Question

7. Prove that the curl of the gradient is always zero.
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Answer

∇ × ∇𝑇

∇𝑇 = 𝜕𝑇
𝜕𝑥 ̂𝑥 + 𝜕𝑇

𝜕𝑦 ̂𝑦 + 𝜕𝑇
𝜕𝑧 ̂𝑧

∇ × ∇𝑇 = ∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝜕𝑇
𝜕𝑥

𝜕𝑇
𝜕𝑦

𝜕𝑇
𝜕𝑧

∣

= ̂𝑥 ( 𝜕2𝑇
𝜕𝑦𝜕𝑧 − 𝜕2𝑇

𝜕𝑦𝜕𝑧 ) − ̂𝑦 ( 𝜕2𝑇
𝜕𝑥𝜕𝑧 − 𝜕2𝑇

𝜕𝑥𝜕𝑧 )

+ ̂𝑧 ( 𝜕2𝑇
𝜕𝑥𝜕𝑦 − 𝜕2𝑇

𝜕𝑥𝜕𝑦) = 0

Question

8. Use Stokes theorem to find the surface integral v = 𝑦 ̂𝑧 for the triangular surface
defined by the vertices (𝑎, 0, 0), (0, 2𝑎, 0), (0, 0, 𝑎). Hint one side of Stokes theorem
will be much more straight forward than the other.

Answer

𝑣 = 𝑦 ̂𝑧

∫
𝑆

(∇ × 𝑣) ⋅ 𝑑𝑎 = ∮
𝑝

𝑣 ⋅ 𝑑𝑙

Surface:

89



∣
̂𝑥 ̂𝑦 ̂𝑧

𝜕
𝜕𝑥 𝜕𝜕𝑦 𝜕𝜕𝑧
0 0 𝑦

∣

= ̂𝑥(1) − ̂𝑦0 + ̂𝑧0
∇ × 𝑣 = ̂𝑥

Part 1: 𝑑𝑙 = 𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦 𝑧 = 0 𝑑𝑧 = 0
∫ 𝑦 ̂𝑧 ⋅ (𝑑𝑥 ̂𝑥 + 𝑑𝑦 ̂𝑦) = 0

Part 2: 𝑑𝑙 = 𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧 𝑥 = 0

𝑧 = 𝑚𝑦 + 𝑏
𝑧 = −1/2𝑦 + 𝑏
𝑧 = −1/2𝑦 + 1
𝑑𝑧 = −1/2𝑑𝑦

∫ 𝑦 ̂𝑧 ⋅ (𝑑𝑦 ̂𝑦 + 𝑑𝑧 ̂𝑧)

∫ 𝑦𝑑𝑧 = ∫
0

2𝑎
𝑦 ⋅ −1/2𝑑𝑦

= − 1
2

𝑦2

2 ∣
0

2𝑎

=1
44𝑎2 = 𝑎2
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Part 3: 𝑑𝑙 = 𝑑𝑥 ̂𝑥 + 𝑑 ̂𝑧 𝑦 = 0,

∫ 𝑦 ̂𝑧 ⋅ (𝑑𝑥 ̂𝑥 + 𝑑𝑧 ̂𝑧) = 0

15.3 Week 4

Question

1. 𝑟 = 𝑒−𝑝2−𝑞2 , 𝑝 = 𝑒𝑠, 𝑞 = 𝑒−𝑠. Find 𝑑𝑟
𝑑𝑠 .

Answer

There are several ways to do this - here is one way:

𝑑𝑟
𝑑𝑠 = 𝜕𝑟

𝜕𝑝
𝑑𝑝
𝑑𝑠 + 𝜕𝑟

𝜕𝑞
𝑑𝑞
𝑑𝑠

𝜕𝑟
𝜕𝑝 = 𝑒−𝑝2−𝑞2 ⋅ −2𝑝
𝜕𝑟
𝜕𝑞 = 𝑒−𝑝2−𝑞2 ⋅ −2𝑞
𝑑𝑝
𝑑𝑠 = 𝑒𝑠

𝑑𝑞
𝑑𝑠 = −𝑒−𝑠

Substitute all of this into the full derivative

𝑑𝑟
𝑑𝑠 = −2𝑝𝑒−𝑝2−𝑞2 ⋅ 𝑒𝑠 + (−2𝑞)𝑒−𝑝2−𝑞2 ⋅ −𝑒−𝑠

= (−2𝑝𝑒𝑠 + 2𝑞𝑒−𝑠)𝑒−𝑝2−𝑞2

= 2𝑟(𝑞2 − 𝑝2)

