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Preface

This text covers the lectures for Part A of Mathematical Physics PHYS23020. If you notice
any errors please email me zoe.leinhardt@bristol.ac.uk.


mailto:zoe.leinhardt@bristol.ac.uk

Part |

Course Notes



1 Introduction

Welcome to second year Mathematical Physics. This unit is divided into two sections Part A
- Vector Calculus and Part B - Linear Algebra and Fourier Series.

1.1 Course logistics

You should familiarize yourself with the blackboard page for this unit. This is the main source
of information for this unit. The lecture and problems/example class schedule should appear
in your personal timetable.

Lectures will be delivered in person three times a week along with one problems class a week
starting in week 2.

1.2 Textbooks

There are several textbooks that you may find useful. For the first week of lectures the
most relevant is the first chapter of Griffiths Introduction to Electrodynamics. For the next
four weeks Mathematical methods in the physical sciences by Mary Boas and Mathematical
methods for physics and engineering by Riley, Hobson, and Bence will be very helpful. All
of these texts are listed in the reading list and are available digitally and physically in the
University Library.



2 Review of Vectors

Consider this situation: Walk 4 miles north and then 3 miles east (see Figure 2.1). How far
have you walked?

7 miles - but you are not 7 miles from your starting point.

Figure 2.1: Walking Path

These quantities do not add in the standard way that we think of as addition because the
displacements have direction as well as magnitude (length). Both the direction and the mag-
nitude need to be taken into account When the quantities are combined. We also need a word
for these quantities that have both magnitude and direction vectors.

® .
1 Question

What are some examples of vector quantities that you often encounter in physics?

@ Answer

Velocity, acceleration, momentum, force...

However, not all quantities are vectors. Some quantities that we encounter in physics do not
have direction. These quantities are scalars.



L3 .
1 Question

What are some examples of scalar quantities that you often encounter in physics?

@ Answer

Mass, charge, density, temperature.

Vectors are identified in a number of ways - they can have a line under them or an arrow above
or they many be in bold face: A or A or A.

Scalars are not bold or can be specifically identified as the magnitude of a vector: |A| or A.

A negative sign in front of a vector, —ff, means that the vector points in a direction opposite
to A but has the same magnitude (see Figure 2.2).

"‘E

Figure 2.2: Negative vector

2.1 Vector Operations

Vectors do not have location - a displacement of 10 mi north from Bristol is represented by
the same vector as a displacement 10 miles north from New York City. On a diagram you can
slide the arrow around as long as it has the same length and direction that it did originally.

1. Addition of two vectors:
A+B=B+A

3 miles east then 4 miles north gets you to the same place as 4 miles north and then 3
miles east.

e Vector addition is associative:

(A+B)+C=A+(B+0).



o To subtract a vector you add its opposite:

A—B=A+(-B)

Figure 2.3: Subtracting vectors

2. Multiplication of a vector by a scalar:
a(A+B)=aA+aB

Multiplication of a vector by a positive scalar multiplies the magnitude but leaves the
direction. If the scalar is negative the direction of the vector is reversed.

3. Dot product of two vectors:
A-B = ABcos?,

where 0 is the angle between A and B when they are placed tail to tail.

o The dot product is a scalar (also called the scalar product).

e The dot product is commutative,

A-B=B-A

e The dot product is distributive,

A-(B+C)=A-B+A-C.



® .
1 Question

What happens if A is parallel to B?

@ Answer

A-B=ABcosf
0=0°

cosf = cos0° =1
A-B=AB.

® .
1 Question

What happens to the dot product if A is perpendicular to B?

@ Answer

A-B = ABcos#

If A1l B then 6 = 90°
cos90° =0
“A-B=0.

° .
1 Question

Let C = A— B. Calculate C - C.

@ Answer

C-C=(A-B) (A—
=A-A—A-B—B-
=A’+B>—-2A-B

C—C =A%+ B?>—2ABcos#

C.-C =A%+ B?>—2ABcos#

B)
A+B-B

This is the Law of Cosines

4. Cross Product of two vectors




where n is the unit vector (vector of length 1) pointing perpendicular to the plane
defined by vectors A and B. Note - the direction of 7 is ambiguous because there are
two directions for this plane. It is resolved using right hand rule. Fingers point in
direction of first vector and curl toward the second (smaller of two possible angles). The
thumb then pants in direction of 7.

flkm ﬁ)xg

e
g B x P ’me“”g out oF 3k Phine.

Figure 2.4: Cross product directions

¢ A x B is a vector.
e The cross product is also called the vector product.

e The cross product is distributive:

Ax(B+C)=AxB+AxC.

e The cross produce is not commutative,

BxA=-AxB.

o Geometrically A x B is the area of the parallelogram formed by A and B.

[ ] .
1 Question

What is the cross product of two parallel vectors?

@ Answer

AxA=0.

11
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Figure 2.5: Cartesian coordinates

2.2 Vector Algebra

We have defined the vector function in abstract form but it is also possible to set up coordinates
and work with vector components. Lets consider Cartesian coordinates - set up unit vectors
Z,9, z parallel to z,y, z axes.

A= A7+ AG+ A2

A, A,, A, are projections of A along the respective coordinate axis.
Now lets return to the four vector functions that we covered earlier.
o Vector addition:
A+B= (A, 2+ A+ AZ) + (B, i+ B,j+ B,2)
=(A,+B,)2+ (A, +B,)i+ (A, +B,)2
To add vectors in this form add components.

e Scalar multiplication:
aA=aA,T+aAy+a,z

To multiply by a scalar multiply each component by the scalar.

12



Figure 2.6: Vector A in components

e Dot product:

A-B=(A,2+Ay+AZ2) (B, i+B,j+B.Z).
=A,B,+A,B,+A,B,

Note that since Z, 4, Z are allmutually | z-z2 =gy =2-Z=1landz-y=2z-2=9y-2=0.

Thus, to calculate dot product multiply like components and add.

(3 .
1 Question

Calculate A - A.

@ Answer

$$ A A=A {x}BTADI2}+A {z}7{2}

A= /A2 4 A2 4 A2

magnitude of A.

e Cross product:

AxB=(A2+Ay+A2) x (B, 2+ B,j+ B.%).

13




You can multiply it all out and it will give you:

= (A,B, — A,B,) &+ (A,B, — A,B,)j + (A, B, — A,B,) 2.

Because T x 2=y xy=2xz=0and
IXY=—YXT =2
YXZz=—2ZXY==2 using right hand rule
IXT=—TXZ=Y

But there is an easier way to remember this:

Ty Z
AxB=|A, A, A |=z(A,B,—AB,)—y(A,B,—A,)+2(A,B,—A,B,)
B, B, B,

[ ] .
1 Question

Find the angle between the face diagonals of a cube.

@ Answer
A=12+0y+ 1z
B=0T+1y+ 1z
A-B=1-040-1+1-1=1
also

A-B=ABcosf
A=V 02+ 12=12
B=VO*+12+12=+2
A-B=+V2-v2cosb

= 2cos
1=2cosf

0 = cos1(1/2)
0 = 60°.




3 Differential Calculus

Suppose that we have a function of one variable f(x)

® .
1 Question

Q. What does the derivative %ﬁ tell us?

@ Answer

Answer: It tells us how rapidly f(z) varies when we change = by a small amount dz.

df = (%) dx

% is the slope of the graph of f versus x

%ﬂé increases as we move away from the origin.

So what happens when a function depends on more than one variable? Lets take temperature
in a room - T'(z,y,z) 7

oT oT oT
T = (a—> da + (a—y) dy+ (a—) dz

15



dT describes mathematically how T varies when we chance all variables z,y, and z a little bit
dx,dy,dz.

3.1 Gradient

We can rewrite the above as a dot product:

T T . T . “ . ~
dT = (85: + 87?; + az) (dxz + dyy + dzz)

ox oy 0z

dT =VT-dl
or . 0T . 0T .
VI'=—2+ —y+ —=

Ox y 0z

VT is called the gradient of T' and is a vector quantity. Like any other vector VT has both
magnitude and direction.
dT' =VT -dl = |VT||dl| cos b

where 6 is the angle between V and dl.

e VT points in the direction of maximum increase of the function 7.
e The magnitude of VT is the slope along the maximal increase.

[ .
1 Question

Find the gradient of r = y/x? 4+ y? + 22 (the magnitude of the position vector).

@ Answer

Vr = gr:ﬁ + Q’I“A + gri
- Ox y 4 0z

1 ,
?:2(x2+y2+z2) V2 oy
x
ar 1 -
8—;:§($2+y2+22) 1/2-2y
0 1 -
a—rzi(xQ—i—yQ—Fz?’) V29,
2

1/2 —1/2

1
r= (2% +y*+2?) :>;:(x2+y2+22)
xT 4+ yy + 22

(m2+y2+22)1/2 |r

|~

V’]" =

—7

16



We call V del and it is a vector operator. Del acts somewhat like a normal vector and can
“act” in three ways

e it can multiply a scalar. = gradient VT
e it can be dotted with a vector V - A = we call this divergence
e it can be “crossed” with a vector V x A = this is called curl.

3.2 Divergence

V-

IS

= <££+3‘+32> (0,2 + 0,5 +v,2)
- \ox ayy 0z * v T
0 0

= a—xvx + a—yvy + &’Uz

The divergence of a vector is a scalar. It represents the spreading out of a vector from the
point in question.

Figure 3.1: Possitive Divergence

17
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Figure 3.2: Zero divergence
1
I

Figure 3.3: What about this one?

18



L3 .
1 Question

v, =TT + Yy + 22,0, = 2,0, = 2%

@ Answer
a) V-u, = g:p + a@ + a@ = 3 pos. divergence
b) Vv, = £-(0) + a%( )+ &(1)=0
¢c) V-vu, = % + 8@( )+ 2 =1 pos. divergence
3.3 The Curl
T 7 z
Vxv=|0/0x 0/0y 0/0z
v, v, v,
[Ov, Ov,] [8vz 8%]
= R _y J—
oy 0z ox 0z
> % _ Oy,
ox oy

e The curl of a vector is a vector
Geometric interpretation is how much a vector curls around the paint in question.

Previous figures — have 0 curl above have non-zero curl.

L3 .
1 Question

vV, =—Yyr+zxy, V,=2xy
Calculate curl: V x v,

@ Answer
z 0 zZ
Vxv,=|09/0x 9/oy 0/0z
—y T 0

19




3 .
1 Question

Calculate curl: V x v,

@ Answer
z ¥ z
Vxv,=|0/0x 0/0y 0/0z
0 T 0

= 2(8/9y(0) — 0902(x)) — §(8/92(0) — d=(0)) + 2(8dz(x) — /y(0))

z.

3.4 The Laplacian

One can also take the divergence of a gradient of a scalar field: V- V¢ or V2¢ (the Laplacian
of ¢).

00y 00p 0 0P

2 = —— — — — —

V= 8m8x+8y8y+8282
P¢ ¢ 00
- Ox2 + 0y? + 022

20



4 Line, Surface, and Volume Integrals

In electrodynamics you will encounter several different kinds of integrals such as line (path),
surface (flux), and volume.

4.1 Line integrals

b
/v-dz

where v is a vector function, dl is an infinitesimal displacement vector and the integral is
calculated a long a specific path P from a point a to a point b.

If the path forms a closed loop meaning the end point is the same as the starting point a = b
this is shown as a circle on the integral:

In order to calculate the path integral take the dot product of v evaluated at that point with
displacement d d to the next point on the path.

[ .
1 Question

Think of an example of a path integral in physics?

@ Answer

Work: W = fﬂ dl Work done by a force E.

Note: A conservative force is a force that is independent of path.

(3 .
1 Question

Calculate the line integral of the function v = %% + 2x(y + 1)y form point a = (1,1,0)
to point b = (2,2,0) along paths (1) and (2).

21



@ Answer
A =drz+dyy+dzz
Path (1)
e first part dy =dz =0, dl =dxz and y = 1.

v-dl=1y?dzQy=1

=dzx
/ydg

2
dr =1

I
—

22




o second part of Path 1 (the vertical part dl = dy g and = = 2.)

2
Jeeai= [ 2ty vay
1

xr=

2
=/ 4(y + 1)dy
1
2
= (2y° +4y)[
— (84 8)—6=10.

So all together path 1: [v-dl = 11.
Path2: 2=y dx=dyand dz=0.

dl=drz+dyy
dl = y?dz + 2z(y + 1)dy

]

but de = dy and x =y
= y?dz + 2z(y + 1)dx

= 2%dz + 2z(x + 1)dw
= (22 + 222 + 22) dx
= (322 + 2x) dx

2
/y'dlz/ (3x2+2x)dx:3i—|——
| 3 T

:a:3+x2|?
=(8+4)—2=10

Path 2 =10

L3 .
1 Question

What is § v-d1 for the loop that goes from a to b out on path (1) and back on path (2)?

@ Answer

%y-dlzll—lOzl

23




4.2 Surface Integrals

/v-da
S

where v is a vector function and da is a little bit of area with direction perpendicular to the
surface.

Similarly to the path integral § v - da indicates a closed surface.

Generally outward is positive for a surface but if the surface is open this is arbitrary. If v
describes flow then [v-da is the total mas through the surface per unit time (or flux).

1 Question
Calculate the surface integral of
v=2x2T+ (x +2)7 +y(z*—3)2

over five sides of a cubical box (excluding the bottom).

24
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@ Answer

Let do one side at a time:

25



For side (i) z = 2 and da = dydzz

2 2
/ v-dgz/ / 2xzdy dz
side 1 0 0
|

2 2
dy / 4zdz
0

— 4. 2‘2
ylo 227,

=2-8=16

Side2 =0 da=—dydzz

/ ydgz/—szdydzzO
side 2

Side3 y=2 da=dxdzy

2 2
/ (:E-I—Q)dxdz:/ dz/ (x +2)dx
side 3 0 0

o (a? ’
= 2|,- (7—1—21‘)

=2-6=12

0

Sided y=0 da=—drdzy

2 2
/ —(x +2)dzdz = —/ dz/ (x +2)dx
side 4 0 0

=—12

Sideb z=2 da=dxdyz

:./y-dgz16+0+12—12+4=20.
S

26




4.3 Volume Intugrals

/ Tdr
.

Where T is a scalar function and d7 is a small volume element.

dr = dxdydz

If T is the density of something that might vary from point to point the volume integral would
give the total mass.

3 .
1 Question

Calculate the volume integral of T' = xy2? over the prism

EEPNC EEEEE RN
| =4 S ., r
NE 1N EEE -

27



@ Answer

dydz

28



5 Fundamental Theorems

5.1 Fundamental Theorem of Calculus
f(z) is a function of one variable
b
d
| =10~ sta)

or

b
/ F(z)dz = f(b) — f(a),

where F(x) = g—g. This tells you how to integrate F'(z) - find a function f(z) with a derivate
equal to F(x).

5.2 Fundamental Theorem of Gradients
For T'(z,y, z) a scalar function and dT = VT - dl
b
/ VT -dl =T(b)—T(a).

In other words the line integral of the gradient is given by the value of the function at its
boundaries.

Note: Gradients are special - the line integrals associated with them are path independent.

[ .
1 Question

Lets check the Fundamental Theorem of Gradients assuming T' = 2y? point a = (0,0, 0)
and b = (2,1,0).