Question

2. 𝑐 = sin(𝑎 − 𝑏), 𝑏 = 𝑎𝑒2𝑎. Find 𝑑𝑐
𝑑𝑎 .
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Answer

𝑑𝑐
𝑑𝑎 = 𝜕𝑐

𝜕𝑏 ⋅ 𝑑𝑏
𝑑𝑎 + 𝜕𝑐

𝜕𝑏 ⋅ 𝑑𝑎
𝑑𝑎

𝜕𝑐
𝜕𝑏 = cos(𝑎 − 𝑏) ⋅ −1
𝜕𝑐
𝜕𝑎 = cos(𝑎 − 𝑏)
𝑑𝑏
𝑑𝑎 = 𝑒2𝑎 + 𝑎𝑒2𝑎 ⋅ 2 = 𝑒2𝑎(1 + 2𝑎)

∴ 𝑑𝑐
𝑑𝑎 = cos(𝑎 − 𝑏)(1 − 2𝑏 − 𝑒2𝑎)

Question

3. 𝑧 = 𝑥2 + 2𝑦2

a. Find ( 𝜕𝑧
𝜕𝑥)𝑦.

b. Write 𝑥 and 𝑦 in plane polar coordinates (in terms of 𝑟 and 𝜃) and find ( 𝜕𝑧
𝜕𝑥)𝑟.

Answer

a. Take the partial derivative of 𝑧 keeping 𝑦 constant: ( 𝜕𝑧
𝜕𝑥)𝑦 = 2𝑥.

b. There are several approaches to this problem - here is mine. First write 𝑥 and 𝑦 in
plane polar coordinates:

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃
Since we want the partial of 𝑧 with respect to 𝑥 while keeping 𝑟 constant lets take
the opportunity to substitute for 𝑦 in terms of 𝜃 and 𝑟.

𝑧 = 𝑥2 + 2𝑦2

𝑧 = 𝑥2 + 2𝑟2 sin2 𝜃
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We can substitute again to get rid of the 𝜃

sin2 𝜃 = 1 − cos2 𝜃

cos 𝜃 = 𝑥
𝑟 cos2 𝜃 = 𝑥2

𝑟2

sin2 𝜃 = 1 − 𝑥2

𝑟2

𝑧 = 𝑥2 + 2𝑟2 (1 − 𝑥2

𝑟2 )

= −𝑥2 − 2𝑟2

∴ ( 𝜕𝑧
𝜕𝑥)

𝑟
= −2𝑥

Question

4. Solve
∫

1

𝑥=0
∫

4

𝑦=2
3𝑥 𝑑𝑥𝑑𝑦

Answer

∫
1

𝑥=0
3𝑥 𝑑𝑥 ∫

4

𝑦=2
𝑑𝑦

3
2𝑥2∣

1

0
⋅ 𝑦∣

4

2
= 3

Question

5. Solve
∫

2

𝑦=0
∫

4

𝑥=2𝑦
𝑑𝑥𝑑𝑦

Answer

∫
2

𝑦=0
(4 − 2𝑦)𝑑𝑦

4𝑦 − 𝑦2∣20 = 4
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Question

6. Solve

∫
1

𝑥=0
∫

𝑒𝑥

𝑦=𝑥
𝑦 𝑑𝑥𝑑𝑦

Answer

= ∫
1

𝑥=0

𝑦2

2 ∣
𝑒𝑥

𝑥
𝑑𝑥

=1
2 ∫

1

0
(𝑒2𝑥 − 𝑥2)𝑑𝑥

= 1
2(𝑒2𝑥

2 − 𝑥3

3 )∣
1

0
= 𝑒2

4 − 5
12

Question

7. ∬
𝐴

(2𝑥 − 3𝑦) 𝑑𝑥𝑑𝑦, where 𝐴 is the triangle with vertices (0, 0), (2, 1), (2, 0).

Answer

The hypotenuse of the triangle is the line 𝑦 = 1
2𝑥. Lets integrate over 𝑦 first keeping 𝑥

constant.

∫
2

𝑥=0
∫

𝑥
2

𝑦=0
(2𝑥 − 3𝑦) 𝑑𝑦𝑑𝑥

∫
2

𝑥=0
(2𝑥𝑦 − 3

2𝑦2)∣
𝑥
2

𝑦=0
𝑑𝑥

∫
2

0

5
8𝑥2 𝑑𝑥 = 5

3

Question

8. Solve
∬ 2𝑥𝑦 𝑑𝑥𝑑𝑦
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over the triangle (0, 0), (2, 1), (3, 0).

Answer

I split this into two right triangles. One with 𝑥 ranging from 0 to 2 with area 𝐴1 and
a hypotenuse 𝑦 = 𝑥/2 and one with 𝑥 ranging from 2 to 3, area 𝐴2 and a hypotenuse
𝑦 = 3 − 𝑥.