29



@ Answer

We need to pick a path even though gradients are special and path independent. So lets
take the path from pointa to point b in two parts first horizonally along the x-axis (from
(0,0,0) — (2,0,0)) and then vertically up to point b (— (2,1,0)).

(1) Out along z-axis, dl = dxZ + dyy + dzZ

/VT-dl

dl = dzi
VT = y*Z + 2xyj, y=0
VT -dl=0

/VT-dl:O

(2) Now lets calculate the left hand side of the theorem for the second half of the path:
/ VT -dl, x=2
VT -dl = 4ydy

1
/ dydy = 2y2|(1] =2
0

Thus the entire integral is fa ’ VT-dl = 2. Is this consistent with the fundamental theorem
of gradients? Yes’ be cave T'(b) —T'(a) =2 —0= 2.
Can check with another path.

(3) Lets take another path - the straight line from the origin to (1,2,0)
y=1/2x,dy=1/2dx VT -dl=y*dz+ 2zydy
1 2
= Z:L‘2d.%' + %d:z:

3
= Z:L‘Qdaj

30




5.3 Fundamental Theorem of Divergence

/V(V-v)dT—jév-da

This is saying that the integral of the derivative (divergence) over a region (volume) is equal
to the value at of the function at the boundary (at the bounding surface of the volume). This
is also called Gauss’s Theorem = super useful in electrodynamics.

The divergence represents the “spreading out” so if v represents the flow of incompressible
fluid then the right hand side is the flux through the surface

flow out through

/ faucets within the volume = 7{
the surface

1 Question
Check the divergence theorem
v=y*T + (2zy + 2*) § + 2y22

and a unit cube placed at the origin

A
A

31



@ Answer

v=0+2x+2y

V-

/‘/2 T +vy) dT—/1/01/012(w+y)dacdydz
)
—2/0 /0 (1/2 4 y)dydz

= 2/ dz (1/2y + 1/2y?)

0 0
=2(1/2+1/2) = 2.

Left side of the divergence theorem. 9§S v - da (right side) = consider each side:
Side 1: x = 1 and da = dydzz

dydz

Side 2: =0 da = —dydzz

L.
side 2

IS}
I
|
S—1
=
O\
=
<
o
L
<
IS
N
|
|
\

32




Side 3: y =1 da = dzdzy

Zde 3

Side 4: y =0 da = —dxdzy

Side 5: z=1 da = dxdyz

side 6: z=0 da= —dxdyz

/ -da
szdeG

1

o=

1

S~

1

s~

1

1

/ 2xy + 22dxdz
0

1
/ 2m+z dxdz
(o}

1

dz
0

(2% 4 z2?)

1+ 22dz

33




5.4 Fundamental Theorem of Curls

/S(va)'da—jlgv-d

The integral of a derivative (curl) over a region (patch of surface) equals the value at the
boundary (path). This is also called Stokes Theorem.

The left side depends only on the boundary line not the surface used.

Note: For a closed surface

(V xwv)-da=0.

o~

° .
1 Question

Check Stokes theorem - v = (222 + y?) § + (4yz?) Z.

34



@ Answer

0/0x 0/0y 0/0z
0 2z2+3y? dyz?

z Y z |

T (422 — 22) — §(0) + 2(22)

42% —22) T + 222
da = dydzz,r =0,(V x v) - da = (42® — 22) & - dydz7
= (422 — 2z) dyd=

1,1
xy-dng / (422 — 2x) dydz
o Jo
1,1
= /4z2dydz
o o
1

:/ 422dz = 4/3.
0

Ok so now lets try the path side

IS}

—
<

:" '/\?

-

35




Part ii

Part iii

Part iv

x=0,2=0, dl=dyy
1
vedl=3gdy  [o-di= [ 3yPdy =1
i 0
y=1,z=0,dl =dzz
v-dl = 4yz’dz = 42%dz

1
4
y-diz/ 42%dz = —.
b 3

%

z=0,z=1,dl= _dyg
-dl = — (2zz + 3y?) dy = —3y3dy

v

0 0
/y-dl=/ 3y*dy = y?| = —1
111 1

xr=0,y=0 dl=—dzz
v-dl = —4yz?dz = 0.

- 0
/Q-dL:/Odz:()
v 1

fv-d;:1+4/3—1+0:4/3

36




6 Differentiation of vectors

Lets consider the derivative of a(u) with respect to u. The derivative of a vector is defined in
a similar way to the derivative of a scaler.

Aa = a(u+ Au) —a(u)

da a Au) —a

da_ - a(u+Au)—a(u)
du  Au—0 Au

3—2 is a vector. In Cartesian coordinates

ifa=a,1+a,j+ ak

da da,. da,_  da,
= Hagy Ty
du

du ~ du du k.

Lets find the velocity of a particle

r(t) = z(t)i + y(t)] + 2(t)k

dr dx. dy. dz-
= — = — —_— —k
v =G @t a T

The direction of v(t) is tangent to the path r(¢) and |v(t)| is the speed of the particle.

_dv d?x_.  d?y - dzz%

alt) = ="'t mit e

(3 .
1 Question

r(t) = 261+ (3t — 2)7 + (3t* — 1)% Find the speed of the particle at ¢ = 1 and the
component of its acceleration in the direction s =7 + 2 jA + k.

37



@ Answer

dr ~
— =41+ 37+ 6tk
7t 1+ 37+

v(l) =+v42+9+ 36
=61

Now lets find the acceleration: a = 47 + 6k a is independent of time.
To find the component of a in the direction of s we need to find the unit vector § and
project a in that direction:

a-§=(41+6k) - (i+2i+k)/V6=(44+0+6)/v6=10/v6

6.1 Plane Polar Coordinates

What if another coordinate system is more appropriate?

Figure 6.1: Plane Polar Coordinates

38



Lets start by writing the polar coordinates in terms of Cartesian i+ 7

€, = cos 1+ sin @)
€y = —sin¢i + cos ¢]
€

. do. de ..

_r_ ok °o¥
7t smgbdtz+cos¢dt]
:¢§¢
de do do
AT P~ 4@
7 cos¢dtz smgbdtj
de .

p _ ~
o

The overdot is standard notation for a time derivative.

L3 .
1 Question

r(t) = p(t)e,. Find v(t) and a(t) in these coordinates.

@ Answer

v(t) = (t) = pé, + pe, = pé, + pdé,
d /.. P

a(t) = 7 (pep + P¢>6¢)

= pe, + Py, + PPy + ppey — ppe,

= (p—pd?) &, + (266 + pd)é,

6.2 Differentiation of composite vector expressions

Lets consider a scalar ¢ and a vectors a and b.

d da do
%(¢a>—¢@+@
d db da
@(a-b)—a~%+@-b
db da b
b) = — 4+ — X —
du<ax) axdu+du du

39



® .
1 Question

A particle of mass m with position vector r relative to some origin O experiences a force

F which produces a torque (moment) T = v x F about O. The angular momentum is

given by L = r x mv. Show that the time rate of change angular momentum ‘2—% =T

@ Answer

:vxmv—i—rxm@
- dt

=0+rxFE

,dL

o
T dt
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7 Integration of vectors

The integral has the same nature as the integrand (vector or scalar)

/a(u)du = A(u) + (b) — where b is a constant vector

[ atwdu = Aduw) — A )

1

1 Question
A small particle mass m orbits a much bigger mas M located at the origin.

d?r GMm .
m—s=———r
dt? 72

Show that r x % is a constant of motion.

@ Answer

First step lets take the vector product of force equation

r

d?r ( GMm)A

- Cfév[ is a constant

I'XW_—TQ (rXT)
rxr=0
which means
><d2r 0
rx o -
dt?
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Ok but have not gotten to what we need quite yet - we have a % which is one derivative

higher

d( dr) dr dr d?r
= X — 41 X —

aa\"“ar) T " @ dt2

d < o dr) 0

So— T _— =
dt dt -

a vector crossed with itself is 0 and we already showed that the second term is zero.

integrate the above and we find r x % = constant.
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8 Gradient of a scalar field

Lets consider the problem of calculating the rate of change of a scalar ¢ in some particular
direction. For an infinitesimal vector displacement dr forming its scalar product we get

_ (09.. 3¢>A LA SR
Vo -dr = (8— +(‘T —l—a— )-(zdm+]dy+kdz)
¢ 9¢ 99
= 3 —dzx —I——a dy +78

8.1 Partial Derivative

Ok lets pause for a second and look at exactly what a partial derivative is.

Lets take a function of two variables f(x,y) We can define a derivative for f(x,y) in x by
saying that it is the derisive of f(x,y) when holding y constant (we could do the same with
respect to y holding x constant). We write this % the partial derivative of f(z,y) with respect
to z. Similarly g—:{:. Formally this is

Of _ yy flet+Bzy) — flzy)
O0r  Az—0 Ax

and similarly for g—g. You may also see partials written as (%) would indicate y is held

constant.

8.2 Total differential and total derivative

Suppose we make small changes in x and y

Af = flx+ Az, y+ Ay) — f(x,y)

Az Ay 4

Af ~ r9f(56,y)MJr 8féﬂ;y)Ay

X
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Az + Ay — 0 we get the ‘total differential’

ap = @y, 0@y,
Ox oy
this can he extended to
of L Of . L 0f. . of
df = 8x1d +8:c2d +8x3d 3t 8:c

Returning back to our original work
99 o¢ 09 .
V¢ -dr = —dx+ —dy+ —
o=t 5y Wt 5
the right hand side is the total differential in ¢.

Now lets consider x and y are functions of u

fd +—fd

df = 3y
af _ 8fdx af dy
du ~ Oz du ' dydy

Chain Rule for partial differentiation.
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9 Multiple Integrals

9.1 Double Integrals

j;b ydx = fab f(x)dx = area “under the curve”
Define j; ’ f(z)dz as the limit of the sum of the areas of rectangles.

What about three dimensional regions?

Create columns and add them up to find the volume. The column shown above has a cross

section of AA = AzAy.
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® .
1 Question

Find volume of the solid bounded by the coordinate planes (zz, yz, xy) and the planes
z=14yand —2z +y = 2. (Example from Boas book - section on multiple integrals)

@ Answer

volume is integration (adding up) columns of height z and cros-sectional area AA =

AxAy

V= //zdxdy = //(1 + y)dady

Now decide which way to integrate first - integrate over y first holding x constant or
integrate over x first and hold y constant (we could do either). I have chosen the former
- in the xy plane build up a slice at a specific x value. So integrage over y first creating a
slice of thickness dx. Now we need the limits for y. We start at y=0 and then reach the
line y=2x+42. The value of the max y depends on the x value so the upper limit must be

in terms of x.

r=1 y=2x+2
V= / / (1 +y)dydx
=0 Jy=0
r=1

— - 2 22z
= / y+ L dz
=0 2 0

2
=4z — 322 + ~a
3 o
2 5
=4—-3+ =
3 3

Alternatively we could have added up the columns into slices keeping y constant and we
would have gotten the same answer.

46




y=2 ,pr=2—y/2
/ / (14 y)dzdy
y=0 Jx=0
2

r=1-y/2
[ e
0

/ (L+y) (1—y/2)dy

2 2
/ 1—7+y——dy

dy

=0

The volume calculation above is an example of an iterated integral - holding a variable constant
calculating one integral (inner most) then integrating over the variable that you just held
constant. We did that example in both options x then y and y then x but often one way is
easier than the other.

In the special case of rectangle (both x and y are constant)

f(x,y) = g(x)h(y)

([ o) ([ )

Can use double integral to find more than just volume.

then f f y)dydzx

® .
1 Question

Find mass of rectangular plate bounded by « + 0,2z = 2 y = 0,y = 1 if its density
(mass/area), is f(z,y) = zy.
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@ Answer

AA = Aa;AAy

9.2 Triple Integrals

We could have used a triple integral in the first problem - to create the column in the z
direction.

[ ] .
1 Question

Find V of solid in previous problem using a triple integral.

@ Answer

V:// dxdydz

Now figure out order - we want to create column in z first so integrate in z first holding
both x and y constant then lets hold x constant and integrate over y.

V= | ///2 d:;dydzHy
[ (/ [/ dz]dy)dz

1 2—2x
/ (1+y)dydx =5/3

=0 Jy=0
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10 Directional Derivative

Lets say you are on a hillside and you want to know in what direction does the hill slope
downward most steeply from this point? (This would be the direction you would slide if you
lost your footing) - this would be the direction straight down.

Lets say we move a small distance As the vertical change will be Az (positive, negative, or

zero) meaning %2 depends upon duration (it is a directional derivative).

The direction of steepest slope is the direction in which % has its largest value.

Lets take a scalar field ¢(x,y, z). To find the directional derivative of ¢ at a particular point
in a particular direction we need to find % the rate of change of ¢ with distance at a given
point x, Yy, 2o and in a given direction (s).

Lets define u = 7a + jb + ke as a unit vector in a given direction (s in this case).

(x,y,2) — (Tg, Yo, 20) = US = (z?a+j7b+f<:c)s
r=x5+as
y =1y, +bs

zZ=2zy+cs
parametric equations - x, ¥y, z are equations of a single variable.
Lets write the full derivative:

d _ 96 do

26 dy 96 dz

ds Or ds Oy ds 0z ds

do _ 9¢ 0¢ ¢
ds—%a‘i‘aiyb‘i‘ac

0p~ 0¢- 0¢-
06, 00, 00
ve u_axa+8yb+8zc

Thus the directional derivative is % =V¢-u.
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® .
1 Question

Find the directional derivative of ¢ = x?y+x at (1,2, —1) in the direction A = 2+ 2]A+k

@ Answer
u— A
Al
Al =v4+4+1=3

1 .
Vo = (2zy + 2)i + 227 + ok
at point (1,2, —1)
Vé(1,2,—1) = (2-1-2—1)i+ 1j+ 1k
=3i+j+k
d¢

. =Véu=2-2/3+1/3=5/3

d¢ = ]V(;SHU] cos ) = |V¢| cos @ where 0 is angle between V¢ and u.

Maxunum or |V¢| is if = 0 largest decrease occurs at § = 180 or —|V¢|.

® .
1 Question

Lets consider the temperature in a room. The temperature follows T' = 2% —1y?+xyz+273.
In which direction is the temp increasing most rapidly at (—1,2,3)7

@ Answer

VT = (22 + y2)i + (—2y + 22)] + ayk
VT(—1,2,3) = (=2 +6)i + (—4 —3)j + (—2)k
=4i— 77— 2k

and max rate of A in direction of this vectors. —s = |AT| = v/69. —VT is rate of max
decrease 4 d = —/69. Heat flows in —AT direction.
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10.1 Normal Derivative

Now say ¢ is constant at a point P (x, Yy, 2) and the direction vector u is tangent to %. If

¢ is constant then % = 0. This also means V¢ - u = 0.

|[Vol||lulcosd =0
|[Vo|cosh =0
0 =90°

In this case, V¢ is perpendicular to the surface. Since |V¢| is the value of the directional
derivative in the direction normal often called the normal derivative

do

Vel = 2.

o1



11 Line Integrals

AWz £l dy

Lets say we have a charged particle in an electric field and we need to calculate the work
needed for it to move from point A to B along a particular path. The coordinates x,y, +z are
constrained by the equation of the path. The path is one dimensional and can be written in
terms of one variable. The total work is the integral over the path and can be written in terms
of the one independent variable either by writing two of the coordinates in terms of the other
or by writing parametric equations.