= ∬
𝐴1

2𝑥𝑦 𝑑𝑥𝑑𝑦 + ∬
𝐴2

2𝑥𝑦 𝑑𝑥𝑑𝑦

= ∫
2

𝑥=0
∫

𝑥
2

𝑦=0
2𝑥𝑦 𝑑𝑦𝑑𝑥 + ∫

3

𝑥=2
∫

3−𝑥

𝑦=0
2𝑥𝑦 𝑑𝑦𝑑𝑥

= ∫
2

0
𝑥𝑦2∣

𝑥
2

𝑦=0
𝑑𝑥 + ∫

3

2
𝑥𝑦2∣

3−𝑥

𝑦=0
𝑑𝑥

= ∫
2

0
𝑥 ⋅ 𝑥2

4 𝑑𝑥 + ∫
3

0
𝑥(3 − 𝑥)2𝑑𝑥

= ∫
2

0

𝑥3

4 𝑑𝑥 + ∫
3

2
𝑥(9 − 6𝑥 + 𝑥2)𝑑𝑥

= 𝑥4

16 ∣
2

0
+ ∫

3

2
(9𝑥 − 6𝑥2 + 𝑥3)𝑑𝑥

= 1 + (9𝑥2

3 − 6𝑥3

3 + 𝑥4

4 )∣
3

2
= 7

4

Question

9. Solve
∫

2

𝑥=1
∫

2𝑥

𝑦=𝑥
∫

𝑦−𝑥

𝑧=0
𝑑𝑧𝑑𝑦𝑑𝑥
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Answer

= ∫
2

𝑥=1
∫

2𝑥

𝑦=𝑥
(𝑦 − 𝑥) 𝑑𝑦𝑑𝑥

= ∫
2

1
(𝑦2

2 − 𝑥𝑦)∣
2𝑥

𝑥

= ∫
2

1

𝑥2

2 𝑑𝑥 = 7
6

15.4 Week 5 (due 12:30pm Friday 18 Oct)

1. Calculate the Laplacian of ln(𝑥2 + 𝑦2).
2. Is F = 𝑦 ̂𝑖 + 𝑥𝑧 ̂𝑗 + 𝑧�̂� a conservative field? Justify your answer.

Evaluate ∫ F ⋅ 𝑑r from (0, 0, 0) to (1, 1, 1) along two paths:

a. a broken line (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1)
b. a straight line

3. Given 𝜙 = 𝑧3 − 3𝑥𝑦

a. find grad 𝜙
b. find the directional derivative of 𝜙 at the point(1, 2,3) in the direction ̂𝑖 + ̂𝑗 + �̂�

4. Let v = 𝑥 ̂𝑖 + 𝑦 ̂𝑗 + 𝑧�̂�. Evaluate ∮𝑆 v ⋅ 𝑑a over the closed surface of a cylinder of hight
ℎ and radius 𝑎 with a base centred at the origin. (Hint: consider using the divergence
theorem.)

5. Calculate the volume of the region bounded by the planes 𝑧 = 2𝑥 + 3𝑦 + 6 and 𝑧 =
2𝑥+ 7𝑦 +8 and the triangle with vertices (0, 0), (0, 3), and (2, 1) projected in the vertical
direction (taken as the z-direction).

96


	Preface
	Course Notes
	Introduction
	Course logistics
	Textbooks

	Review of Vectors
	Vector Operations
	Vector Algebra

	Differential Calculus
	Gradient
	Divergence
	The Curl
	The Laplacian

	Line, Surface, and Volume Integrals
	Line integrals
	Surface Integrals 
	Volume Intugrals

	Fundamental Theorems
	Fundamental Theorem of Calculus
	Fundamental Theorem of Gradients
	Fundamental Theorem of Divergence
	Fundamental Theorem of Curls

	Differentiation of vectors
	Plane Polar Coordinates
	Differentiation of composite vector expressions

	Integration of vectors
	Gradient of a scalar field
	Partial Derivative
	Total differential and total derivative

	Multiple Integrals
	Double Integrals
	Triple Integrals

	Directional Derivative
	Normal Derivative

	Line Integrals
	General derivation of \nabla operator
	Gradient
	Divergence
	Curl
	Laplacian

	Cylindrical Coordinates
	Spherical Coordinates
	Problems
	Week 2
	Week 3
	Week 4
	Week 5 (due 12:30pm Friday 18 Oct)