T =xy+as

Yy =yo+bs

z=2zy+cs

(3 .
1 Question

F =ayi—y?)
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@ Answer
Find work done along the path

dr =dx + )dy
F - dr = zyds — y?dy

W = xydxr — y>dy
Path

Write integrand interns of one variable

\9/\

T
o—-’"ﬁ
T " N—%
| 2
Lets start by taking path 1 a straight line
y=1/2z
dy =1/2dx
2
1 1 1
W= Tr— g2 -) d
0 (w 5%~ 4% 5 )de
2
1
= / (—m2 — —m2> dz
h \2
2
3
= / Zx2dx
b 8
1 2
8 0

Now lets consider another path - a parabola
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1, 1
y= dy—Ewdw
2
1 1 1
W, = g2 - gt Zad
5 /Ox 1% 6% g%dw
2
1 1
:/ <—$3——x5>d$
b \4 32
2
_e 1
16 192 |,
4 2
192 3

The work calculated in the two paths is not the same. But there are several examples when it
is (gravitational field for example). If the force field is path dependent it is a non-conservative

force if it is path independent it is a conservative force.

A conservative force field means that [ F - dr is the same no matter what path is taken.

Suppose

oW OW S OW

F—VW-dr—zax +j8y +kaz
ow ow ow
o9 Y oy Oz

or, 0*’wW  9*w  OF,

dy  Oxdy - 0yox " Oz
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similarly

F, OF
OF, _OF,  0F, _OF.

oy 0z 0z Ox
“VxF=0

Thus if F = VW then V x F = 0 and it also turns out that the reverse is true as well — if
V x F = 0 than there is a function W for which F = VW.

Now if ow oW . oW
F.-dr=VW . .dr=——dox+ ——dy+ ——dz
Ox y 0z
=dW
and

B B
F-dr:/ AW = W (B) — W(A)
A

J

Where W(B) and W(A) mean the values of the function W at the end points A&B of the
path. Since the integral only depends on the end pants the integration is path independent
and F is a conservative field.

Just as we saw in problem 7 of week 3 problems the curl of the grad is always zero.
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12 General derivation of V operator

Define a point in space u, v, w in Cartesian it would be (z,y, z) in cylindrical it is (s, ¢, z) and
in spherical (r, 0, ¢). The general coordinate system must be mutually orthogonal call it 4, v, w.
An infinitesimal displacement: dl = fduu + gdvo + hdww. f, g, h are functions of position
characteristic of the particular coordinate system in Cartesian f = g = h = 1. In cylindrical
f=h=1and g=s.

12.1 Gradient

If you move from point u, v, w to u + du,v + dv,w + dw a scalar function t(u, v, w) varies by

(partial differential)

ot ot ot

We can write this as a dot product:

dt =Vt-dl =Vt,fdu+ Vt,gdv + Vit hdw

10t 10t 1 0ot
if Vt,, fau’v” g@v’vw o

This would mean the gradient would be

19t 10t 10t

Now what would that mean for our coordinate systems? For cartesian f =g=h =1 so

for cylindrical f=h=1and g=s

vi= g 105, O
_885 s 0¢ c'?zz
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Lets just check that this general definition satisfies the theorem ot gradients. The total change

in t as you go from point a to b
b b
/ dt:/ (Vt) - dl
=t(b) —t(a

)

and is by definition path independent.

12.2 Divergence

Lets define a vector:
A(u,v,w) =A,u+ A0+ A0

We need to evaluate § A -da over a surface of infinitesimal volume generated at a point u, v, w

back has opposite sign and is evaluated at u + du
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dF
F(u+du) — F(u) = %du

0 1 0

u (ghA,,) dudvdw = Tah ou (ghA,,)dr

left and right hand sides yield

0 1 0
P (fhA,) dudvdw = 70 (fhA,)dr

fgh dv

and top and bottom

0

Em (ngw) dudvdw = Lo

fgh aw (ngw>

Then all together
0 0
fa-da- f— oo (ahA) + o (FhA) + o (fgA,)| dr
0 0
VoA =[S ehA) + o (04 + 5 (9,

Over finite § A -da = [(V - A)dr

For cylindrical coordinates the divergence is:

1/0 0 0
A= —sA,+ — —
\Y S (838 s+a¢A¢—|—azsAz)
10(sA;) 10 0
A= - &
\Y = s + — 8¢A¢+ —A,

12.3 Curl

Remember the fundamental theorem of curls:

/S(VXV).da:Z{v.dl.

So if we start with the right hand side the line integral § A - d
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.V <
\ ‘ \
\A Vi '_L,t p— ¥
, /1
\iy. (! N o
P ~—

w out of page
da= fg dudv w

along bottom segment dl = fduu
A-dl=(fA,)du

along top leg A is evaluated at v + dv

(1= Ay + FADL) du = = [ 2 (74,)] dudo

right and left hand sides give

[qu (gAU)] dudv

total is 5 5

fA -da = [c{)u (gA,) — P (fAu)} dudv
170 0 -
= E [% (94,) — v (fAu)] w - da
This provides the w component of curl.

If we then do the other directions (a general patch not just in the u-v plane) we will get:

170 0 .. 1770 0 R

Vx A= o [% (hA,) = = (gAv)] it oy [%(fAu) ~ 5y (Aw)| v
1170 0 .
o | guted) — 5 A @
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12.4 Laplacian

Derive by using divergence and gradient in general form.

el ) A 2 ()5 () 2]
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13 Cylindrical Coordinates

e

¢ - angle around z-axis ‘azimithal’ angle z - height in z-axis s - distance from z-axis

The relation to Cartesian coordinates

r=scos¢p y=ssing z==z
§ = cos ¢ + sin ¢y
&z—sinqﬁi%—cosqﬁg}

z2=12z

dly=ds dl,=sd¢p dl,=dz

dl = ds§ + sdo¢ + dz3
volume element dr = sdsd¢dz. The range of s is 0 to oo, ¢ is 0 the 27, z is —oo to oo
Vector operations in cylindrical coordinates (f =h=1 g=s):

Gradient:
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10t 10t 10t
oY T gor Y T how
ot. 10t~ Ot
V=558 T 5060 T 52"

Vit

Divergence:
1 70 0 0
o | (ghA) + 5+ (FRA) (79,
1 6U¢ 81)2
50+ 536 ¥ Bz

Curl:

Laplacian:
L [0 (shy 0t D (ghy ot D (fg) )
f/ou Ov\g/)ov Ow\h)/ow
a [ ot 1 0% 0%t
2, _ 1+ Y (.0 vy 2°
Vit = Os <888>+828¢2+6z2

1 Question
Find the divergence of the function

v = s(2+sin2¢>)§+ssin¢cos¢¢§+3z2

62



@ Answer

10 18U¢ 81)2
V=55 T 55 T

10 .2 1o, . 9]
=% [s (2s+ssm (]5)] + g%(ssmqﬁcoscb) + &32

10 L, 5 o 1 9 .
__585(25-+5 sin ¢)+—S sa¢(an¢cos¢)+3

2

= —-23+2ssin2gb—l—cosqbcosqb—sind)singb—i—i%
s

=4+ 2sin” ¢ + cos? ¢ —sin® ¢ + 3

= 7 +sin® ¢ + cos? ¢ = 8.

[ .
1 Question

Test the divergence theorem for this function using a quarter-cylinder (r = 2, h

5).

@ Answer
i oE AR =l
EERT R T
) R s
A R |
M-—/) 2 713
[l | A
i o @ ="
4 .
| X -
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Left side - we have already calculated the div

dT = sdsdodz

5 /2 2
/88 dsdqﬁdzz/ / / 8sdsdopdz
0 0 0

All constants so can be split up
5 /2 2
/(V-v)d7=8/ dz/ dgb/ sds
v 0 0 0
2
5 /2 52
8<z|0-¢\0 20)

=8(5-m/2-2)

/(V -v)dT = 407

Right hand side

%v-da:/ v-da+/ v-da+/ V-da+/ v-da
S top bottom front back
—i—/ v-da
left

Top:
d, = sdpdsz,z =5
v-da =3z sdpds = 15sd¢pds
2 /2 212
1
/ / 15ssdpds = m/ 2 - bs
0 0 2 0
= 157
Bottom:
da = —sdpdsz,z =0
// 0dods = 0.
Back:

da = dzds¢,d = /2
v - da = ssin ¢ cos ¢pdsdz
2

//ssin¢cos¢dsdz:0.
o Jo
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Left: -
da= —dsdz¢p ¢ =0

5 42
/ / ssin ¢ cos pdsdz = 0
0 o

da = sdpdzs s =2
v-da = s? (z + sin? gb) dodz

5 w/2
/v-da:// 5% (2 + sin® ¢) dpdz
0 0
5

/2
:/ dz/ 4(2+sin’¢) do
0 0
=5-bmr = 2bm
Total = 407

Front:
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14 Spherical Coordinates

P is defined by r, 0, ¢ in spherical coordinates. r is the distance from the origin
0 is the angle down from z-axis
¢ is the angle around z - axis (same as cylindrical coords)
xr=rsinflcos¢, y=rsinfsing, z=rcosd
the unit vectors 7, é,q§ are mutually orthogonal

A= A7+ A+ Ay

dl, =dr

dly = rdf

dl, = rsinfdg
arc lengths for angles must be converted into lengths

dl = dri + rd08 + rsin 0dge
dr = dl,dlydl, = r*sin Odrdfde
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r ranges from 0 to oo, from 0 to 7, ¢ from 0 to 2w

Lets just think a bit about area

53 dg, 2 r51h8 ded

7 EERRET) ey IRRYS FETE

e ’E_—P w || ; |_surlce of spim.

2 ‘vﬁdz“" AR A S A e L8 o oLt £409

NPT FIRERT TV - dedfs

B A_,,nxC doy _.LiLx% pkﬂ*«uw i § _,_#_,_,“;f

L3 .
1 Question

Find volume of a sphere of radius R.

@ Answer

R 27
V= /de/ / r2 sin OdpdOdr
=0 J6=0 Jp=0
/ r2dr / sin 0d6 qu
0 0 0
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Now lets use the general expressions to find the V operators for spherical coordinates.

Vi, — }SZ’V% _ ;gf},ww _ ;Lg;
dl = fduu + gdvo + hdww
F=1l,g=rh=rsnd
Divergence:
VA= o [GalahA) + o+ (A (A,
_ ﬁ [;T(r sin0A ) + efe (rsin 04,) + 8a¢(rA¢)}
VA= %%“2 o)+ rsfnege(”m‘%” rsiln908gb<rA¢)
Curt 170 )
VA= | (hAy) — 5 (A, )]
+flh_ (FA,) — 6‘9 (hA, )}a
45 [t - o (A @
_ ﬁ [639 (rsinfA,) — (fqb (TAG)] p
rsin@ [((;1 T ;(sin0A¢)} 0
e )
- rsilnH [aae (sin6A,) - aaqﬁ Me)] 7
4 % [Sii@fibAr _ §(A¢)] §
[Fom- o
Laplacian:

e ()R ()2

0 ot 1 0 1 0%t
2 — s — _ - -
Vit = r2 Or (T 6r> r2sin 6 00 (Sm 0 ) r2sin2 6 <6¢2>



® .
1 Question

Compute div of A )
v=(rcosf)T + (rsin€)f + (rsinf cos ¢)o

@ Answer

1 0 1%

10, , )
r2 or (ro,) + rsin@%(smeva) + rsinf 0¢
1
2

1 . .
rsin@%@me -rsinf)

1 0, .
" 8—¢(r sin 0 cos ¢)

1
:—231"2 cosf + r 2sinf - cos0
r 0

rsin

1
4+ ———rsinf - —sin¢
rsin @
=3cos 0 4+ 2cosf —sin ¢

=b5cosf —sin ¢

[ .
1 Question

Now check divergence theorem for this function using an inverted hemisphere of radius
R as the volume and surface

@ Answer

Div theorem

/V(V-y)d7=y§y-dg
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Left side first:

let w =sin6

27 /2 R
/ / / (5 cos  — sin ¢)r? sin Odrdfde
o Jo 0

R w/2 27
/ rzdr/ / (5 cos § — sin ¢) sin 0dpdl
0 0 0
R 3 R /2
r 27
/ — / 5¢ cosf + cos q§\¢=0 sin 0d6
o 3 0 0
R3 /2
3/ [5-2mcosf+ (1 —1)]sin0df
0
R3 /2
/ 107 cos 0 sin 0df
3 U
du = cos 6d0
3
i/lOwudu
3 9 0="/2
K 107
3 6=0
/2
R sin? 6"
s
3 2 |,
3 3
R 107 - 1_5mR
3 2 3

Right side: Two surfaces - hemisphere and bottom

Start with hemisphere
7 component from v

r=R

/v-da:/ Rcosf - R?sin0dfdo

27 /2
=R? / d¢ / cos 0 sin 0df
0 0
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u =sinf

du = cos 6df
9 |0="/2
= R3 - 2rm- %
6=0
.9 /2
o S
0
_ 7TR3

Flat bottom R
da = rsinfdrdgd 0= /2

27 R
/y-dg / / rsind - rsin Odrdeo
o o
R

r3R
:27r-/ r2dr = 27 - —
A 3

2
— ?WR3 ~ Total = E%WR“Q’

0
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15 Problems

15.1 Week 2

1 Question
1. Find the gradients of:
[y, 2) = 2% +y° + 2
f@,y, 2) = 2%y’
f(z,y,2) = e"sin(y) In(z)

@ Answer

227 + 3y2y + 4232
2w 247 + 3x2y? 2ty + 4x?y3232
. eTsin(y) .

e sin(y) In(z)z + e* cos(y) In(z)y + ——=2
z

L3 .
1 Question

2. The height of a hill (in feet) is given by the function: h(z,y) = 10(2zy — 3z% —
4y% — 18z + 28y + 12) where y is the distance (in miles) north, z is the distance
east of the town of Trout.

(a) Where is the top of the hill located?
(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point one mile north and one mile
east of Trout? In what direction is the slope steepest, at that point?
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@ Answer

Part (a)
Vh =0 at summit

Vh =102y — 6z — 18)Z + 10(2x — 8y + 28)y
Both Z component and the § component are equal to 0 at the summit.
x component: 2y —6x — 18 =0
y component: 2x — 8y + 28 =0
y=3 x=-—2

three miles north, two miles west of Trout.

Part (b)
h(—2,3) = 720 ft
Part (c)

Vh(1,1) = 220 + 220§
|Vh| = 220v/2 northwest

® .
1 Question

3. Calculate the divergence of the following vector functions:

v, = 2% + 3222y — 2222
vy, = Ty + 2yzy + 3zxZ
Vo= Y27+ (2zy + 2%)j + 2y2z
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@ Answer

0 8

Vv, = (—x + — 22) (222 + 3w2y — 2x22)

a

0 8 8z
=2x —2x
=0.

V-vy=y+2z+3z

V.-v,.=2x+2y

3 .
1 Question

4. Calculate the curls of the vector functions in problem 3.

@ Answer

v, = 222 + 3x2%y — 2222

(22))
= 2(—6xz) — y(—22) + 2 (32?)
—6xx + 22y + 3z z

z g z
Vxuv, =|0/0x 0/0y 0]/0z
2 3wz? 2212
=7 (0/0y(—2xz) — 0/0z (3x2?))
— 9 (0/0x(—2x2) — 8/0z (z?))
+ 2(0/0z (3w2%) — 8/8y
)

v, = xYT + 2y2y + 3zxZ

0/0x 8/y8y 0/0z |
Ty 2z 3zx
= 2(0/0y(3zx) — 0/02(2yz))
—y(0/0x(3zx) — 0/0z(xy))
+ 2(0/0x(2yz) — 0/0y(xy))
=2(—2y) —y(32) + z2(—x)
= —2yr — 3z — xZ

V xuy, =
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v, =y°% + (2zy + 2%) § + 2922

V xuv, =|0/0x 8/y8y 0/0z
y? 2ay+ 22 297
=7 (0/0y(2yz) — 0/0z (2zy + 2%))
— 5(0/0(2y2) — 9/9% (1?))
+2(0/0x (2zy + 2%) — 9/0y (y*))
=(22 —22)2 — 0y + (2y — 2y)z
=0

~

1 Question
5. Calculate the line integral of the function v = x2Z + 2yzy + y?Z from the origin to
the point (1,1,1) by three different routes:

(a) (0,0,0) = (1,0,0) — (1,1,0) — (1,1,1)
(b) (0,0,0) — (0,0,1) — (0,1,1) — (1,1,1)
(c
d

)
)
) the straight line.
(d) What is the line integral around the closed loop that goes out along path (a) and

back along path (b)?

@ Answer

T+ 292y + Y2

\ @

oo

a) three sections of path to integrate: (0,0,0)
Parti: dl=dxx y=0,2=0

1
/ 227 - dxd = / x2dz
path 0

1

=dxZ + dyy + dzz
— (1,0,0) = ((,1,0) — (1,1,1)
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Part ii: di=dyy z=1,2=0

1
/ 2yzy - dyy = / 2yzdy
path ii 0

0

Partiii: dl=dzz z=1, y=1

1 1
/ y22-dz§:/ y?dz :/ dz
path iii 0 0

Total path :/v-dl:4/3

p
b) Path (0,0,0) — (0,0,1) — (0,1,1) — (1,1,1)

Pathiy=0,2=0 dl=dzz

1
/ y22-d22:/0d220
Path 0

path iiz=1,2=0 df=dyj

1
~ ~ 1
/ 2yzy - dyj = / 2ydy = y°|,
path ii 0

=1
Pathiii: z =1,y =1 dl=dzx

1 mg
/ 227 - da = / r?dr = —
path iii 0 3

Total path = /v- dl =4/3.

p

8

=y=2z , dr=dy=dz
-d

QN

v
P
= / (2% + 2y2y + y?2) - (daZ + dyy + dz2)

r2dx + 2yzdy + yidz
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now write all in terms of one variable.
= /x2da: + 22%dx + 2%dx

1
= / 422dx
0

d) $v-di=4/3—4/3=0.

1 Question
2 over the tetrahedron with

6. Calculate the volume integral of the function T' = z
corners at (0,0,0),(1,0,0),(0,1,0),(0,0,1).

@ Answer

/TdT:/ZQd{Edde
1% 1%

= /// 2dadyd:

If we integrate x first minimum is 0 max is at surface which is defined by « +y + 2z = 1.
Thus, = 1 —y — 2. Once x has been integrated y also has minimum of O and now max
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at line y + z = 1. Finally we have just z to consider which runs from 0 to 1 .

1 1—z 1—z—y
/ / / 22dxdydz
0 Jo 0
1 pl—z e=l-z—y
/ / 22
0 Jo

dydz

=0

15.2 Week 3

[ ] .
1 Question

1. Check the fundamental theorem of gradients with the scalar function T = 2% +

4zy + 2yz3. Assume point a is at the origin and point b = (1,1,1). Check the
theorem for three paths:

a) (0,0,0) — (1,0,0) — (1,1,0) — (1,1,1)
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b) (0,0,0) = (0,0,1) — (0,1,1) — (1,1,1)
c) the parabolic path z = 22 and y = x

@ Answer
Part a) Path i) (0,0,0) — (1,0,0) — (1,1,0) — (1,1,1)

dl=dxz y=0,2=0
1

/ VT-dlI/Qasdx:x2|(1):1
path i 0

Pathii) dl=dyy z=1,2=0

1
/ VT.dz—/4dy—4y\é—4.
path ¢ 0

Pathiii) dl =dzz z=1,y=1

1
/ VT‘dZZ/ 62°dz = 223|(1):2
path iii 0

Total path 1+4+4+2=7

Part b)
(0,0,0) = (0,0,1) = (0,1,1) — (1,1, 1)
Pathi di=dzz y=0,z=0

1
/VT-dl:/ 0dz =0
0

Pathii)dl=dyy x=0,z=1

1
/VT-dl:/ 2dy = 2y, =2
0

Pathiii) dl=dzz y=12=

T
/VT-dl:/ (2$+4)dm:x2+4m|é:5
0

Total path 7.
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Part c) parabolic path z = 2%,y =2 dx=dy dz=2xdz

dl = dxx + dyy + dzz
VT -dl =(2z + 4y)dx + (4z + 223) dy + 6yz2d=z
= (2:}5 + 4z)dz + (4 + 22°) dz + 6zz? - 2zdx
(6 + 42 + 225 + 122%)dx.

/VT dl = / (102 + 142°) da

52 +2x7|0=7

L3 .
1 Question

2. Compute the line integral of v =67 + yz? § + (3y + 2) Z along the triangular path
(0,0,0) — (0,1,0) — (0,0,2) — (0,0,0). Check your answer using Stokes theorem.

@ Answer

Y
s

v=06%+y%y+ By +2)2

(0,0,0) — (0,1,0) — (0,0,2)
dl = dxx + dyy + dz2
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Pathixz=0,2=0 dl=dyy

1
/v-dl:/yzzdy/ V'dl:/OZO
path i 0

pathiiz =0 dl=dyy+dzz
z=my+b
z=—"2y+2 dz=—2dy

/ v-dl:/yszy—l—/?)y—i—zdz
path ii

= /y(—Qy +2)%dy + /(3y + 2y +2)-—2dy
0
:/ 43 — 8y? + 4y — 2y — 4dy
1

0
:/ 4o — 8y? + 2y — 4dy
1

2 4 83 2 ’
e —4
33/ 33/ ty yl
2 14
= — 4:—
3+ 3

part iii) dl=dzz y=0,z=0
v-dl =3y + zdz

= zdz

0 2
/ zdz = z
, 2

0

Total path

Check with Stokes Theorem:
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/(va)'da

z 0 z
0/0x 9/dy 0/0z
6 yz?  3y+z

=2(3—2y2) — (0 —0) + 2(0—0)
=(3-2°)2

//(3 —2yz)dydz z=—2y+2

1 —2y+2
/ [/ 3— 2yzdz] dy
0 0
! —2-2
[ v
0

1
/6 6y — y(2 — 2y)*dy
0

8 1
6y — 5y* + gy?’ -y,

6 — 6y —y(4—8y+4y?)dy

1
/ 6 — 6y — 4y + 8y? — 4y3dy
0

8
6—5+-—1
e
_8
3

i Question
3.

a) If A and B are vector functions what does (A - V)B mean? (What are the x, vy,
and z components?)

b) Compute (7 - V)7.

c¢) For the functions from problem 3 in week 2 evaluate (v, - V)vy,

L3 .
1 Question

4. Test the divergence theorem for the function v = xy z + 2yz y + 3zx 2. Take for the
volume a cube placed ath the origin with sides of length 2.
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@ Answer

v = xyZ + 2yzy + 3zxz

/V(V-y)deijy-dg

V-v=y+2z+3z
dt = dxdydz

2 .2 2
/ / / (y + 2z + 3x)dzdyd=
o Jo o

2 .2 3.2 x=2
/ / yr + 2z + —
0 0 2 e

dydz
-0
2
// (2y + 4z + 6)dyd=z
0
2

2 y=2
/0 y* + 4zy + 6y|y:0 dz

2
/ 4+ 82+ 12dz
0

912
16z + 4z |O
3z +16 =48
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i) da = dydzz

(ii) da = —dydzx x =0

iii) da = dxdzy y = 2.

(iv) da = —dzdzy y =20

v) da = dzxdyz z =2

2 2
//4zd:£dz
0
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vi) da = —dzdyzz =0
/Odazdy =0
s

S

L3 .
1 Question

5. Test Stokes theorem for the v in problem 4. Take the path to be three segments
that make a triangular loop: (0,0,0) — (0,2,0) — (0,0,2) — (0,0,0).

@ Answer

/S<V><y>-dg:71€g-dz
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Right hand side first:
v = xyl + 2yzy + 3zx2

~ ~ ~

z oy z
0 o) 0

V x V=1 3z By 52
Yy 2yz 3zz

=2(0—2y) —y(32—0) + 2(0 — x)
= —2yr — 32y — xZ

my+b==z
da = dydzz
z2=—y+2

//(—2;1/:3 —3zy — x2) - dydzZ

y=2 z=2—y
= / / —2ydzdy
y=0 Jz=0

2
—2
/ —2yz|_ " dy
0

Now for the path side ...
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Part 2 of path:

Section 1 of the path:

—0, dl=
3zxzdz
2yzdy +/

2y(—y + 2)d

dyy+dzz z=-—-y+2 dz=—dy

o

0
—2y + 4ydy

S T

2
-]

2
2.8-8
3

16 24

8
3 3 3
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Part 3 of path:

So total path

(3 .
1 Question

6. Prove that the divergence of the curl is always zero. Check it for the function v,
of problem 3 in week 2.

@ Answer
V- (Vxv)
z y z
Vxv=|090/0x 0/0y 0]/0z
v, v, v,

=2 (0v,/0y — dv,/0z)
— 9 (0v,/0x — Ov, /0z)
+ 2z (0v, )0z — dv, /0y)

_ a0 % +A(8vw_8vz>+g Gy _ Ovy
N oy 0z Y 0z Ox Oz oy

V- (Vxv)

_ 0 <avz_%> +£ (8% _c%z) +2 (%_8U1>
ox \ Oy 0z oy \ 0z ox 0z \ 0z oy

0%, _ 32% n v, B 0%, N 82% B 0%,

Oxdy Ox0z 0Oydz 0xdy Oxdz 0z0y

= 0.

[ .
1 Question

7. Prove that the curl of the gradient is always zero.

88




@ Answer

V x VT
or . oTr. 0T .
z 0 z
VxVT=|0/0x 0/0y 0/0z
oT oT or
ox oy 0z

_ (0T TN (0T T
- 0ydz  Oydz J 0xdz 0x0z

L T 9T 0
oxdy 0Oxdy)

® .
1 Question

8. Use Stokes theorem to find the surface integral v = y z for the triangular surface

defined by the vertices (a,0,0), (0,2a,0),(0,0,a). Hint one side of Stokes theorem
will be much more straight forward than the other.

@ Answer

Surface:
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Part 1: dil=dzxz+dyy 2=0 dz=0
Jyz- (dzZ + dyy) =0

Part 2: dl=dyy+dzz =0

z=my+b

z=—1/2y+b
z=—1/2y+1
dz =—1/2dy

/yé- (dyy + dzz2)
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Part 3: dl=dxz +dz y =0,

/yi- (dzxz +dzz) =0

15.3 Week 4

® .
1 Question

_ ,—p?—q? — 8 _ ,—§ : dar
Lr=e? T p=e’ qg=e* Find ..

@ Answer

There are several ways to do this - here is one way:

ar _ordp _ordg
ds Opds Oqds

=P

A )V

Substitute all of this into the full derivative

_ = _2p6_p2_q2 . es + (_2q>€_p2_q2 . _6_5
= (—2pe® + 2qe 5 )e P 0
= 2r(¢° — p?)

3 .
1 Question

2. ¢ =sin(a—b), b= ae?®. Find 4.
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@ Answer

dc_f)c db+8c da
da Ob da 0b da

% =cos(a—b)-—1

% = cos(a —b)

% = e 4 qe?® . 2 = e?%(1 + 2a)
.-.% — cos(a— b)(1— 2b— e29)

[ .
1 Question

3. 2= a2+ 29?
a. Find (%)y.

b. Write z and y in plane polar coordinates (in terms of r and 6) and find (%)T.

@ Answer

a. Take the partial derivative of z keeping y constant: (%)y = 2.
b. There are several approaches to this problem - here is mine. First write x and y in
plane polar coordinates:

xr=rcosf y=rsinfd

Since we want the partial of z with respect to x while keeping r constant lets take
the opportunity to substitute for y in terms of 6 and r.

z = 2% + 2y°

.2
2z =1x%+2r%sin” 0

92




We can substitute again to get rid of the 0

.2
sin“ @ =1 — cos? 0
2
z T
cosf == cos?h="
r

r2

2

sin?f = 1— =
r
2
z=x242r2 (1_x_2)
r
= —x2 — 272
0
(_z) = 2z

ox/,

(3 .
1 Question

4. Solve

@ Answer

3 .
1 Question

5. Solve

@ Answer
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® .
1 Question

6. Solve

@ Answer

L3 .
1 Question

7. [[(2z — 3y) dady, where A is the triangle with vertices (0,0), (2,1), (2,0).
A

@ Answer

The hypotenuse of the triangle is the line y = %x Lets integrate over y first keeping x

constant. ) .
2

/ / (2x — 3y) dydzx
=0 Jy=0

2 5 [F
(2zy — =y*) dz
=0 2
y=0

2
5, 5
“x2dr =2

(3 .
1 Question

8. Solve

// 2xy dxdy
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over the triangle (0,0),(2,1),(3,0).

@ Answer

I split this into two right triangles. One with = ranging from 0 to 2 with area A, and
a hypotenuse y = x/2 and one with z ranging from 2 to 3, area A, and a hypotenuse

y=3—zx.
= // 2zy dxdy + // 2zy dxdy
Al AQ
2 5 3 3—x
= / / 2zy dydx + / / 2zy dydx
=0 Jy=0 r=2 Jy=0
2

3 3—x
:/ xy? d:L‘-I—/ xy?
0 2

y=0 y=0
2

2 3
=/ m-x—dx—i-/ z(3 —x)%dz
0 4 0

z
2

dx

(3 .
1 Question

9. Solve
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@ Answer

15.4 Week 5 (due 12:30pm Friday 18 Oct)

1. Calculate the Laplacian of In(z? + 3?).
2. IsF =yi+axzj+ 2k a conservative field? Justify your answer.
Evaluate [F -dr from (0,0,0) to (1,1,1) along two paths:

a. a broken line (0,0,0) — (1,0,0) — (1,1,0) — (1,1,1)
b. a straight line

3. Given ¢ = 2% — 3zy

a. find grad ¢ o
b. find the directional derivative of ¢ at the point(1, 2,3) in the direction i + j + k

4. Let v = zi + y]A + zk. Evaluate 9%v - da over the closed surface of a cylinder of hight
h and radius a with a base centred at the origin. (Hint: consider using the divergence
theorem.)

5. Calculate the volume of the region bounded by the planes z = 2x 4+ 3y + 6 and z =
2z + 7y + 8 and the triangle with vertices (0,0), (0,3), and (2, 1) projected in the vertical
direction (taken as the z-direction).
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